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Abstract: As an intrinsic part of the Internet of Things (IoT) ecosystem, machine-to-machine (M2M)
communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave
(mmWave) communication is another promising technology for the future communication systems
to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider
multi-hop M2M communications, where a machine-type communication (MTC) device with the
limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop
distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs)
with directional antenna arrays in mmWave for M2M communications. Different from microwave
systems, in mmWave communications, wireless channel suffers from blockage by obstacles that
heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs.
We consider two routing strategies aiming at different types of applications and derive the probability
distributions of their hop distances. Moreover, we provide their baseline statistics assuming the
blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis,
we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count,
and transmit energy) of the mmWave MWNs, which provides important insights into mmWave
MWN design without time-consuming and repetitive end-to-end simulation.

Keywords: Internet-of-Things (IoT); machine-to-machine (M2M) communications; multi-hop networks;
hop distance

1. Introduction

With the advent of the Internet of Things (IoT), which shifts the paradigm of the Internet from
human interconnection into a network of devices, it is predicted that almost 50 billion devices will be
connected by 2020 [1]. As a key technology to realize the IoT ecosystem, machine-to-machine (M2M)
communication enables wireless devices to constantly interact with each other as well as with their
environments without direct human intervention [2–8]. Furthermore, to enhance network capacity,
a fifth generation (5G) cellular system is envisioned to have significantly greater spectrum allocations
at millimeter-wave (mmWave) frequency bands. For this reason, in this paper, we investigate multi-hop
wireless networks for M2M communications using mmWave.

M2M communication is desirable to interact with a large number of remote devices acting as the
interface with end customers, utilities, etc. [5]. For example, various machine-type communication
(MTC) devices such as smart meters, signboards, cameras, remote sensors, laptops, and appliances
can be interconnected to support wide range of applications. Considering the limited capability of
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energy harvesting technologies as noted in [9], the subsequent wireless communication techniques
must be short-range with low data rates, which makes multi-hop ad hoc networking absolutely
necessary in realistic deployment of a large volume of MTC devices [8]. In this paper, we consider
M2M communications with low-cost devices such as sensors and low-power mobile machines for
applications such as healthcare, energy management, and entertainment [10]. As a related topic,
device-to-device (D2D) communication is an emerging technology in cellular networks, where the
devices in proximity can directly communicate with each other. From an architectural viewpoint,
D2D communication may look similar to multi-hop M2M communication such as mobile ad hoc
networks [11]. However, D2D communication is mainly for single hop communications with the
involvement of the cellular network in the control plane, and it generally does not inherit multi-hop
routing issue in multi-hop wireless networks (MWNs) [12]. We note that such types of D2D
communication (single or small number of hops) are out of the scope of this paper. Instead, in this
work, we consider multi-hop M2M communications using mmWave.

A fundamental question in MWNs is whether it is advantageous to route over many short
hops (short-hop routing) or over a smaller number of longer hops (long-hop routing), as highlighted
in [13,14]. In general, the long-hop routing is preferred for delay-sensitive applications, while the
short-hop routing is desirable to reduce transmit power consumption [15,16]. For this reason, the hop
distance statistics of different routing strategies are extensively studied [13–18] in microwave systems.
For example, in [13], the hop distance statistics are used to derive the transmit energy consumption
assuming Rayleigh fading channel. As in the microwave systems, the routing strategy associated with
the hop distance characteristics is crucial in the future generation ad hoc networks using mmWave
because the M2M networks with battery-powered devices inherently entail the limited transmission
range, which requires multi-hop transmissions [19,20].

To cope with dramatic increase in mobile traffic and extreme device density, the future
fifth generation (5G) cellular networks are expected to have mmWave carrier frequency with
massive bandwidths and unprecedented number of antennas [21]. Enabled by the availability of
a wide spectrum and recent advances in radio frequency integrated circuit (RFIC) technologies,
mmWave communication is a key technology to support ever-increasing capacity demand [19,22–24].
At mmWave frequency, highly directional transmission using antenna arrays is an effective technique
to overcome its heavier path-loss compared to the microwave systems [25–28]. However, mmWave
signals exhibit reduced diffraction and higher susceptibility to blockage compared to microwave
signals; thus, mmWave channel is nearly bimodal depending on the presence or absence of line-of-sight
(LoS) [21]. For this reason, if the LoS path is blocked by obstacles, an outage event may occur for
high data rate applications such as multimedia data transfer that cannot be supported solely by
non-LoS paths.

