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Abstract: In this paper, a high dynamic range (HDR) imaging method based on the stereo vision
system is presented. The proposed method uses differently exposed low dynamic range (LDR) images
captured from a stereo camera. The stereo LDR images are first converted to initial stereo HDR
images using the inverse camera response function estimated from the LDR images. However, due to
the limited dynamic range of the stereo LDR camera, the radiance values in under/over-exposed
regions of the initial main-view (MV) HDR image can be lost. To restore these radiance values,
the proposed stereo matching and hole-filling algorithms are applied to the stereo HDR images.
Specifically, the auxiliary-view (AV) HDR image is warped by using the estimated disparity between
initial the stereo HDR images and then effective hole-filling is applied to the warped AV HDR image.
To reconstruct the final MV HDR, the warped and hole-filled AV HDR image is fused with the
initial MV HDR image using the weight map. The experimental results demonstrate objectively and
subjectively that the proposed stereo HDR imaging method provides better performance compared
to the conventional method.

Keywords: high dynamic range imaging; high dynamic range reconstruction; stereo matching; stereo
vision system; hole-filling

1. Introduction

Most commercial charge coupled device (CCD) or complementary metal-oxide semiconductor
(CMOS) sensors deliver a limited dynamic range (DR) which is usually several orders of magnitude
lower than that of a real scene. To overcome such limitation of image sensors, many researchers
have developed various DR extension methods, which are also called high dynamic range (HDR)
imaging. While some approaches enhance the DR by using particular sensors [1–3], other HDR imaging
methods use image processing techniques to generate a high-quality HDR image from low dynamic
range (LDR) images captured by low-cost cameras. These HDR imaging methods use multiple LDR
images of the same scene captured under different exposures and fuse them into the HDR image [4–7].
Thus, the resultant HDR image has a wide DR similar to a real scene. However, since the fusion
process assumes that the scene is completely static, the faint appearance of objects, called ghosting
artifact, is often observed in the final HDR image especially when the scene contains moving objects.
Jacob and coworkers’ method [8] attempts to reduce the ghosting artifact by explicitly detecting and
removing the moving objects when combining multi-exposed images, but moving object detection
itself is challenging especially for multi-exposed images. Other ghost removal algorithms [9,10] use
the PatchMatch-based global optimization to obtain the artifact-free HDR image, but the algorithms

Sensors 2017, 17, 1473; doi:10.3390/s17071473 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s17071473
http://www.mdpi.com/journal/sensors


Sensors 2017, 17, 1473 2 of 20

generally require high computational cost. Although the PatchMatch-based global optimization can
be accelerated by Lu and coworkers’ method [11], which uses the super-pixel as a basic unit for the
PatchMatch, super-pixel segmentation itself is challenging for the images captured under the limited
dynamic range. The ghosting artifact can also be removed by using special sensors that support
spatially varying pixel exposures [12]. However, such sensors not only increase the cost of the cameras
but also reduce the resolution of the resultant HDR image.

In an attempt to deal with the ghosting artifact using general sensors, several researchers have
focused on reconstructing an HDR image from a stereo image pair captured with different exposures,
called stereo HDR imaging [13–16]. According to the literature survey [17], these methods [13–16]
correspond to the single source method because a single input image is used from each camera. One
method [13] uses the left HDR image and the right LDR image to generate the right HDR image, and
the others [14–16] use a stereoscopic LDR image pair as an input. Since the input LDR image pair is
captured together with slightly different exposures, the ghosting artifact can be largely alleviated in
the resultant HDR image. However, the input LDR images of the stereo HDR imaging system have
different viewpoints with each other. Thus, in stereo HDR imaging, two challenging issues have to
be addressed: First, high-performance disparity estimation is required to align the AV with the MV.
Second, an effective hole-filling method has to be employed to restore the radiance values of the hole
regions in the HDR image.

The proposed HDR imaging method adopts a basic framework of the conventional stereo HDR
imaging methods [14–16] which consist of image rectification, radiance space conversion, disparity
estimation, image warping, and image fusion. In the proposed method, we reconstruct the final
HDR image with considering the aforementioned two challenging issues. First, the human visual
system (HVS)-based cost computation and segmentation-based cost aggregation method are proposed
to obtain a more precise disparity map. Second, the effective hole-filling method is proposed to
compensate for the incomplete region in the warped AV HDR image.

The remainder of this paper is organized as follows. The proposed stereo HDR imaging is
described in Section 2. In Section 3, experimental results are presented and discussed. Finally, this
paper is concluded in Section 4.

