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Abstract: Oceanographic remote sensing, which is based on the sensitivity of reflected signals from
the Global Navigation Satellite Systems (GNSS), so-called GNSS-Reflectometry (GNSS-R), is very
useful for the observation of ocean wind speed. Wind speed estimation over the ocean is the core
factor in maritime transportation management and the study of climate change. The main concept
of the GNSS-R technique is using the different times between the reflected and the direct signals to
measure the wind speed and wind direction. Accordingly, this research proposes a novel technique for
wind speed estimation involving the integration of an artificial neural network and the particle filter
based on a theoretical model. Moreover, particle swarm optimization was applied to find the optimal
weight and bias of the artificial neural network, in order to improve the accuracy of the estimation
result. The observation dataset of the reflected signal information from BeiDou Geostationary Earth
Orbit (GEO) satellite number 4 was used as an input for the estimation model. The data consisted of
two phases with I and Q components. Two periods of BeiDou data were selected, the first period was
from 3 to 8 August 2013 and the second period was from 12 to 14 August 2013, which corresponded to
events from the typhoon Utor. The in situ wind speed measurement collected from the buoy station
was used to validate the results. A coastal experiment was conducted at the Yangjiang site located in
the South China Sea. The results show the ability of the proposed technique to estimate wind speed
with a root mean square error of approximately 1.9 m/s.

Keywords: wind speed estimation; GNSS-reflectometry; artificial neural network; particle swarm
optimization; particle filter; BeiDou GEO satellite

1. Introduction

Global Navigation Satellite Systems (GNSS) technologies are widely used for positioning,
navigation, and time applications based on information from direct signals. In addition, the reflected
signals from satellites over the land or ocean surface can be applied for Earth observations known as
GNSS-reflectometry (GNSS-R). This is a well-established technique for remote sensing that is used
in many applications to observe the geophysical parameters of the Earth. The first bistatic radar
remote sensing technique was proposed for an ocean altimetry application, based on the L-band of
Global Positioning System (GPS) signal, in 1993 by the European Space Agency [1]. Several platforms
have been widely discussed and developed to capture GNSS-R information, such as space-borne,
satellite, and ground stations. It is highly effective for monitoring the Earth’s environments, measuring
significant wave heights, wind speeds, soil moisture, and ice and snow thicknesses [2–5]. In particular,
the characteristics of wind speed are an important factor for the observations of typhoon and hurricane
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events [6,7]. In 2003, Surrey Satellite Technology developed the first GPS-R receiver onboard the
UK-Disaster Monitoring Constellation (UK-DMC) satellite in order to establish ocean and land
surface conditions [8]. Recently, the Cyclone Global Navigation Satellite System (CYGNSS) project was
developed by the National Aeronautics and Space Administration (NASA) to predict the occurrences
and observe the characteristics of hurricanes. CYGNSS consists of eight micro-satellites launched
into a low Earth orbit with a 35 degree inclination. Each satellite receives information from four GPS
satellites [9,10]. The main advantage of this technique is the large number of navigation satellites
in space, such as the GPS, GLONASS, Galileo, and BeiDou satellite constellations, which provide
more information and a greater prominent spatial-temporal sampling capability over the Earth’s
surface. Moreover, the benefit of long-term ubiquitous information that is freely available provides the
opportunity to achieve global coverage at a lower cost compared to an active instrument.

The Chinese BeiDou navigation satellite system (BDS) has already provided excellent performance
in terms of precise positioning, Total Electron Content (TEC) estimation, and modeling of the Earth’s
ionosphere, etc. principally in the Asia-Pacific region [11,12]. As of July 2017, BeiDou consists of
five Geostationary Earth Orbit (GEO), six Inclined Geo-Synchronization Orbiters (IGSO), and three
Medium Earth Orbiters (MEO). Furthermore, by 2020, BeiDou constellations will fully support global
full-time and full-weather, which can be applied in many applications, especially for short message
communication services. In the same way, the information from reflected signals was studied in many
remote sensing applications [13–16]. From 12 to 14 August 2013, the typhoon Utor formed in the
Eastern part of the Philippines and dissipated in Southern China. Figure 1 shows the tracking map
of the typhoon Utor simulated from wind speed information from the Japan Meteorological Agency.
Consequently, during the typhoon period, this paper estimated wind speeds using the dataset from
the BeiDou satellite.

Figure 1. Map of typhoon Utor’s track. The minimum and maximum wind speeds were approximately
18 and 54 m/s, respectively.