In [29], the authors propose a stochastic model of such blockage effects in mmWave channels,
where the probability of the existence of the LoS path is an exponentially decaying function of the
distance between two nodes. Using this model, the authors in [30] study the coverage and rate
performance in mmWave cellular networks. Moreover, in [31], the signal-to-interference-and-noise-ratio
in the mmWave ad hoc network is analyzed in terms of a information theoretical metric (transmission
capacity). In this paper, we also assume the blockage model in [29] and focus on the hop distance statistics
under the blockage effects. We provide insights to better design multi-hop mmWave M2M communication
systems using two representative and generic routing strategies with maximum and minimum possible
hop distances, which can be exploited to build routing schemes and higher-layer protocols in the future.
The main contributions of this paper are threefold: first, we derive closed form expressions of probability
distributions of hop distances for two different routing schemes in the mmWave MWNs unlike the
microwave MWNs in [13]; second, we derive the blockage-free hop distance statistics as a baseline to
quantify the impact of the blockage effect; third, using the derived hop distance statistics, we estimate
end-to-end performances such as outage probability, hop count, and transmit energy, which are compared
with simulation results to validate our analysis.



Sensors 2018, 18, 204 3 of 18

The rest of this paper is organized as follows. The system model is introduced in Section 2. In Section 3,
per-hop outage probability and the distance distribution of line-of-sight (LoS) links are derived in the
presence of blockage effects. In Section 4, we introduce two routing strategies targeting different system
requirements and analyze their hop distance statistics. In Section 5, we propose a method to estimate the
end-to-end system performances (e.g., outage probability, hop count, and transmit energy) of mmWave
MWNs based on the per-hop statistics. The blockage-free performances are analyzed as baseline cases to
quantify the impact of the blockage effects in Section 6. Numerical results are presented in Section 7 to
validate our analysis with simulation results. Conclusions are provided in Section 8.

2. System Model

Stochastic geometry is a powerful tool to model and analyze wireless networks assuming that
the locations of nodes or the network structure are random in nature because of their unpredictable
spatial characteristics [32]. Poisson point process (PPP), where the number of points (nodes) inside
any compact set is a Poisson random variable and the points are uniformly distributed in the compact
set, is the most widely used spatial model for networks with uniform node density such as ad hoc
networks [33–37] and cellular networks [38]. For this reason, we also assume PPP for the spatial
distribution of MTC devices. To be specific, we consider a multi-hop M2M network using mm-wave
as shown in Figure 1a, where nodes (devices), which are indicated by the black dots, are uniformly
scattered according to a two-dimensional of intensity λ.

(a) An example of multi-hop data transmissions

(b) Data transmission for any intermediate hop

Figure 1. System model.

Let N be the number of nodes that exist in an area A. The probability mass function (PMF) of N
follows the Poisson distribution as

Pr[N = n] = e−(λA)
(λA)n

n!
, (1)

where Pr[·] denotes the probability of a certain event. For data communications, we assume that all
the nodes have the same maximum transmission range of R, which is a function of transmit power,
antenna gain, and path loss. In addition, as in [31,39], for the analytical tractability, the antenna pattern
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of the devices is approximated by a sectored model, which has the same gain within its beamwidth Φ
(i.e., |φ| ≤ Φ

2 ) and zero gain outside as indicated by the gray area in Figure 1b.
Each device is equipped with an electronically steerable directional antenna. Before the route

construction, a node operates with Φ = 2π to receive short control packets for route construction and
periodic beacon, by which each node knows the locations of their neighbors. For example, in the Ad
hoc On-Demand Distance Vector (AODV) routing protocol [40], a periodic beacon called Hello message
is used to detect each other in their neighborhoods. In general, such control packets are designed to be
more easily decoded compared to data packets by using different code rates, modulation techniques,
transmit power levels, and packet sizes. Thus, even without beamforming, the transmission range in
the neighbor discovery phase can have the same or even extended transmission range compared to the
data transmission phase [41].

Similar to [13], in the routing schemes that we consider, a node transmits a packet to one of its
blockage-free neighbors that lie within a sector r ≤ R and |φ| ≤ Φ

2 , where φ is with respect to the
transmitting node-destination axis as in Figure 1b, assuming all the nodes know the location of the
destination, which may be conveyed in a route request packet from the source (e.g., a route request
(RREQ) from the source in AODV [40]). In other words, for route construction, the source steers its
beam towards the destination and selects one node as a relay following certain criteria, which will be
discussed in Section 4. Then, the selected relay also steers its beam towards the destination and recruits
its next-hop node within a sector Φ toward the destination in the same manner. Thus, the route built
in this way is a zig-zag path, the efficiency of which will be further discussed in Section 5. For the data
transmission after the route construction, the nodes in the route steer the beam to their previous-hop
and next-hop nodes to receive and forward data packets, respectively. As in AODV [40], we assume
that there exists only a single pair of transmitter and receiver in each hop. In other words, the source
or a relay can only transmit or forward the data packet to a single node (either the next-hop relay or
the destination).

