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Abstract: The replica strategy in distributed cache can effectively reduce user access delay and
improve system performance. However, developing a replica strategy suitable for varied application
scenarios is still quite challenging, owing to differences in user access behavior and preferences.
In this paper, a replication strategy for spatiotemporal data (RSSD) based on a distributed caching
system is proposed. By taking advantage of the spatiotemporal locality and correlation of user access,
RSSD mines high popularity and associated files from historical user access information, and then
generates replicas and selects appropriate cache node for placement. Experimental results show that
the RSSD algorithm is simple and efficient, and succeeds in significantly reducing user access delay.

Keywords: replica; spatiotemporal date; spatiotemporal locality and correlation; distributed cache;
smart city

1. Introduction

Among recent advancements in technology, cloud computing and the Internet of Things are
widely applied in a smart city. As a result, massive spatiotemporal data with location, time, and type
attributes will be produced, such as meteorological data, hydrological data, natural disaster data,
and remote-sensing images. Such data are usually characterized by wide variety, large amount, high
redundancy, and dynamic growth over time [1,2]. A smart city can quickly and conveniently provide
users with rich predefined applications through a network platform based on the users’ demands for
spatiotemporal data services, such as data visualization, spatiotemporal associated analysis, temporal
emergency aid, and massive information retrieval.

Under data intensive and access intensive scenarios in a smart city, the traditional single node
cache cannot meet the requirements in storage capacity and processing speed. Studies have shown that
the distributed cache method can minimize network delay and enhance data access speed [3,4]. The
replica strategy can further improve the performance of distributed cache and reduce access delay for
systems with the same infrastructure, node performance, network bandwidth, and associated features.

The core of any replica strategy is cache file selection and replica creation placement. Selecting
the appropriate file to be placed in the cache can effectively improve the cache hit rate. The queue
probability of access requests can be reduced effectively by generating replicas and placing them in the
appropriate cache nodes such that the request process can be accelerated. The higher the cache hit rate,
the smaller the request processing time, and the better the cache performance.

However, the spatiotemporal data of user access in a smart city usually has spatiotemporal
locality and correlation [5]. For example, if a user checks the weather conditions in a certain area, the
change trend of this area for next week may be surveyed as well. When searching for nearby hotel
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information, related traffic information may also be queried. Specifically, if we place those files that
are frequently accessed by users into different cache nodes, user access delay will depend not only
on the queuing time, but also on the cross-node scheduling time. Most existing replica strategies
focus on improving the cache hit ratio and load balancing that can effectively reduce the queuing time.
However, cross-node scheduling time is rarely addressed.

In this paper, we propose a replication strategy for spatiotemporal data (RSSD) based on
distributed caching system in a smart city. RSSD takes advantage of the spatiotemporal locality
and correlation of user access to mine high popularity and associated files from historical users’ access
information to generate replica for these files and select appropriate cache node for placement on the
premise of load balance, aimed at achieving bidirectional optimization of access request of queuing
and cross node scheduling time.

The rest of this paper is organized as follows: Section 2 presents the current research status
of performance optimization of distributed caching at home and abroad. Section 3 introduces the
system model while Section 4 describes the implementation of our replica strategy. Section 5 presents
and discusses the performance evaluation results of our replica strategy. Finally, Section 6 briefly
summarizes our findings and concludes the paper.

2. Related Works

To date, several studies on replica mechanisms in cluster environments have been carried out. In
this section, we will provide a review of replica mechanisms which are most related to our work.

Tang et al. [6,7] identified hot files in a data grid by counting the number of file accesses in historical
access information and created replica to cache these files. In order to improve the resource access
efficiency in P2P networks, Sun et al. [8] cache the files with high access frequency and long average
response time by using a predefined global average expectation time to determine the number of replica.
Then, the optimal placement of the copy is calculated based on the access frequency, node load, and
real-time bandwidth. In order to improve the WebGIS response speed, Li et al. [9] selected a cache file
and calculated the number of replica according to the total capacity of the cache server and file access
probability; then, the usage of each cache node was deduced to determine the location of the replica
files. Chang et al. [10] proposed that files with high popularity will be more probably accessed in the
future; therefore, the number of accesses to the file was weighted based on the access time. The closer
the current time point is, the greater the weight will be. Then, the number of replica was determined
by the number of files accessed, and the copy was placed in the most frequently accessed nodes.
Sun et al. [11] also used a time weighting method for access times and for selecting access to hot
files for caching. A similar approach was also presented in [12]. Pan et al. [13] proposed a dynamic
replication management strategy in distributed GIS, where an enhanced Q-value scheme to calculate
the number of copies for each replica and a copies placement strategy based on probability of replica
are designed.