In general, wind speed estimation based on reflected signals has been developed and discussed.
For instance, Least Squares (LS) fitting of the measured Delay Doppler Map (DDM) to the theoretical
Zavorotny and Voronvich model and the regression technique based on geophysical parameters.
Both techniques have been widely applied and the results show good agreement with in situ wind
speed measurement [17–23]. However, this technique does not learn the characteristics of the variables.
For this reason, a machine learning technique was applied to estimate wind speeds [24]. In this
work, we propose a combination of an artificial neural network (ANN) and a particle filter (PF) to
estimate wind speeds based on the reflected signal information of the BeiDou G4 satellite. The study
area focuses on the ocean surface of the South China Sea near the cost of the Yangjiang province.
In addition, particle swarm optimization (PSO) was applied to find the optimal weight and bias of the
ANN because of its high efficiency and easy implementation; it only requires the adjustment of a few
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parameters [25–27]. Moreover, the particle filter was implemented as an adaptive algorithm that is
independent of missing factors and more robust in nature [28–31].

The remainder of this paper is organized as follows: Section 2 describes the study area and the
specific details of the data collection; Sections 3 and 4 present the algorithm for wind speed estimation,
which includes the ANN, PSO, and PF techniques; and Section 5 discusses the error comparison and
experimental results. Finally, the conclusions are presented in Section 6.

2. Data Description and Preprocessing

The raw intermediate frequency (IF) was captured from the up-and down-looking antennae by
the dual-isolated GNSS radio frequency application specific integrated circuit (RF-ASIC) components,
from which the antennae point to the ocean. The bandwidth of the captured IF signal for BeiDou
G4 is approximately 4 MHz, centered at 3.996 MHz. Two-bit data were collected from both the
direct and reflected signals. In order to illustrate the proposed technique for wind speed estimation,
the observation data collected from 3 to 8 and 12 to 14 August 2013 at the Yangjiang ground station.
Figure 2 shows the station site which located on the Eastern coast of China at 21◦33′58.50′′ N and
111◦51′38.93′′ E at a height of 120 m above the mean sea level. The station received the signal from the
transmitter position of the BeiDou G4 satellite (0◦0′0′′ N, 160◦0′0′′ E) at a height of 35,801 km, and the
specular point was approximately 21◦32′11.4′′ N, 111◦57′28.08′′ E. The reflected signal captured from
the receiver station consisted of phase I and Q components, which are presented in the Experimental
Results section.

Figure 2. The ground receiving station at Yangjiang site to collect the reflected signal from the BeiDou
G4 satellite. Up and down-looking antenna (left) and the distance between receiving station and
specular point (right).

3. Methodology

3.1. Artificial Neural Network

Artificial neural networks (ANNs) are powerful computational models, inspired by the functions of
biological neural networks, which were designed to simulate the behavior of the human neural system
based on the relationships between input information and the target. ANN is a robust data modeling
tool that is widely used in many applications, such as regression, classification, and approximation-based
learning processes [32,33]. A common architecture of ANN is divided into three layers, consisting of the
input layer, the hidden layer, and the output layer, as illustrated in Figure 3.

Each input element (p = [p1, p2, p3, ..., pn]) has a different weight (w1, w2, w3, ..., wn) for each
neuron. The net input can be calculated as follows:

n =
R

∑
i=1

wij pj + b = W p + b, (1)

where wij is the corresponding connection weight between neuron (i) from the input layer and neuron
(j) from the hidden layer, and b is the bias of the neuron. This research presents a Multilayer Perceptron
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(MLP) neural network including two layers of neurons by configuring ten artificial neurons for the
hidden layer and one artificial neuron for the output layer. The hyperbolic tangent sigmoid activation
function was applied to the hidden neurons and can be expressed by:

f (n) =
2

1 + e−2n − 1. (2)

Figure 3. The architecture of a feed-forward ANN for wind speed estimation using the reflected signal
from the BeiDou satellite.

Subsequently, a linear function was applied to the output layer of the ANN. The model was
implemented using the two layer feed-forward neural network in which the weights and biases were
trained by the particle swarm optimization algorithm, based on the input information and target; this is
presented in the next section. In accordance with this algorithm, the error functions were updated
through a number of iterations. The network learning error can be expressed by:

E =
1
N

N

∑
i=1

(yi − ti)
2, (3)

where yi is the final output of the network, ti is the target, and N is the length of the output. The training
process stopped when the conditions were met.