As in [42], with the same beamwidth for transmission and reception, the maximum transmission
range R in the data transmission phase is given by

R = R0

(
2π

Φ

)2/α

, (2)

where α is the path loss exponent and R0 is the reference transmission range depending on the
transmit power with Φ = 2π. We assume that all the nodes operate with the same maximum
transmit power and beamwidth. We make this assumption for analytical simplicity to gain design
insights, as in [31,42]. However, in practice, MTC devices may have different transmission ranges
and beamwidths. We leave the investigation of mmWave M2M networks consisting of devices with
non-homogeneous transmission ranges and beamwidths to future work. In the actual data packet
transmission, with the given next-hop node, the source and the relays adapt their transmit power to be
just strong enough to reach the next-hop node to save energy consumption, as in [13,43]. Therefore,
the short-hop routing takes less transmit energy compared to the long-hop routing. We will investigate
the transmit energy in more detail in Section 5.2. Moreover, to reflect the blockage effects in the
mmWave systems, we use the blockage model based on the stochastic geometry proposed in [29].
Let ri be the distance from a transmitting node (e.g., source or a relaying node) to Node i towards the
destination. From [29–31], the probability of no blockage to Node i is

PLoS,i = e−βri , (3)

where β is the blockage parameter that depends on the density and sizes of obstacles blocking LoS
paths from the transmitting node to Node i. As in [29,44–47], we assume that an outage occurs if the
LoS path is blocked. In other words, even if Node i is within the transmission area A, the link to Node
i is unavailable with the probability of 1− PLoS,i.
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3. Node Distribution with LoS Links

In this section, we investigate the spatial distribution of the nodes with blockage-free LoS paths
based on non-homogeneous Poisson process, and consider an arbitrary hop between the source and
the destination to derive hop distance statistics.

3.1. Non-Homogeneous Poisson Process and Outage

Suppose that there are N nodes in the transmission area A. Since the N nodes are uniformly
distributed in A, when the distance from a transmitter to Node i (∈ {1, ..., N}) is ri, its probability
density function (PDF) is given by

fri (x) =
2x
R2 , (4)

where 0 ≤ x ≤ R. We define a Bernoulli random variable that indicates the existence of an unblocked
LoS path between the transmitter to Node i:

Ui =

{
1, w.p. PLoS,i = e(−βri),

0, w.p. 1− PLoS,i = 1− e(−βri).
(5)

When Ui = 1, the mmWave link to Node i is blockage-free and reliable, and Node i is called a LoS node.
In contrast, Ui = 0 means an outage of the link. We note that the blockage events are assumed to be
independent for different links (i.e., Ui and Uj are independent for i 6= j), as in [29–31,44,45].

While the spatial distribution of nodes follows the homogeneous Poisson process with intensity λ,
the distribution of the LoS nodes is modeled by non-homogeneous Poisson process (NHPP) [48] because of
the distance-dependent probability function in (5). Based on NHPP, the probability that there are k LoS
nodes in A is

Pr[K = k] =
Qke−Q

k!
, (6)

where K ≤ N for the total (both LoS and NLoS) number of nodes N in the area in Equation (1).
In addition, Q is the intensity of the NHPP, which is a function of R, Φ, λ, and β:

Q =
∫ R

0

∫ Φ
2

−Φ
2

λe−βxxdθdx =
Φλ

[
1− (1 + βR)e−βR]

β2 . (7)

The transmitting node experiences an outage, when there is no LoS node (i.e., all Uis are zero).
Thus, the probability of per-hop outage, where no LoS node exists for a given transmitter, is given by

Pout = Pr[K = 0] = e
−Φλ

β2 [1−(1+βR)e−βR]
. (8)

From the assumption of mutually independent blockage events, as in [29–31,44,45], we assume
that the outage events in multiple hops are independent to each other.
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3.2. Distance Distribution of LoS Links

We note that Node i becomes the receiver candidate, (i.e., the relaying candidate for the next hop),
only if Ui = 1. Thus, let di be the distance to Node i given that the corresponding LoS path is not
blocked (i.e., di , ri|Ui = 1). Its PDF is then derived as

fdi
(x) =

Pr[Ui = 1|ri = x] fri (x)
Pr[Ui = 1]

=
e−βx · 2x

R2∫ R
0 e−βx · 2x

R2 dx

=
e−βx · 2x

R2

2(1−e−βR(1+βR))
β2R2

=
β2xe−βx

1− e−βR(1 + βR)
, (9)

where 0 ≤ x ≤ R. Hence, the cumulative distribution function (CDF) is given by

Fdi
(x) =

∫ x

0
fdi
(x)dx =

eβ(R−x)(−1 + eβx − βx)
eβR − 1− βR

, (10)

where 0 ≤ x ≤ R. Based on the probability distributions, the m-th moment is

E{dm
i } =

∫ R

0
xm β2xe−βx

1− e−βR(1 + βR)
dx

=
eβR[Γ(m + 2, 0)− Γ(m + 2, βR)]

βm(eβR − βR− 1)
, (11)

where m > −2 and E{·} denotes the expected value. Moreover, Γ(a, z) =
∫ x

z ta−1e−tdt is the
incomplete gamma function.