2. Proposed Stereo HDR Imaging Method

2.1. Overall Framework

An overall framework for the proposed stereo HDR imaging method is shown in Figure 1.
The framework of the proposed method is similar to the flow of conventional stereo HDR imaging
methods [14–16]. First, a stereo image pair is transformed into a common image plane using the
well-known rectification method [18] prior to the stereo matching process. A stereo LDR image pair of
the MV image Im and the AV image Ia is assumed to be horizontally aligned by rectification. Next, both
Im and Ia are used to obtain the inverse camera response function (ICRF) [19]. After obtaining the initial
HDR images by the radiance space conversion, the resultant HDR images of the proposed stereo HDR
imaging method are obtained by three major sub-processes: (1) disparity estimation; (2) warping and
hole-filling; and (3) fusion with the warped and hole-filled AV HDR image. The segmentation results
of the initial HDR images are also used as supplementary information in the first two sub-processes,
as shown in Figure 1.
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However, since the camera response function (CRF) estimation method [19] is presented for the
single-view images with different exposure times, called the bracketed images, the method should
be modified for the stereo HDR imaging system. To apply the CRF estimation method [19] to the
stereo HDR imaging system, it is mandatory to obtain the pixel correspondences between the stereo
images, which are called sample points [14]. The conventional stereo HDR imaging method [14]
employs the SIFT descriptor to find the sample points. However, the conventional method [14] does
not guarantee the sample points for the full intensity range due to using the SIFT descriptor. To obtain
enough sample points for the entire intensity range, the proposed HDR imaging method utilizes the
cumulative distribution functions (CDFs) of the stereo images. The proposed method assumes that
the pixel values with the same probability at two different CDFs of the stereo images have the similar
irradiance value. Thus, given the two CDFs, the sample points are collected by selecting the pairs
of pixel values that correspond to the same probability. For example, the intensity value 18 of the
left image is matched with the intensity value 113 of the right image, as shown in Figure 2a. All the
collected sample points are then used to estimate the ICRF [19]. Figure 2b–d shows the resulting ICRF
curves of the conventional method [14], the proposed method, and the reference method [19]. The
ICRF curves of the conventional and the proposed method are obtained by using the stereo images
with two different exposure times (short and long). The reference ICRF [19] is generated by using the
single-view images with the three different exposure times (short, normal, and long). It can be seen
that the ICRFs of the proposed ICRF method for the stereo HDR imaging system are more accurate
than the conventional ones [14].

Figure 3 shows a radiance space conversion process. The rectified LDR images are first converted
to the initial HDR images, Ri

m and Ri
a, by using the proposed ICRF method. These initial HDR images

are then used for the proposed stereo HDR imaging system.
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Similar to the conventional algorithms [14–16], the left-view image and the right-view image are
set as the MV image and the AV image, respectively. Although the initial HDR images are obtained
using the estimated ICRF, the DR of the initial HDR images is inherently limited by the input LDR
images, which is especially noticeable in the under/over-exposed regions. Thus, to expand the DR of
the MV image Ri

m, the under/over-exposed regions are detected and restored from the corresponding
regions in the initial AV HDR image Ri

a.
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The under/over-exposed regions are detected from Im, as follows:

S(p) =

{
1, if 0 < Lm(p) < τu or τo < Lm(p) < 255

0, otherwise
, (1)

where S(·) represents a binary under/over-exposed region map (1: under/over-exposed, 0: otherwise).
τu and τo are the thresholds to determine the under/over-exposed regions. p denotes the 2D
pixel coordinates and Lm denotes the luminance value of Im. Figure 4c shows the detected
under/over-exposed region map.
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Figure 4. (a) Input MV LDR image, Im; (b) luminance channel of Im and Lm; and (c) under/over-exposed
region map, S.

The corresponding under/over-exposed regions need be detected from the AV image in order to
restore the radiance values of the under/over-exposed regions. For this purpose, per-pixel disparity of
the AV image, Da, is required. We estimate the disparity by combining the HVS-based cost measure and
the segmentation-based aggregation method. The proposed disparity estimation method is described
in detail in Section 2.2.

Unlike the conventional stereo HDR imaging methods [14–16], the segmented images are used
in the proposed stereo HDR imaging method. Prior to disparity estimation, the segmented images
are obtained using the two-step segmentation. To speed up the segmentation process, the initial HDR
images are over-segmented into super-pixels using the super-pixel lattices (SL) method [20], as shown
in Figure 5b. Since the SL method segments the image into a regular grid of super-pixels, it can be
easily adapted to the graph-based algorithm. The obtained super-pixels are processed as the input
pixels of the graph-based region merging (GRM) method [21]. The resultant super-pixels of the SL
method are grouped into segments using the GRM to generate the segmented MV image Gm and AV
image Ga, as shown in Figure 5c. These segmentation results are used for the disparity estimation and
the hole-filling.
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After obtaining the segmentation results and the AV disparity Da, image warping is performed
to align the AV HDR image with the MV HDR image. Then, the warped AV HDR image Rw

a is
compensated by the hole-filling process. The proposed hole-filling method and the fusion process to
reconstruct the final HDR image are presented in detail in Section 2.3.