3.2. Particle Swarm Optimization

In 1995, Kennedy and Eberhart proposed a parallel algorithm called particle swarm optimization
(PSO), which is a stochastic optimization technique that was inspired by the social behavior of
fish schooling patterns [34]. The basic concept of PSO starts by initializing a group of random
particles (solutions) and then searches for optimal parameter values by updating the generations in a
D-dimensional solution search space. For each iteration, the particle updates itself based on tracking
two parameters which consist of the personal best value (Pp_best) and the group best value (Pg_best).
The target value is set as the best value of the fitness function. This new position is simply calculated
as the sum of the previous position and the new velocity as follows:

Xi,t+1 = Xi,t + Vi,t+1, (4)

Vi,t+1 = ωiVi,t + c1r1(Pp_besti,t
− Xi,t) + c2r2, (Pg_besti,t

− Xi,t), (5)

where Xi,t and Vi,t are the position and velocity of the particle for iteration t, respectively. ωi is the
weight of the inertia factor, c1 and c2 are the acceleration coefficients, and r1 and r2 are random numbers
in the range [0,1]. The weight inertia is designed to reduced linearly and can be expressed by:

ωi = ωmax −
ωmax −ωmin

itermax
× t, (6)
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where ωmin and ωmax are the minimum and maximum inertia weights. itermax is the maximum
number of iterations. A summary of the PSO approach is shown in Algorithm 1.

Algorithm 1: Pseudocode for particle swarm optimization
Input: Problem size, Population size
Output: Optimal point (Pg_best)

1 Population← []
2 Pg_best ← []
3 for i = 1:Population size do
4 Pvelocity ← Random Velocity() // Initialize the position and
5 Pposition ← Random Position() // velocity of particles
6 Pp_best ← Pposition

7 if Cost[Pp_best] ≤ Cost[Pg_best] then
8 Pg_best ← Pp_best // Update the global best position

9 while Stop condition() do
10 for P ∈ Population do
11 Pvelocity ← Update Velocity(Pvelocity, Pg_best, Pp_best) // Update the position and
12 Pposition ← Update Position(Pposition, Pvelocity) // velocity of particles
13 Evaluate the fitness value of the particle f (Pposition)

14 if Cost[Pposition] ≤ Cost[Pp_best] then
15 Pp_best ← Pposition

16 if Cost[Pp_best] ≤ Cost[Pg_best] then
17 Pg_best ← Pp_best // Update the global best position

18 return Pg_best

3.3. Coastal GNSS-Reflectometry Waveform Modeling

The theoretical scattering model based on the bistatic equation and Kirchhoff approximation was
developed by Zavorotny and Voronvich and is known as the Z–V model which describes the averaged
power waveform of the reflected signal consist of delay ∆τ and Doppler frequency offset ∆ f with
respect to the nominal specular point [35]. It is widely used to simulate the delayed waveform of the
reflected signal from the satellite, which can be expressed by:

|Y0(τ)|2 =
T2

i PtGtλ
2

(4π)3

∫ Gr(~r)Λ2(τ(r)− ∆τ)S2(Ti( f (r)− ∆ f ))
R2

G(r)R2
R(r)

σ0(r)dr, (7)

where~r is the spatial coordinate on the sea surface, and Ti is the coherent integration time. Pt is the
transmitted power from the satellite, and λ is the signal wavelength. Gt and Gr are the gains of the
transmit and receiver antenna, respectively. RG and RR are the ranges between the ocean surface
point and the satellite and receiver, respectively, Λ(·) is the autocorrelation function of signal from the
satellites. S(·) is the frequency modulation function. σ0(·) is a bistatic radar cross section (BRCS) of
the rough surface which depends upon the surface slope probability density function ((P(·))) and is
expressed as:

σ0(r) = π|<|2 q4(r)
q4

z(r)
P
(
− q⊥

qz

)
, (8)
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where < is the Fresnel reflection coefficient. The Mean Square Slopes (MSS) of the up and cross
winds (σu and σc, respectively) are approximated based on the calibrated sea surface roughness model
developed by Katzberg [36] and are calculated as follows:

σu = 0.45 · [0.00 + 0.00316 · f (U)],

σc = 0.45 · [0.003 + 0.00192 · f (U)],
(9)

where f (U) is related to the in situ wind speed measurement (U) and can be calculated as follows:

f (U) =


U, 0 < U ≤ 3.49,

6 ln(U)− 4.0, 3.49 < U ≤ 46,

0.411 U, 46 < U.

(10)

This work focuses on the wind speed at the height of 10 m above the sea surface which is the
default value for the anemometer height. The relationship of the wind speed measured at different
heights [37] can be expressed as:

U2 = U1(z2/z1)
P, (11)

where U2 is the wind speed at the desired reference height z2 , and U1 is the wind speed measured at
height z1 . A value for the exponent P is 0.11 was determined to be applicable most of the time over
the ocean.