Wei et al. [14] calculated the number of replica according to the minimum availability of
files in the cloud storage system in terms of availability of the system. Then, the placement of
replica was determined by using the capacity of data nodes and the availability of data blocks.
Li et al. [15] constructed an access cost graph by combining information of user requests and
network distance. A modified Dijkstra’s algorithm was introduced to search for the shortest
path in the access cost graph, which corresponds to an optimal cache deployment for the system.
Tu et al. [16] treated the network topology of distributed system as a tree, and each node in the
tree corresponds to a data server. Then, the shortest path node was calculated to meet the need of
data request, and the access was placed such that it corresponds to the adjacent nodes of the tree.
According to the request frequency and system capacity of data objects, Zaman et al. [17] proposed
a distributed greedy replica placement mechanism aimed at reducing the average access time of
data objects. Nagarajan et al. [18] proposed a prediction-based replication strategy for data-intensive
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applications—Intelligent Replica Manager (IRM)—designed and incorporated in the middleware of
the grid for scheduling data-intensive applications.

Lin et al. [19] considered that different applications have different QoS requirements in cloud
computing systems and proposed a greedy algorithm called QoS-aware data replication (QADR) to
minimize the replication cost and the number of replica. The principle of this QADR is that applications
with higher QoS requirements should be given priority for file replication. Similarly, a replication that
considers system application QoS requirements was also studied in [20–22]. In addition, Tos et al. [23]
classified and summarized existing dynamic replica algorithms based on data grids, and highlighted
the advantages and disadvantages of each strategy and the applicable scenarios. Suciu et al. [24]
proposed a collaborative monitoring software platform named MobiWay for big data in a smart city,
aiming at supporting Intelligent Transportation Systems (ITS) applications by sharing open traffic data
and acting as a middleware connection hub.

From the above studies, we can observe that the study of current replica mechanism mainly
focused on the file size, access frequency and probability, average response time, system service
capability, capacity of node, the real-time bandwidth and other information aimed at generated replica
and selecting the appropriate node for placement. These methods can also be used in distributed cache
system to improve cache hit rate and balance node burden.

However, since the spatiotemporal data of user access in a smart city often has obvious
spatiotemporal locality and correlation, the user access latency is not only related to the cache hit ratio
and node load, it is also closely related to cache file placement. Therefore, this paper aims to develop a
reasonable replica strategy for the purpose of achieving bidirectional optimization of access request
queuing and cross node scheduling time while enhancing cache hit rate, improving the performance
of distributed caching, and reducing user access delay.

3. System Model

Figure 1 shows a typical distributed caching-based application service system architecture of a
smart city, which consists of five parts: clients, application servers, scheduling broker, cache servers,
and data storage nodes.
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All spatiotemporal data are stored in data nodes in a distributed manner. The application servers,
scheduling broker, cache servers, and data storage nodes are connected via LAN and clients are
connected through the Internet. When a client needs a file, it will first check for the file in the nearest
cache node. If there is no such file in the cache node, then the client will choose to read from the
data nodes.

So it is necessary to improve the cache hit rate, as well as reduce the request queuing time and
cross node scheduling time for the purpose of accelerating the user access request. To address these
three aspects, our solutions are described below.

• Cache files selection: select the files with high popularity according to the access frequency and
then place them into the cache. Thus, the cache hit rate can be improved, which insures the files
to be obtained from the high-performance cache server as much as possible.

• Replica generation: generate replica according to the popularity of cache file and the capacity of
cache nodes, then, distribute them into different cache nodes. Hence, the request queuing time
can be reduced by balancing the system burden.

• Replica placement: place the replica of access associated file as a whole in the same cache node
according to the spatiotemporal correction of user’s access request and the real-time status of the
cache node so that the request cross node scheduling time can be reduced.

4. Methodology

The RSSD algorithm mainly consists of three parts: cache files selection, replica creation, and
replica placement.