2.2. Disparity Estimation

Prior to the estimation of the AV disparity Da, the regions of interest in the AV image are
first detected from Equation (1). To do this, the segments in Gm that include the pixels in the
under/over-exposed regions are selected. The pixels in these segments are determined as interest
pixels in the AV image as shown in Figure 6b. Then, each interest pixel is expanded to the horizontal
direction with the maximum disparity, dmax, as shown in Figure 6c for the estimation of the AV disparity.
The proposed method only estimates the disparity of the interest regions to reduce the complexity.
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Figure 6. (a) Under/over-exposed region map, S; (b) a set of all the segments that contain the
under/over-exposed pixels; and (c) interest regions.

Since it is shown that stereo matching can better perform with the HDR images than the LDR
images [22], we also perform stereo matching using the initial HDR images, Ri

m and Ri
a. To compute

the initial matching cost C(p,d) at pixel p for the disparity value d ∈ [0, dmax], the census transform [23]
is used. The performance of the census transform-based cost computation is reported to be superior
to other matching cost computation methods for the images with radiometric variations [24]. In the
census transform, a bit string is defined by a center pixel p and pixel q ∈ N(p), where N(p) is a set of
pixels around p. Each bit is set to 0 if the intensity of the corresponding pixel q is lower than that of the
pixel p and set to 1 otherwise. The matching cost between the pixel p in the AV image and a candidate
pixel p’ in the MV image is measured by computing the Hamming distance between corresponding
bit strings.

In the proposed disparity estimation process, each bit of the census transform is converted
into four-valued code by using a threshold, as shown in Figure 7. Moreover, the threshold for the
four-valued census transform is obtained by a perceptual threshold, which is called just noticeable
difference (JND). The resultant eight codes are concatenated as follows:

s(p) = ||
q∈N(p)

sc(p, q), (2)

where

sc(p, q) =


0,

1,

2,

3,

if R(q) < R(p)− TJND(p)

if R(p)− TJND(p) ≤ R(q) < R(p)

if R(p) ≤ R(q) ≤ R(p) + TJND(p)

if R(q) < R(p)− TJND(p)

, (3)
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where
TJND(p) = R(p)× 0.08, (4)

where || denotes concatenation, sc(p,q) is the four-valued code of p and q. s(p) is the eight code string
of p, R(p) is radiance value of p, and TJND(p) is the threshold value for p by the JND. As a result, the
number of coincident codes between the code strings of radiance becomes the matching cost.
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Given the initial matching cost C(p,d) at the pixel p for disparity value d, cost aggregation is
performed using the adaptive support-weight approach [25]. The adaptive support-weights of the
pixels in a given support window using the color similarity and geometric distance are used to increase
the reliability of the disparity map Da [25], as follows:

wa(p, q) = exp
(
−
(
‖I(p)− I(q)‖2

ε I
+
‖p− q‖2

εS

))
, (5)

where wa is the adaptive support-weight function and ‖·‖2 denotes the L-2 norm. p and q denote a
central pixel position and a neighboring pixel position of p, respectively, and I(p) represents a color
components of p. εI and εS denote predefined parameters. Since the proposed method already groups
the pixels into segments, it can be assumed that the pixels in the same segment have similar disparity
values [26]. Thus, the weight function ws is defined as follows:

ws(p, q) = exp
(
−‖p− q‖2

σ2

)
, (6)

where σ2 represents the variance of ws(·). Then, the aggregated cost CA is obtained by

CA(p, d) =

∑
q∈N(p)

δ(p, q)× ws(p, q)× C(q, d)

∑
q∈N(p)

δ(p, q)× ws(p, q)
, (7)

where δ(·) represents an indicate function which identifies whether p and q belong to the same segment
or not as follows:

δ(p, q) =

{
1, if Ga(p) = Ga(q)

0, otherwise
, (8)
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where Ga represents the segmented AV image [26]. In addition, to reduce the computational complexity
of the cost aggregation step, cost aggregation is performed for the selected disparity candidates [27].

Finally, the WTA optimization is performed to obtain the best disparity as given below:

D(p) = argmax
d

CA(p, d). (9)

2.3. Hole-Filling for the Warped AV HDR Image

Figure 8 presents a flow chart of the warping, hole-filling, and image fusion process for
reconstructing the final HDR image. Given the AV disparity Da, the interest pixels in the AV HDR
image can be aligned with the MV HDR. To do this, forward warping is performed using Da, as follows:

Rw
a
(
p′
)
= Ri

a(p) (10)

where p = [x y]T and p′ = [(x + Da(p)) y]T, and Ri
a and Rw

a denote the initial AV HDR image and the
warped AV HDR image, respectively. However, due to inaccurate disparity values and occlusion, Rw

a
involves incorrect radiance values and holes as shown in Figure 9b,c. Thus, uncertain pixels with the
incorrect radiance value should be detected and removed. Then, the radiance values of holes can be
restored using reliable radiance values.
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To detect unreliable pixels, the structure of each pixel in Rw
a is compared with that of co-located

pixel in the initial MV HDR image Ri
m using the structural similarity proposed in [28]. For each HDR

image, the nine pixels inside a 3 × 3 patch centered on each pixel are converted into a bit-string by
thresholding with the average of the radiance values inside the patch. The radiance value of the pixel
is preserved if two bit-strings obtained from the co-located pixel in Ri

m and Rw
a are equal. Otherwise,

the pixel radiance value is replaced with zero, as shown in Figure 10. In other words, the detected
uncertain pixels are turned into the holes.
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Before proceeding to the image fusion process, it is required to restore the radiance value of the
hole. To achieve this purpose, an effective hole-filling method is proposed. Let Ω represent a set of
holes. To determine the restored radiance value of the pixel in hole ph ∈ Ω, the rays along the four
directions from ph are first emitted. When each ray from ph meets the pixel q /∈ Ω, the radiance value
of q is collected as the candidate radiance value of ph. Moreover, to collect only reliable candidate
pixels, the segmented image is used. It can be assumed that the pixels in the same segment have
the similar radiance values. Thus, the candidate pixel q is only collected inside the same segment
which includes ph. For example, as shown in Figure 11, ph has only three candidate radiance values.
The radiance value of ph is determined as one among the candidate values that is most similar to the
radiance value of the co-located pixel in Ri

m.
Next, a filtering process is performed to improve the overall radiance. The edge-preserving

filter [29] is applied for smoothing the hole-filled HDR image, Rh
a , by using the gradient of Ri

m as
guidance. To further recover the texture information lost by the filtering process, Poisson image
editing [30] is used as a secondary post-processing. Specifically, Poisson image editing is utilized
to transfer the gradients of Ri

m to the gradients in Ω. To this end, the solution of the minimization
problem is defined as follows:

R f
a = min

Re
a

x

Ω

∣∣∣∇Re
a −∇Ri

m

∣∣∣2 with Re
a|∂Ω = R f

a

∣∣∣
∂Ω

, (11)

where Re
a represents the resultant HDR image of the edge-preserving filtering process [29], ∇ denotes

the gradient operator, and ∂Ω represents the boundary of Ω. The final warped HDR image R f
a is

shown in Figure 12.
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Finally, given R f
a , the image fusion process is performed so that the radiance values of the

under/over-exposed regions are determined by those of R f
a and the radiance values of the rest regions

are obtained from those of Ri
m. That is, the final HDR image R is reconstructed by fusing Ri

m with R f
a ,

as follows:
R(p) = (1−W(p))× Ri

m(p) + W(p)× R f
a (p), (12)

where W(·) is the weight map for image fusion. To blend the two HDR images seamlessly around
the boundary of the under/over-exposed region, the weight map W is defined by smoothing the
under/over-exposed region map S using the edge-preserving filter [29], which preserves strong edges
of Ri

m, as shown in Figure 13.
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3. Results

3.1. Experimental Setup

To evaluate the performance of the stereo HDR imaging, the experiments were conducted on
four stereo datasets: three datasets (Aloe, Art, and Moebius) of the Middlebury database [31] and the
IIS Jumble dataset used in [16]. Each dataset of the Middlebury database consists of seven views
(View 0–6) with three different exposure times for three illumination types (Illum 1–3). For each
dataset, a chosen illumination was used for the experiments. The Aloe dataset has a resolution of
641 × 555 with Illum 3. The Art and Moebius datasets have a resolution 695 × 555 with Illum 2 and
Illum 1, respectively. Among the seven views in the Middlebury database, View 1 and View 5 were
chosen as the left-view and right-view, respectively, for the stereo HDR imaging. The IIS Jumble dataset
is comprised of 15 different views with a resolution of 2560 × 1920. On the IIS Jumble dataset, the
images from View 12 and View 13 were chosen, down-sampled by a factor of 2 in each dimension, and
cropped to 800 × 600. All the experiments were conducted with the left-view images as MV images
and right-view images as AV images.

All the parameters used in the proposed method were experimentally determined. To detect the
under/over-exposed regions, τu and τo in Equation (1) were set to 5 and 250. For SL segmentation [20],
the strip size and energy tolerance were set to 6 and 4. Furthermore, in the GRM method [21], filter
variation, control value, and the minimum size of the segment were set to 0.1, 150, and 1, respectively.
In the disparity estimation process, the window size for the census transform-based cost computation
was set to 7 and the disparity search ranges, dmax, of the Aloe, Art, Moebius, and IIS Jumble were
set to 100, 120, 120, and 100 pixels, respectively. The number of disparity candidates was set to
10 percent of dmax and σ was set to 17 in Equation (6). The spatial and range standard deviations for
the edge-preserving filter [29] were, respectively, set to 20 and 0.0005, and the number of iteration steps
was set to 2.