4. Routing Strategies and Hop Distance Distributions

In this section, we introduce two routing strategies and derive the probability distributions of
their hop distances. As the microwave system analysis in [13], to implement the routing schemes,
it is assumed that all nodes know their own locations and the source knows the direction towards
the destination. Suppose the number of the blockage-free nodes in A is K. K = 0 corresponds to the
outage. On the other hand, if K ≥ 1, we consider two routing schemes, where the next-hop node
is the furthest and nearest LoS nodes in its coverage A respectively, as shown in Figure 2. We only
consider these two simple but representative routing schemes because this paper is focused on the
impact of the blockage effects in mmWave multi-hop M2M communications in terms of hop distance
to gain system-level design insights. In practice, the routing protocol should be chosen based on
various system requirements such as latency, throughput, reliability, and energy-efficiency. In addition,
in case of the M2M networks with selfish nodes, we need consider game theory-based protocol design
as in [49,50], which offers incentives to stimulate forwarding. However, it is beyond the scope of
this paper.

Figure 2. Hop distances of two routing strategies: furthest neighbor (FN) and nearest neighbor (NN).
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4.1. Furthest Neighbor (FN) Routing

For multi-hop mm-wave transmission, individual hop distance needs to be maximized for
delay-sensitive applications such as video and voice traffic. With K blockage-free nodes in A, let the
hop distance of the furthest neighbor (FN) routing dFN be

dFN , max{di for 1 ≤ i ≤ k|K = k}, (12)

where dFN = 0 for K = 0. The conditional CDF of dFN given that there is at least one blockage-free
node is

FdFN |K≥1(x) = Pr[dFN ≤ x|K ≥ 1]

(a)
=

∞

∑
k=1

Pr[all di’s ≤ x for 1 ≤ i ≤ k|K = k] · Pr[K = k]
Pr[K ≥ 1]

(b)
=

1
1− Pout

∞

∑
k=1

(
Fdi

(x)
)k Qke−Q

k!

=
e−Q(eQ·Fdi

(x) − 1)
1− Pout

=
1− e

λΦe−βx(−βx+eβx−1)
β2

1− e
λΦ(1−e−βR(βR+1))

β2

, (13)

where 0 < x ≤ R. In addition, (a) follows from the distribution of the maximum of independent and
identically distributed (i.i.d.) random variables as in Equation (12) and Bayes’ theorem [51] to calculate
the conditional probability associated with the number of nodes following Poission distribution.

In addition, (b) follows from Pr[K ≥ 1] = 1− Pout, Pr[K = k] = Qke−Q

k! , and Pr[di ≤ x] = Fdi
(x).

The corresponding conditional PDF is

fdFN |K≥1(x) =
dFdFN |K≥1(x)

dx

=
λΦx · e

[
λΦe−βx(eβx−βx−1)

β2 −βx]

e
λΦ[1−e−βR(βR+1)]

β2 − 1

. (14)

4.2. Nearest Neighbor (NN) Routing

For energy-limited networks (e.g., those with battery-powered devices), the near-distance
communication is preferred to save transmit (radiated) energy consumption. In such networks,
the nearest neighbor (NN) routing is desirable with the hop distance:

dNN , min{di for 1 ≤ i ≤ k|K = k}. (15)
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As before, dNN = 0 when K = 0. The conditional CDF of dNN for K ≥ 1 is derived as

FdNN |K≥1(x) = Pr[dNN ≤ x|K ≥ 1]

(a)
=

∞

∑
k=1

(1− Pr[all di’s > x for 1 ≤ i ≤ k|K = k])
Pr[K = k]
Pr[K ≥ 1]

(b)
=

1
1− Pout

∞

∑
k=1

(
1−

(
1− Fdi

(x)
)k Qke−Q

k!