4.1. Basic Concepts and Methods

4.1.1. Popularity of Files

Studies [10,11] have shown that file access has temporal locality, and its popularity will gradually
decrease over time. The more remote access information from the current point of time is, the less
impact on the popularity of the file. Therefore, in order to calculate the popularity of files, we
segmented historical user access information based on the access time, and created statistics about
the file visits in each segment. Then, according to the distance between the segment and the current
time point, the weighted visits of the file were calculated as the result of the popularity of the files. We
chose files with high popularity as cache files.

Suppose the historical user access information contains the filesets Fset = {f 1, f 2, . . . ,fN} during
the observation time T = [Tbegin:Tend]. We divide T into Nt = (tend − tbegin)/∆t segments by adopting a
time interval ∆t first, and the t, 1 ≤ t ≤ Nt segment is [tbegin + (t − 1) × ∆t, tbegin + t + ∆t]. Assuming
that the visits of file fn, 1 ≤ n ≤ N in the time of t segment is an,t, then the popularity of file fn can be
expressed as:

ξn =
Nt

∑
t=1

an,t × e−(Nt−t)/Nt (1)

where e−(Nt−t) is time varying weights and e is a mathematical constant. The average popularity of
the filesets Fset can be expressed as:

ξ =
N

∑
n=1

ξn/N (2)

It is obvious that if some files are always accessed simultaneously by a user within a limited
period of time, and the access frequency is greater than the predefined threshold, then these files
are access associated (in Section 4.1.3, we define this threshold as the average access popularity ξ).
Therefore, define the popularity of associated file to be the same as the popularity of a single file.
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Assuming that the number of files fn, 1 ≤ n ≤ N accessed in the time of t segment is an,t, then the
popularity of access of associated files, which consists of k files of filesets Fk

set can be expressed as:

ξk =
Nt

∑
t=1

min(ai,t, aj,t, · · · , ak,t)× e−(Nt−t)/(k× Nt) (3)

where min(a1,t, a2,t, . . . , ak,t) is the minimum number of files accessed in the filesets Fk
set during the time

of t, 1≤ t≤Nt segment. For example, the number of files accessed is a1,t = 3, a2,t = 2, a3,t = 6 in the filesets
{f 1, f 2, f3} during t, 1 ≤ t ≤ Nt segment, then the minimum number of files accessed is min(a1,t, a2,t, a3,t)
= a2,t = 2, and the popularity of accessing associated files is ξk = ξ3 = ∑1

t=1 2× e−(1−t)/(3× 1) = 2/3.

4.1.2. Q-Value Scheme for Cache Replica Generation

How to create a certain number of replica for each file based on the access popularity in a limited
cache server capacity is equivalent to the problem of how to allocate limited seats to different classes
according to the number of students in each class. The classical Q-value scheme in the allocation
problem can be employed to solve the above problems effectively [9].

Assuming that the distributed cache consists of L cache services, the capacity of the l, 1 ≤ l ≤ L
cache node Cachel is CSl. The cache filesets selected from the filesets Fset based on popularity is
Fcache = {f 1, f 2, . . . , fM}, where the popularity of cache file fm, 1 ≤ m ≤M is ξm, the number of replica of
the file is Rm and the size is Cm. Therefore, if we take the system’s cache capacity as the total number
of seats, the popularity of cache file as the number of students in each class, and take the number of
replica as the number of seats in each class, then, according to the Q-value method, the Q-value of the
cache file fm can be expressed as:

Qm = ξm
2/(Rm × (Rm + 1)) (4)

Considering that there is no effect of reducing the queuing time of the request if a multiple replica
of the same file is placed in the same cache node, then, only one replica of the file is placed in each
cache node, that is Rm ≤ L. The number of replica of the cache file is calculated as follows:

(1) Create a replica for each cache file in the cache filesets Fcache, that is, R1 = R2 = . . . = RM = 1; then,
the remaining cache space capacity of the system is CSYre = ∑L

l=1 CSl −∑M
m=1 Cm.

(2) To calculate the Q-value {Q1, Q2, . . . , QM} for each cache file, if Qm = max(Q1, Q2, . . . , QM), then
add 1 to the replica of file fm, that is Rm = Rm + 1; then, the remaining cache space capacity of the
system is CSYre = CSYre − Cm.

(3) Loop Step (2) until the remaining cache space of system CSYre is less than the size of file fm.
(4) Finally, if the number of replica of the file fm is more than the number of cached nodes, that is

Rm > L, then, delete the redundant replica and set the number of replica as Rm = L. Delete the file
fm from the filesets Fcache.