3.2. Evaluation of Performance

In order to compare the performance of the proposed stereo HDR imaging to the conventional
method, the experiments were performed in two different exposure settings, the normal-long exposure
and the short-long exposure. In the case of the normal-long exposure, the images with the normal
exposure time and the long exposure times were used as input images, as shown in Figure 14. In the
Aloe dataset, the exposure times of the input images are 500 ms and 2000 ms, respectively. In the Art
and Moebius, the exposure times of those are 1000 ms and 4000 ms. Figure 15 shows the reference
tone-mapped LDR images and the resultant tone-mapped LDR images obtained by the conventional
method and the proposed method. In this paper, all the resulting HDR images were tone-mapped
for visualization on the LDR display devices using the tone mapping operator [32], which was also
used in the conventional method [16]. As shown in Figure 15, the superiority of the proposed method
over the conventional methods [14,16] is not very convincing from the tone-mapped versions of the
HDR images in the case of the normal-long exposure. To compare the objective quality of the resultant
HDR images, the visual difference predictor (VDP), called HDR-VDP-2, which is a well-known image
quality metric for HDR image [33], was employed. The HDR-VDP-2 ranges from 0 (worst) to 100 (best)
The reference HDR images were generated using the HDR imaging method based on the bracketed
images [16,34]. Table 1 shows the obtained HDR-VDP-2 scores. The proposed method achieved 2.0
and 1.3 more points than the methods of Lin et al. [14] and of Batz et al. [16] in the case of normal-long
exposure, respectively. In addition, the HDR-VDP2 maps were presented for better visualization. The
HDR-VDP2 maps are color-coded using the color range which represents the error values (from 0
to 100). As shown in the color bar of Figure 16, the blue and red colors represent the lowest (0) and
highest (100) error values, respectively. Figure 16 shows that the differences among the conventional
methods [14,16] and the proposed algorithm are marginal in the normal-long exposure case.
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Table 1. Quantitative performance evaluation from the HDR-VDP-2 quality score [32].

HDR-VDP-2

Normal-Long Exposure Pairs Short-Long Exposure Pairs

Lin and
Coworkers’
Method [14]

Batz and
Coworkers’
Method [16]

Proposed
Lin and

Coworkers’
Method [14]

Batz and
Coworkers’
Method [16]

Proposed

Art 92.05 92.76 94.87 79.23 84.95 92.64
Aloe 91.51 92.81 94.30 78.89 83.81 90.57

Moebius 92.27 92.44 92.76 82.43 86.26 92.71
IIS Jumble 38.81 45.56 58.01

Average 91.94 92.67 93.98 69.84 75.15 83.48
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with normal-long exposure: (a) Lin and coworkers’ method [14]; (b) Batz and coworkers’ method [16];
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In Figure 17, the first row and the second row represent the MV and the AV images captured
by short and long exposure times, respectively. In the Aloe dataset, the exposure times of the input
images are 125 ms and 2000 ms. In the Art and Moebius, the exposure times are 250 ms and 4000 ms,
respectively. The exposure times of the IIS Jumble are 61 ms and 5 ms. Figure 18 shows the resultant
LDR images of the IIS Jumble dataset in the case of short-long exposure. To highlight the differences,
certain parts of the resultant images were indicated by red rectangles. As shown in Figure 18b, the
Lin and coworkers’ method [14] failed to reconstruct the radiance values in the over-exposed region
around the light bulb. The Batz and coworkers’ method [16] reconstructed the resultant HDR image
with clearly visible artifacts in those regions, as shown in Figure 18c. On the other hand, the proposed
method provided the reconstructed image without obvious artifacts as show in Figure 18d. Figure 19
shows the results of the conventional methods and the proposed method for the Middlebury database.
In the Aloe dataset, as shown in Figure 19d, it seems that the Lin and coworkers’ method [14] generated
the HDR images without artifacts, but the method could not sufficiently restore the radiance values,
as listed Table 1. The Batz and coworkers’ method [16] generated artifacts at object boundaries, as
shown in the Figure 19g. On the other hand, the proposed method generated the resultant image
with clear object boundaries, as shown in the Figure 19j. The similar artifacts could be observed in
the result of the Art dataset, as shown in Figure 19f,g. Lin and coworkers’ method [14] made the
artifacts in the right-bottom regions magnified by red rectangle. In the resultant image of Batz and
coworkers’ method [16], the parts of sticks of brushes and red pillars appeared repeatedly. In contrast,
the proposed method reconstructed the resultant image without such artifacts, as shown in Figure 19k.
In the Moebius dataset, while the conventional methods generated the artifacts such as those in the
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magnified regions, the proposed method reconstructed the HDR image without obvious artifacts at
the object boundaries, as shown in last row of Figure 19. The objective quality of the resultant HDR
images of the proposed method and the conventional algorithms [14,16] in the Middlebury database
and the IIS Jumble dataset are listed in Table 1. On average, the proposed method achieved a gain of
13.6 and 8.3 points in the HDR-VDP-2 quality score as compared to the methods of Lin et al. [14] and
of Batz et al. [16], respectively. Figure 20 shows the HDR-VDP2 maps of the resultant images of the
Middlebury database and the IIS Jumble dataset in the case of short-long exposure. The superiority of
the proposed method over the conventional methods is clearly noticeable in the short-long exposure
case as shown in Figure 20. For example, the HDR-VDP-2 maps of the IIS Jumble dataset obtained by
the conventional methods exhibit large values around the over-exposed regions near the light bulb.
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Figure 19. Resultant LDR images for the Middlebury database with short-long exposure:
(a,e,i) reference image; (b,f,j) Lin and coworkers’ method [14]; (c,g,k) Batz and coworkers’ method [16];
and (d,h,l) proposed method.