)

= 1 +
e−Q(eQ·(1−Fdi

(x)) − 1)
1− Pout

= 1 +
e

λΦ(e−βR(βR+1)−1)
β2 − e

λΦ(e−βx(βx+1)−1)
β2

1− e
−

λΦ(1−e−βR(βR+1))
β2

, (16)

where 0 ≤ x ≤ R. Moreover, (a) follows from the distribution of the minimum of i.i.d. random variables
as in Equation (15) and Bayes’ theorem to calculate the conditional probability associated with the
number of nodes following Poission distribution. In addition, (b) follows from Pr[K ≥ 1] = 1− Pout,

Pr[K = k] = Qke−Q

k! , and Pr[di > x] = 1− Fdi
(x). Hence, the conditional PDF is

fdNN |K≥1(x) =
dFdNN |K≥1(x)

dx

=
λΦx · e

−β3x−λΦe−βR(βR+1)+λΦe−βx(βx+1)
β2

e
λΦ[1−e−βR(βR+1)]

β2 − 1

. (17)

Figure 3 shows the conditional PDFs in Equations (9), (14), and (17) with λ = 0.02, β = 0.1,
R = 100 m, α = 2, and Φ = 60◦. In the figure, the analytical curves are consistent with the simulation
results. The simulation curves are obtained from 106 iterations with random topology. In each random
topology realization, the nodes are randomly and uniformly distributed over 1 km2 square area,
where the number of nodes follows Poisson distribution with the density of λ = 0.02 nodes/m2.
With 106 trials, the empirical PDFs of di, dFN , and dNN are obtained.

Figure 3. The three conditional probability distribution functions (PDFs); di, dFN , and dNN .
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5. End-to-End Performance Estimation

In this section, we show how to estimate three key end-to-end performances in mmWave MWNs:
end-to-end hop count, outage probability, and transmit energy consumption, based on the hop distance
distributions derived in the previous section. To calculate the transmit energy consumption, we follow
the model used in [13], where the per-hop transmit (radiation) energy consumption is proportional
to Dα, where D is the hop distance and α is the path-loss exponent. We only consider the transmit
energy, assuming that the radiation energy to transmit a packet is the most dominant factor in energy
consumption of the network as in [13,52]. In fact, the transmission energy consumption is only part of
the whole device consumption. Based on the studies on baseband and radio-frequency (RF) circuitries
to obtain comprehensive energy consumption models of wireless transceivers, the energy consumption
due to the baseband processing circuitry is generally significantly smaller compared to the energy
consumption due to RF circuitry [53]. Furthermore, the total transmit energy for the end-to-end
communication is the sum of the transmitted energy consumed by the source and all the relays to
forward the packets.

5.1. Moments of Hop Distance and Average Per-Hop Progress

Based on the conditional PDFs of the two routing protocols fdFN |K≥1(x) and fdNN |K≥1(x), we can
obtain the conditional m-th moment as

E{Dm|K ≥ 1} =
∫ R

0
xm · fD|K≥1(x)dx (18)

for D ∈ {dFN , dNN}. m = 1 corresponds to the conditional expected hop distance E{D|K ≥ 1}. Then,
as in [13], the conditional expected progress per hop, which is indicated by the effective distance
travelled along the “Relayi-Destination” axis for Hop i for i ≥ 2 (or the “Source-Destination” axis in
the first hop) in Figure 4, is

E{X|K ≥ 1} = E{D cos φ|K ≥ 1}

= E{D|K ≥ 1} ·
∫ Φ

2

−Φ
2

cos φ · 1
Φ

dφ

= E{D|K ≥ 1} 2
Φ

sin
(

Φ
2

)
. (19)

This per-hop progress E{X|K ≥ 1} and the α-th moment of the hop distance E{Dα|K ≥ 1}, where α

is the path-loss exponent, determine key performance metrics in MWNs such as reliability, delay,
and transmit energy consumption.

Figure 4. An example illustration of a multi-hop route.
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5.2. End-to-End Performance Estimates Based on Per-Hop Statistics

In this section, we will investigate how to estimate such end-to-end performances using per-hop
statistics such as the m-th moments of D and Pout in the previous sections. First, the average end-to-end
hop count η is estimated as

η ≈ L
E{X|K ≥ 1} =

LΦ

2 sin
(

Φ
2

)
E{D|K ≥ 1}

, (20)

where L is the distance between the source and the destination as illustrated in Figure 4. It is noted
that X is the hop distance D projected onto the direction from “the transmitting node” to the destination.

Because the actual route is a squiggly line between the source and the destination,
this approximation is in fact the lower bound on the actual end-to-end hop count as shown in the
example case in Figure 4. Let H be the hop distance D projected onto the direction from “the source”
to the destination. In the figure, the progress in the second hop projected onto the transmitter
(Relay1)-Destination axis x2 = d2 cos φ2 is greater than the progress along the source-destination
axis, h2. Thus, in general, E{X} ≥ E{H}, which gives L

E{X} ≤
L

E{H} for K ≥ 1. However,
as indicated in [13], for a enough large L, xi ≈ hi for most of hops i because the angle between
the two axes “Relayi-Destination” and “Source-Destination” is almost zero, which makes the proposed
approximation in Equation (20) becomes tighter.