(5) Loop steps (2–4), until the remaining cache space CSYre cannot store any cache files.

4.1.3. Mining Associated Files

Frequent pattern mining algorithm FP-growth can mine frequent subsequences from a given
sequence [25,26]. Therefore, if we take the filesets Fset = {f 1, f 2, . . . , fN}, which a user has accessed
during the observation time T = [tbegin:tend] as a sequence, the file sequence accessed by a user within a
time slice ∆t is a record in the FP-growth algorithm; if we define the minimum support threshold as
the average access popularity of a file min_sup = ξ, then we can use FP-growth to mine frequent files
and filesets, and the files in the collection are the access associate files.
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• Regional meshing

In addition, considering the efficiency of mining, we further exploit the spatiotemporal locality of
user access such that only the files belonging to “the same time period” and “the adjacent geographic
region” can be mined. “The same time period” indicates that the access time of the file is during t,
1 ≤ t ≤ Nt segment, and “the adjacent geographic region” indicates that the location attribute of the
file is located at the same geographical range. By narrowing the scope of time and space, the efficiency
of mining can be improved.

Suppose that the geographic area is a two-dimensional Euclidean rectangular space [0, X][0, Y],
we divide it into row × col rectangular cells with coding, where the code of the area covered by the
i-th row j-th column is gij = j + col × (i−1). Then, for any spatiotemporal data file with three basic
attributes, namely, location, time, and type, we assume that it belongs to the cell if it satisfies the
following equation: {

(i− 1) X
row ≤ x ≤ i X

row , 1 ≤ i ≤ row
(j− 1) Y

col ≤ y ≤ j Y
col , 1 ≤ j ≤ col

(5)

Figure 2a shows the geographic rectangular area, which is divided into 4× 5 cells and the meshing
cell coding. Figure 2b shows all the neighbor cells of cell gij.
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• Mining method

The purpose of this paragraph is to describe how to use the FP-growth algorithm to mine the
access associated file F

gij
1 and non-associated filesets F

gij
2 , which belong to the geographical range of

the cell gij. The steps are as follows:

Step 1: Mine the user access request cache filesets F
gij
set that belong to the cell gij and its neighbor cells

from the user access filesets Fset.
Step 2: Calculate the access popularity of each file in F

gij
set , and find the most popular file fk, and its

popularity ξk.
Step 3: The FP-growth algorithm is used to iterate through the user access filesets Fset (the file accessed

in a time segment ∆t corresponds to a record in the FP-growth algorithm), and the popularity
between the file fk and other files in F

gij
set is calculated; if the popularity of access associated

between them is greater than or equal to ξ, then consider these files as access associated.
Step 4: The files related to fk constitute access related filesets; place the files into the filesets F

gij
1 , and

then delete these files from F
gij
set .

Step 5: Loop steps (2–5) until there are no access associated filesets generated, and finally the total set

F
gij
1 is formed.
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Step 6: Files that have low access associated popularity, but with popularity higher than the average
access popularity ξ are called non-associated files; place these files into the non-associated
filesets F

gij
2 .

Through the above steps, we can get the access associated filesets F
gij
1 and non-associated filesets

F
gij
2 , and all these files belong to the geographical range of the cell gij. Finally, looping through

each cell (including row × col cells) that belongs to the geographical area of the rectangular space
[0,X][0,Y], we can mine all the access associated filesets F1 = ∪row

i=1 ∪col
j=1 F

gij
1 and non-associated filesets

F2 = ∪row
i=1 ∪col

j=1 F
gij
2 .

In reality, only the cache file larger than the minimum support threshold min_sup = ξ will enter the
candidate frequent itemsets according to the algorithm principle of FP-growth. Therefore, the essence
of mining is to merge and classify the cache filesets Fcache based on the correlation of user access, that
is, Fcache = F1 ∪ F2.

4.2. RSSD Algorithm

The basic idea of the RSSD algorithm is mining access associated files from the historical user
access information using the user’s access characteristics and file access popularity. Next, place the
access associated file as a whole in the same cache node and ensure system load balance according to
the storage load, access load, real time bandwidth, and other information of the cache node.

4.2.1. Cache Files Selection

We cache files with greater popularity than the average popularity; for example, the popularity
of files ξn ≥ ξ. Therefore, all access associated filesets F1 and non-associated filesets F2 mined in
the Section 4.1.3 will be used as cache files, but the number of replica generated for them needs
further calculation.