In addition, we performed an in-depth analysis of the components of the proposed method
including the ICRF estimation, rejection of the uncertain pixels, and Poisson image editing. To this end,
the experiments were conducted when each method is excluded or replaced by other conventional
method. Figure 21 shows the resultant images and the HDR-VDP2 maps obtained using the proposed
and conventional ICRF estimation methods. The conventional method [14] generates the HDR
images with clearly visible artifacts especially around object boundaries, as shown in the second
row of Figure 21. The HDR-VDP2 maps clearly show the strength of the proposed method over the
conventional method. Figure 22 shows that the rejection of the uncertain pixels can reduce the artifacts
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resulting from inaccurate disparity values. Figure 23 shows the effects of Poisson image editing.
In the proposed method, Poisson image editing step serves to further remove artifacts, as shown in
Figure 23. For the quantitative performance evaluation, we measured the HDR-VDP2 scores for the
sub-optimal configurations, as listed in Table 2. For notational simplicity, the rejection of the uncertain
pixels and Poisson image editing are represented as rejection and PIE, respectively. It can be seen that
each method is essential for reconstructing a high quality HDR image and the proposed method that
includes all the methods yields the best performance.Sensors 2017, 17, 1473  16 of 20 
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Figure 23. Resultant LDR images (first row) and their magnified sub-regions (second row) obtained
with or without Poisson image editing (PIE): (a,c) with PIE; and (b,d) without PIE. Color-coded
HDR-VDP2 maps (last row) are provided for a better performance comparison.

Table 2. In-depth quantitative performance evaluation of the proposed method with
different configurations.

HDR-VDP-2 Art Aloe Moebius IIS Jumble

Proposed 92.64 90.57 92.71 58.01
Proposed with conventional ICRF 86.61 81.69 87.25 52.95
Proposed without Rejection 84.91 86.25 84.56 41.93
Proposed without PIE 86.44 86.66 87.78 49.57
Proposed without Rejection & PIE 82.48 85.81 82.63 36.22
Proposed with conventional ICRF & without PIE 82.26 78.18 85.90 49.88
Proposed with conventional ICRF & without Rejection 81.34 78.35 84.68 38.84
Proposed with conventional ICRF & without Rejection and PIE 78.17 77.95 81.87 35.96

4. Conclusions

In this paper, the method to reconstruct an HDR image was presented using stereo LDR images
with different exposure times. Since the HDR image is reconstructed from images simultaneously
captured with different exposure, the stereo HDR imaging method has a merit of being relatively
free from the ghosting artifact problem in comparison with the HDR imaging method based on the
temporal exposure bracketing. However, the performance of the stereo HDR imaging depends on
the following processes: ICRF estimation to obtain the initial HDR images, disparity estimation to
align the input images, and image warping followed by image fusion to reconstruct a high-quality
HDR image. Unlike the conventional stereo HDR imaging methods, the proposed method mainly
improved two major sub-processes: (1) disparity estimation; and (2) image warping followed by
image fusion. In the disparity estimation process, the disparity was estimated only at the pixels in
the interest regions detected using the segmented image. Moreover, the HVS-based cost computation
and segmentation-based cost aggregation were proposed to accurately estimate the disparity. In the
image warping and fusion process, effective hole-filling was performed to enhance the warped HDR
image. Then, the final HDR image was reconstructed through edge-preserving filter-based image
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fusion. The experimental results demonstrated the superiority of the proposed stereo HDR imaging
method compared to the conventional method.