3.4. Particle Filter

The particle filter is a sequential Monte Carlo technique that is used to solve state estimation
problems [38]. The basic idea is to represent the required posterior density function by a set of random
samples with associated weights and then compute a new generation of samples based on these
samples and weights. The construction of a discrete system dynamic model is mainly expressed by
two equations and can be written as:

xk = F(xk−1) + wk, (12)

zk = H(xk−1) + vk, (13)

where xk is the system’s state at time k, F(·) is the system’s model, xk−1 is the system’s state at the
previous time, zk is the measurement state, H(·) is the measurement or observation model, and both wk
and vk are noise. This paper used the autoregressive model (AR) to estimate the wind speed. The AR
parameters were determined by using the previous iteration estimate information of the wind speed in
an iteration particle filter system. The state-space representation of the AR model can be expressed by:

xi
k

ϕ1

ϕ2

ϕ3

xi
k−1

xi
k−2

xi
k−3


=



ϕ1 0 0 0 ϕ2 ϕ3 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0





xi
k−1
ϕ1

ϕ2

ϕ3

xi
k−2

xi
k−3

xi
k−4


+ wk, (14)

where i is the particle number and k is the sample time. ϕ1, ϕ2, and ϕ3 are the autoregressive parameters.
The measurement model was described in the previous section. The predicted distribution of xk is
given by p(xk | z1:k−1), which can be expressed by:

p(xk | z1:k−1) =
∫

p(xk | x1:k−1)p(xk | z1:k−1)dxk−1. (15)
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For each time step, the normalization weight (∑ wi
k = 1) and the posterior probability density

distribution function can be approximated as follows:

p(x1:k | z1:k) ≈
N

∑
i=1

wi
kδ(x1:k − xi

1:k), (16)

where:

wi
k ∝

p(xi
k | z1:k)

q(xi
k | z1:k)

, (17)

p(xk | z1:k) =
p(zk | xk, z1:k−1)p(xk | z1:k−1)

p(zk | z1:k−1)
, (18)

q(xk | z1:k) = q(xk | xk, z1:k−1)q(xk−1 | z1:k−1), (19)

and q(·) is the proposal density. Afterwards, the weights are normalized in order to determine the
importance of the sample based on the resampling technique. The final step is to generate a new
generation of particles that are close to the measurement values. The particle filter process is illustrated
in Figure 4.

Figure 4. A schematic of the particle filter process.

4. Experimental Results

The efficiency of the proposed technique for wind speed estimation based on the reflected signal is
evaluated in this section. The observation dataset was collected during the typhoon Utor, which was a
powerful tropical cyclone that formed in the Eastern part of the Philippines and dissipated in Southern
China. The in situ wind speed measurement was collected from two periods, the first period was from
3 to 8 August 2013, in which the minimum and maximum wind speeds were 0.1 and 8.9 m/s, respectively.
The second period was from 12 to 14 August 2013, in which the minimum and maximum wind speeds
were 2.5 and 37.9 m/s, respectively. Figure 5 shows the wind speed changes over the two periods.
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Figure 5. The in situ wind speed measurement from the buoy station from 3 to 8 August 2013 and 12 to 14
August 2013. The average wind speed of each time period are approximately 3.5 and 16 m/s, respectively.

The reflected signal from the BeiDou G4 satellite was collected over the ocean surface at the same
time as the in situ wind speed. The signal consisted of phase I and Q components, examples of which
are presented in Figure 6a,b, respectively. Subsequently, the I and Q components were integrated by
I2 + Q2 in order to compute the power waveform, as shown in Figure 6c. The scatter plot in Figure 6d
shows the normalized density of each lag, and the black line shows the connection of the mean values
between lags. Accordingly, the final power waveform is shown in Figure 7.

(a) (b)

(c) (d)

Figure 6. An example of a real reflected signal from the BeiDou G4 satellite captured on 3 January 2014:
(a) phase I; (b) phase Q; (c) integration of phases I and Q (I2 +Q2) and (d) normalized density of the sample.
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Figure 7. The final power waveform of an example of a real reflected signal from the BeiDou G4
satellite captured on 3 January 2014.