4.2.2. Replica Generation

Given that the popularity and number of replica per file are not the same, creating replica for
filesets is still a great challenge. Therefore, we first used the Q-value scheme to calculate the number of
replica for each file, and then split the access associated filesets. Finally, the number of replica of each
subset will be calculated. The details are as follows:

(1) Use the Q-value scheme to generate replica for each file in Fcache.
(2) Take any fileset from F1, and arrange them in descending order according to the number of replica

of the file assuming that the sorted filesets are {fi, fj, . . . , fk}, where Ri ≥ Rj ≥ . . . ≥ Rk.

(3) Split the filesets {fi, fj, . . . , fk} into subsets based on the number of replica of each file. The
first subset formed after splitting is itself, that is {fi, fj, . . . , fk}, and the number of replica is
R(i,j, . . . ,k) = min(Ri, Rj, . . . , Rk) = Rk. Then, put the subset into the new associated filesets
F′1 = F′1 ∪

{
fi, f j, . . . , fk

}
, and record the number of replica R(i,j, . . . ,k) = Rk.

(4) At this point, the remaining replica of each file in the filesets {fi, fj, . . . , fk} are Ri = Ri – Rk, Rj =

Rj – Rk, . . . , Rk = Rk – Rk. Then, we delete the files f
gij
z with zero copy number to form a new

fileset {fi, fj, . . . , fk} = {fi, fj, . . . , fk} − fk.

(5) Repeat steps (2–4) until the filesets {fi, fj, . . . , fk} are split. To this extent, the number of files in the
filesets is zero, or there is only one file fi with the largest number of replica. For the remaining
file fi, we treat it as non-associated file (at least two files can be referred to as associated) and put
them into the non-associated filesets F2 = F2 ∪ fi, and record the number of replica Ri = Ri – Rj −
. . . − Rk.

(6) Loop steps (2–5) until every MAF is split in the filesets F1, and put the results of the split into the
filesets F′1 and F2. Similarly, here are Fcache = F′1 ∪ F2.
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Here is an example of the process described above. Suppose that the access related filesets {fi, fj,
. . . , fk} are {f 1, f 2, f 3} in descending order according to the number of replica, and the number of replica
of each file is R1 = 5, R2 = 3, R3 = 1. Then, according to previous steps, the first subset is

{
f

gij
1 , f

gij
2 , f

gij
3

}
,

and the number of replica is R(1,2,3) = R3 = 1. The second subset is {f 1,f 2}, and the number of replica is
R(1,2) = R2 − R3 = 2. For the last remaining single file f 1, we treat it as a non-associated file, and the
number of replica is R1 = R1 − R2 − R3 = 1.

After the above steps, we can calculate the new access associated filesets F′1 and create a copy for
each subset, and a copy of the file in the non-associated filesets F2 can also be created.

4.2.3. Replica Placement

Taking the access associated file as a whole and placing it into the same cache node results in an
increase of the queuing time of the user access request, then, we define cache file placement factors to
measure the suitability of cache nodes to replica placement.

The probability of access to files is proportional to popularity according to the definition of
popularity of files. The higher the popularity, the greater the probability of access will be. Therefore,
if we have a cache file fn, 1 ≤ n ≤ N whose copy number is Rn, the popularity is ξn, and the size is
Cn. We place it into Rn different cache nodes (a cache node can store only one copy of the same file),
then the expected access load for each cache node is ξn/Rn. Thus, if the cache node Cachel currently
stores Nl cache files, and the number of replica of the cache file fm, 1 ≤ m ≤ Nl is Rm, then the current
expected access load of the cache node Cachel can be expressed as:

Loadl =
Nl

∑
m=1

ξm/Rm (6)

Obviously, the smaller the expected access load of the cache node, the greater the cache capacity,
and the wider the real-time bandwidth, the better it will be after the cache file is placed. Therefore, we
define the cache file placement factor as follows:

ρl = CSre
l × Bl/Loadl (7)

where the cache capacity of the cache node Cachel is CSl, the remaining cache capacity is
CSre

l = CSl −∑Nl
i=1 Cl , and the real-time bandwidth is Bl. Of course, the larger the cache file placement

factor, the better it is for placing cache files.
With the cache file placement factor, we can place cache files according to the size of the current

placement factor of each cache node. The placement principle is according to geographical area
meshing code, each cache file in the grid area is placed one by one from the first grid area. The access
associated files are placed first, followed by the access non-associated files. In addition, large files are
placed first irrespective of whether the access is associated or not, then small files are placed, and the
replica of the same file are place in different cache nodes. The steps for placing cache files are listed
as follows.