Using the approximate end-to-end hop count η, the end-to-end outage rate can be estimated as

Pout:EE ≈ 1− (1− Pout)
η = 1− (1− Pout)

L
E{X|K≥1}

= 1−
[

1− e
−Φλ

β2 (1−(1+βR)e−βR)
] L

E{X|K≥1}
, (21)

where Pout is the per-hop outage in Equation (8).
Lastly, the total transmit energy of the multi-hop transmissions normalized by that of the one-hop

transmission (i.e., direct transmission from the source to the destination) is approximately given by

Υ ≈ η ·E{Dα|K ≥ 1}
Lα

=
ΦE{Dα|K ≥ 1}

2Lα−1 sin
(

Φ
2

)
E{D|K ≥ 1}

, (22)

α is the path-loss exponent, which is assumed to be two for the LoS condition in the following sections.
This normalization is a common way to compare different routing schemes with the common reference
by the direct (or one-hop) transmission [54]. Moreover, we note that η and Υ are defined only if the
end-to-end multi-hop transmission is successful.

It is noted that, if comparing the energy consumptions in the RF circuitry to transmit and receive
a packet, the reception energy may be comparable to the transmit energy depending on applications
and hardware platforms, as in [55,56]. However, in this paper, following the framework in [13], we do
not consider the reception energy. It is expected that the energy consumption for data reception and
the corresponding total energy consumption would increase, as the end-to-end hop count increases.
However, the exact analysis incorporated with the reception energy consumption will be covered in
the future.

6. Blockage-Free Scenario

In this section, the blockage-free hop distance statistics are derived. Then, applying the same
way to estimate the end-to-end performances in the previous section, analytical expressions for the
blockage-free end-to-end performances are obtained to quantify the actual impacts of blockages in the
mmWave MWNs.
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6.1. Blockage-Free Hop Distance

We first derive the conditional m-th moments of the two routing schemes for β = 0. To derive
E{dFN |K ≥ 1} and E{dNN |K ≥ 1} in this case, we first find the conditional PDFs for β→ 0:

lim
β→0

fdFN |K≥1(x) =
λΦxe

1
2 λΦx2

e
1
2 λΦR2 − 1

, (23)

lim
β→0

fdNN |K≥1(x) =
λΦxe

1
2 λΦ(R2−x2)

e
1
2 λΦR2 − 1

, (24)

where 0 ≤ x ≤ R. Hence, the corresponding m-th moments are given by

lim
β→0

E{dm
FN |K ≥ 1} = 2m/2(−λΦ)−

m
2

e
λΦR2

2 − 1

·
(

Γ
(

m
2
+ 1,−1

2
λΦR2

)
− Γ

(m
2
+ 1, 0

))
, (25)

lim
β→0

E{dm
NN |K ≥ 1} = 2m/2(λΦ)−

m
2

1− e−
λΦR2

2

·
(

Γ
(m

2
+ 1, 0

)
− Γ

(
m
2
+ 1,

1
2

λΦR2
))

. (26)

With these moments, for a given beamwidth Φ, the baseline E{X|K ≥ 1} can be obtained
from Equation (19). We note that if λ→ ∞ on the top of β→ 0, which corresponds to the high node
density and blockage-free environments, E{dm

FN |K ≥ 1} → Rm and E{dm
NN |K ≥ 1} → 0. These can be

readily proved by taking the limit of Equations (25) and (26) as λ→ ∞.

6.2. Blockage-Free End-to-End Performances

Using the same rationale, we can obtain blockage-free end-to-end performance as a baseline.
From Equations (20), (25), and (26), the average end-to-end hop counts η for the blockage-free case for
FN and NN are obtained as

η∗FN = lim
β→0

LΦ

2 sin
(

Φ
2

)
E{DFN |K ≥ 1}

=

√
−λΦ

2

LΦ
(

e
λΦR2

2 − 1
)

sin
(

Φ
2

) [
2Γ
(

3
2 ,− 1

2 λΦR2
)
−
√

π
] , (27)

η∗NN = lim
β→0

LΦ

2 sin
(

Φ
2

)
E{DNN |K ≥ 1}

=

√
λΦ
2

LΦ
(

1− e−
λΦR2

2

)
sin
(

Φ
2

) [√
π − 2Γ

(
3
2 , 1

2 λΦR2
)]

,
(28)
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respectively. Hence, the corresponding blockage-free end-to-end outage rate, which can serve as the
lower bounds of Pout:EE in (21), is given by