Acknowledgments: This work was supported in S. LSI Division, Samsung Electronics Co., Ltd.
(Hwaseong, Korea)

Author Contributions: Won-Jae Park contributed to the design and experimental verification of the proposed
method as well as the realization of the paper. Seo-Won Ji and Seok-Jae Kang contributed to the execution of
the experiments. Seung-Won Jung participated in the discussion about the proposed method and contributed
to the analysis of the results. Sung-Jea Ko also participated in the discussion about the proposed method and
contributed to the idea development and the paper revision.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shafie, S.; Kawahito, S.; Itoh, S. A dynamic range expansion technique for CMOS image sensors with dual
charge storage in a pixel and multiple sampling. Sensors 2008, 8, 1915–1926. [CrossRef] [PubMed]

2. Shafie, S.; Kawahito, S.; Halin, I.A.; Hasan, W.Z.W. Non-linearity in wide dynamic range CMOS image
sensors utilizing a partial charge transfer technique. Sensors 2009, 9, 9452–9467. [CrossRef] [PubMed]

3. Martínez-Sánchez, A.; Fernández, C.; Halin, I.A.; Navarro, P.J.; Iborra, A. A Novel Method to Increase LinLog
CMOS Sensors’ Performance in High Dynamic Range Scenarios. Sensors 2011, 11, 8412–8429. [CrossRef]
[PubMed]

4. Mertens, T.; Kautz, J.; Van Reeth, F. Exposure fusion: A simple and practical alternative to high dynamic
range photography. Comput. Graph. Forum 2009, 28, 161–171. [CrossRef]

5. Gallo, O.; Gelfandz, N.; Chen, W.-C.; Tico, M.; Pulli, K. Artifact-free high dynamic range imaging.
In Proceedings of the IEEE International Conference on Computational Photography, San Francisco, CA,
USA, 16–17 April 2009; pp. 1–7.

6. Li, S.; Kang, X. Fast multi-exposure image fusion with median filter and recursive filter. IEEE Trans.
Consum. Electron. 2012, 58, 626–632. [CrossRef]

7. Zhang, W.; Cham, W.-K. Gradient-directed multiexposure composition. IEEE Trans. Image Process. 2012, 21,
2318–2323. [CrossRef] [PubMed]

8. Jacobs, K.; Loscos, C.; Ward, G. Automatic high dynamic range image generation for dynamic scenes.
IEEE Comput. Graph. Appl. 2008, 28, 84–93. [CrossRef] [PubMed]

9. Sen, P.; Kalantari, N.K.; Yaesoubi, M.; Darabi, S.; Goldman, D.B.; Shechtman, E. Robust patch-based HDR
reconstruction of dynamic scenes. ACM Trans. Graph. 2012, 31, 203. [CrossRef]

10. Hu, J.; Gallo, O.; Pulli, K.; Sun, X. HDR Deghosting: How to Deal with Saturation? In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013;
pp. 1163–1170.

11. Lu, J.; Yang, H.; Min, D.; Do, M.N. Patch Match Filter: Efficient edge-aware filtering meets randomized
search for fast correspondence field estimation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 1854–1861.

12. Nayar, S.K.; Mitsunaga, T. High dynamic range imaging: Spatially varying pixel exposures. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, SC, USA, 15 June
2000; pp. 472–479.

13. Selmanovic, E.; Debattista, K.; Bashford-Rogers, T.; Chalmers, A. Generating stereoscopic HDR images using
HDR-LDR image pairs. ACM Trans. Appl. Perception. 2013, 10, 3. [CrossRef]

14. Lin, H.-Y.; Chang, W.-Z. High dynamic range imaging for stereoscopic scene representation. In Proceedings
of the 16th IEEE International Conference on Image Processing, Cairo, Egypt, 7–10 November 2009;
pp. 4305–4308.

15. Sun, N.; Mansour, H.; Ward, R. HDR image construction from multi-exposed stereo LDR images.
In Proceeding of the 17th IEEE International Conference on Image Processing, Hong Kong, China,
26–29 September 2010; pp. 2973–2976.

16. Batz, M.; Richter, T.; Garbas, J.-U.; Papst, A.; Seiler, J.; Kaup, A. High dynamic range video reconstruction
from a stereo camera setup. Signal Process. Image Commun. 2014, 29, 191–202. [CrossRef]

http://dx.doi.org/10.3390/s8031915
http://www.ncbi.nlm.nih.gov/pubmed/27879802
http://dx.doi.org/10.3390/s91209452
http://www.ncbi.nlm.nih.gov/pubmed/22303133
http://dx.doi.org/10.3390/s110908412
http://www.ncbi.nlm.nih.gov/pubmed/22164083
http://dx.doi.org/10.1111/j.1467-8659.2008.01171.x
http://dx.doi.org/10.1109/TCE.2012.6227469
http://dx.doi.org/10.1109/TIP.2011.2170079
http://www.ncbi.nlm.nih.gov/pubmed/21965210
http://dx.doi.org/10.1109/MCG.2008.23
http://www.ncbi.nlm.nih.gov/pubmed/18350936
http://dx.doi.org/10.1145/2366145.2366222
http://dx.doi.org/10.1145/2422105.2422108
http://dx.doi.org/10.1016/j.image.2013.08.016


Sensors 2017, 17, 1473 20 of 20

17. Tursun, O.T.; Akyuz, A.O.; Erdem, A.; Erdem, E. The State of the Art in HDR Deghosting: A Survey and
Evaluation. Comput. Graph. Forum 2015, 34, 683–707. [CrossRef]

18. Fusiello, A.; Trucco, E.; Verri, A. A compact algorithm for rectification of stereo pairs. Mach. Vis. Appl. 2000,
12, 16–22. [CrossRef]

19. Debevec, P.E.; Malik, J. Recovering high dynamic range radiance maps from photographs. In Proceedings of
the ACM SIGGRAPH 2008 classes, Los Angeles, CA, USA, 11–15 August 2008; p. 31.