The sensitivity of the power waveform to wind speed is a key parameter for wind speed estimation.
This research used the delay-related and spectral-related observables, computed from the power
waveform, as input information for the ANN approach. The delay-related observable is expressed by:

α(τ) =
Zr(τ)− N f loor

Zmax
r (τ)− N f loor

, (20)

where Zr(τ) is a delay, and N f loor is the noise floor of the power waveform. Zmax
r is the peak amplitude,

which is computed by a third-degree polynomial on the power waveform. The spectral-related
observable is expressed by:

f (τ) =

∫ f2
f1

f · Sr( f , τ)d f∫ f2
f1

Sr( f , τ)d f
, (21)

where Sr( f , τ) is the Doppler spectrum, and f1 to f2 is the frequency range of the Doppler spectrum.
The cross-validation function of MATLAB 2016a based on HoldOut was used to select the training
samples at 30% and 70% of all datasets, respectively. Figures 8 and 9 present the training sample for the
learning process of ANN, which consists of the in situ wind speed, the delay-related and spectral-related
observables of BeiDou G4. In addition, the correlation of the reflected signal and the training sample are
presented.

(a) (b)

Figure 8. An example of the reflected signal at lag 26: (a) 30% training sample; (b) relationship between
the training sample and the wind speed.
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(a) (b)

Figure 9. An example of the reflected signal at lag 26: (a) 70% training sample; (b) relationship between
the training sample and the wind speed.

Based on the training sample, it is evident that the derived results show good agreement with in
situ wind speed measurement. Figures 10 and 11 show the wind speed estimation results, which are
presented in three different types of graphs: a line graph, a box plot, and a scatter plot. On the line
graph, the proposed technique (cyan line) shows high efficiency and good correlation compared to
a regression (red line), an ANN based back-propagation (BP, green line), and an ANN based PSO
(magenta line) technique. The box plot presents the statistical error comparison of each technique.
The integration of ANN based PSO + PF shows the lowest error and has a median value that is close
to 0. The scatter plot presents the correlation of in situ wind speed with wind speed estimation.
The first case, in Figure 10, shows the training sample at 30%. The R-square of the regression technique,
the ANN based BP, the ANN based PSO, and the ANN based PSO + PF are 0.297, 0.689, 0.823, and 0.874,
respectively. Figure 11 shows the second case: that with the training sample at 70%. The R-square of
regression technique, the ANN based BP, the ANN based PSO, and the ANN based PSO + PF are 0.284,
0.842, 0.882, and 0.913, respectively. The covariance matrices of the particle filter were set by a trial and
error technique. A comparison of the statistical results is illustrated in Table 1.

Figure 10. Comparison of wind speed estimation results using different techniques with 30% of the
training sample.
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Figure 11. Comparison of wind speed estimation results using different techniques with 70% of the
training sample.

Table 1. Comparison of the statistical results of wind speed estimation.

Algorithm

RMSE (m/s)

30% 70%

WS < 20 WS > 20 Overall WS < 20 WS > 20 Overall

Regression 4.7839 13.4543 5.9009 4.7261 13.6445 5.8908
ANN based BP 4.4942 6.5375 4.6796 2.5595 4.4798 2.7516
ANN based PSO 2.8843 3.4397 2.9299 2.3081 3.1553 2.3826
ANN based PSO
combined with PF 2.3982 3.5124 2.4997 1.8524 3.1126 1.9758

5. Discussion

In order to assess the efficiency of the proposed technique, the root mean square error (RMSE)
was used as a standard statistical metric to measure the model’s performance. The RMSE used for
evaluation in this section is expressed by:

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2, (22)

where yi is the in situ wind speed measurement from the buoy, ŷi is the wind speed estimation, and n
is number of observations. Table 1 shows the statistical results of each technique. The overall RMSE
of the proposed technique is better than the regression, the ANN based BP, and the ANN based PSO
techniques by approximately 4, 1.5, and 0.5 m/s, according to the PF based autoregressive model
that used information from the previous time step. For wind speeds higher than 20 m/s, the results
showed greater errors compared to lower wind speeds due to the lack of high wind speed samples.
The in situ data used in this research only provided 18 samples for wind speeds higher than 20 m/s.
In order to improve the efficiency of the high wind speed results, an appropriate number of training
samples is required. For this research, when the cross-validation function was applied for selecting
30% of the training sample, the total random sample is 174 samples, which consist of 156 samples of
wind speed higher than 20 m/s and 18 samples of wind speed lower than 20 m/s. Likewise, when
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70 % of the training sample was selected, the total random sample is 385 samples, which consist of
350 samples of wind speed higher than 20 m/s and 35 samples of wind speed lower than 20 m/s.