Step 1: Place access associated filesets

(1) Calculate the size of each fileset F′1.
(2) Calculate the file placement factor for each cache node.
(3) Place the first replica of the filesets with the largest size in F′1 as a whole in the cache

node where the placement factor is largest. Then, if the storage capacity of the node is
not enough, the cache node with the second-largest placement factor will be selected.

(4) Loop steps (2–3), place the remaining replica in different cache nodes in turn.
(5) Loop steps (1–4), place all access associate filesets in F′1 as a whole into the cache node.
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Step 2: Place access non-associated filesets.

(1) Calculate the size of each file in F2.
(2) Calculate the file placement factor for each cache node.
(3) Place the first replica of the filesets with the largest size in F2 into the cache node whose

placement factor is the largest. Then, if the storage capacity of the node is not enough,
select the cache node with the second-largest placement factor.

(4) Loop steps (2–3), place the remaining replica in different cache nodes in turn.
(5) Loop steps (1–4), place all files in F2 into the cache node.

Through the above steps, we can place all cache files in Fcache = F1 ∪ F2 = F′1 ∪ F2 to different
cache nodes in the form of access associate or non-associated.

5. Experimental and Performance Evaluation

In this section, we will first introduce the performance evaluation metrics for our replication
placement strategy. Then, the experimental data and methods will be described. Finally, we will
present and discuss the results of the experiments.

5.1. Evaluation Metrics

Three indexes will be used during the experiment to evaluate the performance of the RSSD
algorithm: cache hit rate, mining time, and average response time. These are defined as follows:

• Cache hit rates: a percentage of the total number of requests hit in a user access request, which is
used to measure the performance of cache file selection mechanisms.

• Mining time: the time consumed for mining the access associated files from the historical user
access information, which is used to measure the computational efficiency of the algorithm.

• Average response time: the average response time of user access to a single file, which is used to
measure the overall performance of the algorithm.

5.2. Experimental Data and Methods

The experimental data was obtained from the Wuhan smart city network application
demonstration platform, which includes 14 types of sensors located in different regions. It has been
collecting sensor data since 1 January 2010, and provides 20 types of predefined applications to the
public. The distributed cache system is a centralized topological network comprising the dispatcher,
proxy server, and cache server, and built on top of the Hadoop distributed file system (HDFS). The
cache system and the HDFS are loosely coupled. The scheduling proxy server is considered as a central
index server while undertaking the request scheduling. Its internal storage has a global index table
used for recording information of all nodes where the file cached, and the cache node also holds the
local index. The cache node and the scheduler proxy server are connected through the 1000 M Ethernet
switch, and the cache nodes are in non-communication with each other.

We obtained the user access logs in the server for the period from 1 March 2017 to 1 May
2017. After processing, we generated 976,328 file access requests, the size of these accessed files was
approximately 843.6 GB. In order to calculate the popularity of the files, we converted the user access
time to observation time T = [tbegin:tend] = [1:1440], in hours, and set the time interval ∆t = 24, then
divided the observation time T into Nt = 60 segments. Based on this foundation, we can use the RSSD
algorithm proposed in this paper to place cache replica files in different cache nodes.
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5.3. Experimental Results

5.3.1. Cache Hit Rates

The experiment investigated the impact of two cache selection mechanisms on cache hit rate. The
first did not consider the influence of the access time on the popularity, such as the number, frequency,
and probability of file access in [6,7]. We called it the non-time-weighted selection mechanism
(Non-TSM). The second considered the influence of the access time on the popularity, such as the
nearest access maximum weight selection mechanism in [10], the time forgetting function selection
mechanism in [11], and the RSSD algorithm proposed in this paper. We called it the time-weighted
selection mechanism (TSM). The experimental results are shown in Figure 3.
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As can be observed, as the cache capacity increased, the cache hit rate of the system gradually
increased until it was stable. In addition, the TSM cache hit rate was higher than that of the Non-TSM,
and this became more obvious as the cache capacity increased. This is because the Non-TSM mechanism
directly calculates the number of accesses to the file, and the attenuation of file access over time
is ignored.