20. Moore, A.P.; Prince, S.J.D.; Warrell, J.; Mohammed, U.; Jones, G. Superpixel lattices. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008;
pp. 1–8.

21. Felzenszwalb, P.F.; Huttenlocher, D.P. Efficient graph-based image segmentation. Int. J. Comput. Vis. 2004,
59, 167–181. [CrossRef]

22. Akhavan, T.; Yoo, H.; Gelautz, M. Evaluation of LDR, tone mapped and HDR stereo matching using
cost-volume filtering approach. In Proceeding of the European Signal Processing Conference, Lisbon,
Portugal, 1–5 September 2014; pp. 1617–1621.

23. Zabih, R.; Woodfill, J. Non-parametric local transforms for computing visual correspondence. In Proceedings
of the European Conference on Computer Vision, Stockholm, Sweden, 2–6 May 1994; pp. 151–158.

24. Hirschmuller, H.; Scharstein, D. Evaluation of stereo matching costs on images with radiometric differences.
IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 1582–1599. [CrossRef] [PubMed]

25. Yoon, K.-J.; Kweon, I.S. Adaptive support-weight approach for correspondence search. IEEE Trans. Pattern
Anal. Mach. Intell. 2006, 28, 650–656. [CrossRef] [PubMed]

26. Tombari, F.; Mattoccia, S.; Stefano, L.D. Segmentation-Based Adaptive Support for Accurate Stereo
Correspondence. In Proceedings of the Pacific-Rim Symposium on Image and Video Technology, Santiago,
Chile, 17–19 December 2007; pp. 427–438.

27. Min, D.; Lu, J.; Do, M.N. Joint histogram-based cost aggregation for stereo matching. IEEE Trans. Pattern
Anal. Mach. Intell. 2013, 35, 2539–2545. [PubMed]

28. Kang, S.-J.; Lee, D.-H.; Ji, S.-W.; Kim, C.-S.; Ko, S.-J. A novel method to generate the ghost-free wide dynamic
range image. In Proceedings of the IEEE International Conference on Consumer Electronics, Las Vegas, NV,
USA, 7–11 January 2016; pp. 97–98.

29. Gastal, E.S.L.; Oliveira, M.M. Domain transform for edge-aware image and video processing. In Proceedings
of the ACM SIGGRAPH 2011, Vancouver, BC, Canada, 7–11 Augest 2011; p. 69.

30. Perez, P.; Gangnet, M.; Blake, A. Poisson image editing. In Proceedings of the ACM SIGGRAPH 2003,
San Diego, CA, USA, 27–31 July 2003; pp. 313–318.

31. Middlebury Stereo Vision Page. Available online: http://vision.middlebury.edu/stereo/ (accessed on
21 June 2017).

32. Mantiuk, R.; Myszkowski, K.; Seidel, H.-P. A perceptual framework for contrast processing of high dynamic
range images. In Proceedings of the Second Symposium on Applied Perception in Graphics and Visualization,
La Coruña, Spain, 26–28 August 2005; pp. 87–94.

33. Mantiuk, R.; Kim, K.J.; Rempel, A.G.; Heidrich, W. HDR-VDP-2: A calibrated visual metric for visibility and
quality predictions in all luminance conditions. In Proceedings of the ACM SIGGRAPH 2011, Vancouver,
BC, Canada, 7–11 Augest 2011; p. 40.

34. Robertson, M.; Borman, S.; Stevenson, R. Dynamic range improvement through multiple exposures.
In Proceedings of the International Conference on Image Processing, Kobe, Japan, 24–28 October 1999;
pp. 159–163.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/cgf.12593
http://dx.doi.org/10.1007/s001380050120
http://dx.doi.org/10.1023/B:VISI.0000022288.19776.77
http://dx.doi.org/10.1109/TPAMI.2008.221
http://www.ncbi.nlm.nih.gov/pubmed/19574620
http://dx.doi.org/10.1109/TPAMI.2006.70
http://www.ncbi.nlm.nih.gov/pubmed/16566513
http://www.ncbi.nlm.nih.gov/pubmed/23969395
http://vision.middlebury.edu/stereo/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Proposed Stereo HDR Imaging Method 
	Overall Framework 
	Disparity Estimation 
	Hole-Filling for the Warped AV HDR Image 

	Results 
	Experimental Setup 
	Evaluation of Performance 

	Conclusions 