P∗out:EE = lim
β→0

1− (1− Pout)
η

= 1−
(

1− lim
β→0

e
−Φλ

β2 [1−(1+βR)e−βR]
)η∗

= 1−
(

1− e−
1
4 πλR2

)η∗

, (29)

where η∗ ∈ {η∗FN , η∗NN} in Equations (27) and (28). Furthermore, assuming α = 2, the normalized
transmit energies of the FN and NN for the end-to-end transmission are

Υ∗FN =

√
− 2Φ

λ

Lα−1 sin
(

Φ
2

) 1− Γ
(

2,− 1
2 λΦR2

)
2Γ
(

3
2 ,− 1

2 λΦR2
)
−
√

π
, (30)

Υ∗NN =

√
2Φ
λ

Lα−1 sin
(

Φ
2

) 1− Γ
(

2, 1
2 λΦR2

)
√

π − 2Γ
(

3
2 , 1

2 λΦR2
)

.
(31)

respectively.

7. Numerical and Results

In this section, we validate the analytical results and test the tightness of the end-to-end
performance estimation based on per-hop statistics by comparing with simulation results. We assume
α = 2 to model the LoS channel. In addition, we set R0 = 50

9 ≈ 5.6 m, which corresponds to the
transmission range for the omni-directional antenna Φ = 2π. In other words, the beamwidth is 360◦,
and the maximum possible per-hop transmission range is R0 ≈ 5.6 m assuming battery-powered
devices with limited transmission range. Of course, this value of R0 can be changed depending on
the system parameters and applications. As the beamwidth Φ becomes narrower, the transmission
range R increases based on Equation (2). The simulation results are averaged over 107 iterations with
random topology. In each trial, the locations of nodes are uniformly distributed over a 1 km2 square
region, where the number of nodes follows Poisson distribution with λ = 0.015 nodes/m2. For a
given L, the source is located at the center of the 1 km2 space. In each hop, the next-hop node is
selected following FN or NN. We declare an end-to-end outage of a trial, if an outage occurs in any
intermediate hop.

Assuming the end-to-end distance L of 125 m, Figures 5a, 6a and 7a show how the end-to-end
outage probability Pout:EE, the average end-to-end hop count η, and the total transmit (radiated) energy
consumption Υ change, respectively, as the blockage parameter varies over 0.01 ≤ β ≤ 0.04. In the
figures, we compare the theoretical results (i.e., the approximation proposed in Section 5) with the
end-to-end simulation (exact) results for Φ = 40◦ and 60◦, which give the transmission ranges of
R = R0× 360◦

40◦ = 50 m and R0× 360◦
60◦ ≈ 33.3 m, respectively. In the three figures, the solid lines with the

‘x’- and ‘+’-markers represent the furthest neighbor (FN) routing with Φ = 40◦ and 60◦, respectively.
On the other hand, the solid lines with the dot and asterisk markers indicate the nearest neighbor (NN)
routing with Φ = 40◦ and 60◦, respectively. The circles, triangles, squares, and diamonds correspond to
the end-to-end simulation results for FN with Φ = 40◦, FN with Φ = 60◦, NN with Φ = 40◦, and NN
with Φ = 60◦, respectively. Moreover, the “I-shape” error bars overlaid on the simulation markers
indicate 95% confidence intervals computed using Greenwood’s formula [57]. In Figures 6a and 7a,
the baseline cases with β = 0, which are indicated by the dotted lines, are illustrated to highlight the
impact of the blockage effects. In Figures 5b, 6b and 7b, we perform the same set of simulations for a
different end-to-end separation L = 250 m and compare the results with the numerical calculations
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based on the per-hop statistics. To quantify the impact of the blockage on three different performance
metrics, the baseline cases without blockage are provided in Tables 1–3.

7.1. End-to-End Outage Probability Pout:EE

In Figure 5a,b, as β increases, Pout:EE increases. The impact of the blockage can be quantified
by comparing with the baseline case P∗out:EE in Table 1. Overall, the simulation results are in decent
agreement with the theoretical curves, which validates our analysis in Section 5. For a fixed parameter
set, FN shows the lower Pout:EE compared to NN because FN takes less number of hops to reach the
destination, while the outage rate of each hop is the same as defined in Equation (8). For the same
reason, Pout:EE with L = 250 m in Figure 5b is higher compared to L = 125 m in Figure 5a.

(a) L = 125 m (b) L = 250 m

Figure 5. Pout:EE versus β with m, λ = 0.015, Φ = {40◦, 60◦}, and R = {50 m, 33.3 m}.

Table 1. Blockage-free end-to-end (EE) outage probability Pout:EE.

Routing
L = 125 m L = 250 m

Φ = 40◦ Φ = 60◦ Φ = 40◦ Φ = 60◦

FN 5.5× 10−6 6.8× 10−4 1.1× 10−5 1.4× 10−3

NN 2.2× 10−5 2.1× 10−3 4.3× 10−5 4.2× 10−3

Table 2. Blockage-free end-to-end (EE) hop count η.