5.3.2. Mining Time

The experiment investigated the time consumed for historical user access information under
different regional meshing levels, that is, the influence of the regional meshing on the execution
efficiency of the algorithm. The results are shown in Figure 4.

Figure 4 shows that the time consumed decreased when the regional meshing levels became
larger. The time consumed in mining 676,328 file access information was 7164 s while the regional
meshing level was 1 × 1. However, when the meshing level was 150 × 150, the time was 356 s. This is
because regional meshing decomposition of the correlation calculation of files is changed from the
entire geographic region to the regional cell, and the local and incremental calculation for file access
associated is realized.
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5.3.3. Average Response Time

The total memory capacity of the distributed cache system in the following experiment was set
to be 144 GB. A total of 50, 100, 200, 500, and 1000 accesses to different application services were
randomly generated, aimed at testing the influence of regional meshing, cache file placement, and the
number of user concurrent accessing to average response time.

(1) The influence of regional meshing on the average response time.

The files belonging to the same time period, the adjacent geographic region, and high popularity
were considered to be access associated. Therefore, regional meshing will impact the access associate
between files, and also impact the average response time. Figure 5 shows the total average response
time of users when accessing 500–3000 files by using application services in different regional
meshing levels.
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As can be observed, for the same regional meshing level, the total average response time increased
as the number of file increased. However, for the same number of files, as the meshing level increased,
the total average response time also increased, and the minimum was achieved when the meshing
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level was 1 × 1. This is because the increased density of the mesh, the lower probability of the user
access files belonging to the adjacent geographic region and the same time period, and the less access
associated files found cannot reduce the request cross node scheduling times.

(2) The influence of cache file placement on the average response time.

By combining the experimental results of executive efficiency and the average response time, it
can be seen that the time consumed and the average response time were smaller when the regional
meshing level was 30 × 30. Therefore, in the following experiment, we set the regional meshing level
to be 30 × 30.

In terms of the experimental comparison of the RSSD algorithm, the time-weighted replication
strategy TWRS in [10,11] considered the decay time but did not consider access correlation, and the
simple replication strategy SRS in [8,9,14] did not consider access correlation and decay time, but
considered the access frequency, node load, real-time bandwidth, etc. The experiment investigated the
total average response time of the system when the user accesses the 500–3000 files, and the result is
shown in Figure 6.
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It can be seen that the RSSD algorithm had the shortest response time, followed by TWRS, while
SRS had the longest time. This is because the average response time consists of two parts: the queuing
time and the cross node scheduling time. The TWRS algorithm only considers the time decay without
considering access correlation, which can guarantee the cache hit ratio and load balance of the system,
reduce the queue time of the request, but cannot reduce the cross-node scheduling time of the request.

The SRS algorithm places the cache files through the current load of the cache node, which can
reduce the request queuing time with load balancing, but can neither guarantee cache hit rate nor
reduce the number of cross node scheduling of requests such that the total average response time is
the longest.

(3) The influence of concurrent accessing on the average response time.

The experiment compared the replica algorithm of RSSD, TWRS, and SRS, and investigated the
total average response time of a user accessing 1000 files concurrently through predefined applications
in a smart city. The result is shown in Figure 7.

It can be seen that as the number of concurrent access users increased, the average response time
also increased; however, the total average response time of RSSD was still the smallest. This is because
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the RSSD not only creates replica, but also places the associated files as a whole in the same cache
node and realizes bidirectional optimization of the request queuing and cross node scheduling times.
In addition, it can also be seen from the graph that when the number of concurrent access users was
1–5, the total average response time of RSSD, TWRS, and SRS algorithms were almost unchanged and
appeared to be stable, then increased rapidly. This is because the distributed cache node was set to be
6, and the number of replica of the cache file did not exceed the number of nodes; therefore, when the
number of concurrency access of the same file was greater than 6, there was requests queuing, which
increased the total average response time.
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6. Conclusions and Future Work

The RSSD algorithm makes full use of the spatiotemporal locality and correlation of user access in
a smart city, improves the cache hit ratio, and achieves bidirectional optimization of the queuing time
and the number of cross node scheduling. RSSD is designed for cluster environment with distributed
multi nodes. In the future, we will apply this method to the Hadoop distributed file system for the
purpose of improving access performance.
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