Routing
L = 125 m L = 250 m

Φ = 40◦ Φ = 60◦ Φ = 40◦ Φ = 60◦

FN 2.657 4.183 5.315 8.367

NN 10.42 13.10 20.83 26.19

7.2. Average End-to-End Hop Count η

Figure 6a,b display the average end-to-end hop count η versus β graphs. First, FN shows
significantly smaller η compared to NN. When β = 0.01, both the theory and simulation curves are
close to the blockage-free graphs η∗. As β increases, η of FN increases due to less likelihood to find
far-distance nodes. On the other hand, the NN shows the opposite trend because of the lower effective
density of the LoS nodes in A (less candidates), which results in less chance to find a LoS node with a
short hop distance. Hence, the gap between the two routing strategies become smaller, as β increases.

As expected, η with L = 250 m is about twice as many as that with 125 m. Moreover, comparing
the theoretical and simulation results, the gap between the two is larger for L = 125 m compared to
L = 250 m. This is expected because the error between the analysis and simulation becomes smaller,
when the network size grows, as discussed in Section 5.
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(a) L = 125 m (b) L = 250 m

Figure 6. η versus β with λ = 0.015, Φ = {40◦, 60◦}, and R = {50 m, 33.3 m}.

Table 3. Blockage-free normalized transmit energy consumption Υ.

Routing
L = 125 m L = 250 m

Φ = 40◦ Φ = 60◦ Φ = 40◦ Φ = 60◦

FN 0.392 0.263 0.196 0.132

NN 0.127 0.107 0.064 0.053

7.3. Average End-to-End Transmit Energy Consumption Υ

In Figure 7a,b, we can observe that Υ of NN is considerably smaller compared to FN. As β

increases, Υ decreases for FN, while that for NN increases. Hence, the gap between the two routing
schemes becomes smaller, as β increases. In addition, the theory-simulation gap is smaller for L = 250 m
compared to L = 125 m because the error between the two decreases as the end-to-end separation
L increases.

(a) L = 125 m (b) L = 250 m

Figure 7. Υ versus β with λ = 0.015, Φ = {40◦, 60◦}, and R = {50 m, 33.3 m}.

7.4. Impact of Beamwidth Φ

As shown in Figure 5a,b, when the beamwidth Φ decreases from 60◦ to 40◦, Pout:EE decreases both
for FN and NN because of the extended maximum hop distance R by the antenna gain, which gives
smaller end-to-end hop count and higher transmit energy. In addition, in Figures 6a,b, and 7a,b,
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with the smaller beamwidth Φ = 40◦, η and Υ of the two routing schemes become more distinct
compared to the wider beamwidth Φ = 60◦ because of the greater R = 50 m compared R = 33.3 m.

8. Conclusions

The hop distance between nodes in wireless multi-hop ad hoc networks have significant impact
on the system performance. For this reason, in this paper, we study the hop distance characteristics
and their impacts on the end-to-end performances of mmWave multi-hop M2M networks under the
blockage effects. We derive the probability distributions of the hop distance with the two routing
protocols that have different advantages: FN with the smaller end-to-end delay and NN with the
lower transmit energy consumption. In addition, we investigate the blockage-free scenario to establish
a baseline to quantify the impact of the blockage effects. Both analysis and simulation indicate that
the end-to-end performances of the two routing schemes become more distinct as β decreases or Φ
decreases. Based on the hop distance analysis, we estimate the end-to-end performances such as
outage, hop count, and transmit energy, which is useful to gain insights into system design guidelines
instead of time-consuming simulation. For example, when the blockage effect parameter β is given,
a pertinent beamwidth and required transmit energy for FN or NN can be estimated to satisfy a
target outage probability. Potential extensions of this paper include addressing a wider scenario
with different transmission ranges and beamwidths of MTC devices. In addition, because we only
consider the transmit energy in this work, we will investigate more comprehensive analysis on energy
consumption with more general energy models. Furthermore, as in [55,56], we will consider a method
to maximize the network lifetime by considering the residual energy of battery-powered devices in the
network as a long-term plan.
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IoT Internet of things
M2M Machine-to-machine
Machine-type communication (MTC) D2D Device-to-device
mmWave Millimeter-wave
MWN Multi-hop wireless networks
5G Fifth generation
RFIC Radio frequency integrated circuit
LoS Line-of-sight
NLoS Non-line-of-sight
PPP Poisson point process
PMF Probability mass function
AODV Ad hoc on-demand distance vector
RREQ Route request
PDF Probability density function
NHPP Non-homogeneous Poisson process
CDF Cumulative distribution function
FN Furthest neighbor
NN Nearest neighbor
EE End-to-end
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