The number of artificial neurons in the hidden layers is an important factor when deciding to select
an ANN architecture. This research compared different numbers of neurons (6, 8, 10, 12, and 14 neurons)
in order to find the optimal number of artificial neurons for wind speed estimation. Figure 12 shows the
scatter plots of the relationship of in situ wind speed measurements and wind speed estimation for the
different hidden layer architectures. These combine the results of the assessments using 30% and 70% of
the training dataset and include R2 values. The statistical comparison of each hidden layer is represented
in the box plot.

Figure 12. Comparison of wind speed estimation using ANN based PSO for different hidden layers.

The overall RMSE of the ANN based PSO with 10 artificial neurons was approximately 2.9 m/s
when 30% of the training sample was used and 2.3 m/s when 70% of the training sample was used,
as shown in Table 2. According to these results, the optimal number of neurons for wind speed estimation
from the information of the BeiDou reflected signal is 10 neurons, since this produced the lowest RMSE.

Table 2. Comparison of the statistical results relative to the number of neurons in the neural network.

Number of
Neurons

RMSE (m/s)

30% 70%

WS < 20 WS > 20 Overall WS < 20 WS > 20 Overall

6 3.5606 5.9404 3.7926 3.1049 5.5643 3.3540
8 3.5511 5.8782 3.7771 3.0445 5.2631 3.2650

10 2.8843 3.4397 2.9299 2.3084 3.1553 2.3828
12 3.3689 6.6578 3.7200 3.3045 4.8027 3.4404
14 5.2888 5.5649 5.3101 4.9382 5.6721 4.9974

One important factor for achieving a higher efficiency of particle filters is the number of particles.
The filter approximates the posterior distribution with high efficiency when the number of particles
tends to infinity. On the other hand, the computational cost grows with the number of particles.
For this reason, this research compared different numbers of particles in order to find the optimal
number for wind speed estimation, as presented in Figure 13.
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Figure 13. Comparison of the root mean square error (RMSE) (cyan) with the computation time (orange)
of the particle filter.

The RMSE results shown in Figure 13 are the average value from the 30% and 70% training
samples with a computation time of one iteration. With 50 particles, the RMSE was approximately the
same as for 100 and 150 particles, but less computation time was required.

The linear regression model was used to compute the R2 value of each lag for the delay-related
and spectral-related observables. According to Figure 14, the R2 values of data collected from the two
periods of time increased after the peak of the final power waveform. As a result, this research selected
the data from lags 26 to 37 as the input information for the ANN approach.

Figure 14. R2 values of the delay-related and spectral-related observables.

The relationship of in situ wind speed measurement and mean square slope is shown in Figure 15.
The function of the sea surface roughness model for computing the up and cross wind speed in Equation (9)
will depend on three conditions as shown in Equation (10). For the first condition, the result of wind
speed calculated from the model is related to in situ wind speed measurement. For the second condition,
the result will change with logarithm function. Finally, for the third condition, the result will change with
static gain.
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Figure 15. The relationship of in situ wind speed measurement and mean square slope. The up and
cross wind speed are represented in blue and red solid line, respectively. The colored points represent
up and cross wind speed result from our case study.

6. Conclusions

Currently, the new remote sensing technology of GNSS-reflectometry has shown benefits for
specific targeted measurements. Hence, the reflected signal information for ocean wind speed was
studied. The regression technique is useful and easier for wind speed estimation by fitting in situ
wind speed measurements. On the other hand, it does not learn the characteristics of variables.
The main idea of this research was to apply the artificial neural network combined with the particle
filter for wind speed estimation based on the reflected signals from the BeiDou G4 satellite. Moreover,
particle swarm optimization was implemented to solve for the weights and biases of the artificial
neural network. From the two periods of dataset observation, 3 to 8 and 12 to 14 August 2013, several
available signals of BeiDou GEO were used. In particular, for the period from 12 to 14 August 2013,
the data was collected during the typhoon Utor. The experimental results show the effectiveness of
the proposed technique by comparing it with the in situ wind speed measurements from a buoy.
The overall RMSEs of ANN combined with PF were 2.4997 and 1.9758 m/s for the 30% and 70%
training samples, respectively. The results of the ANN based PSO approach shows high efficiency for
learning characteristics of the reflected signal for wind speed estimation. Using the performance of the
PF approach with ANN enhances the effectiveness of estimating wind speed especially for time series
observation. Future work will involve the integration of the reflected signal information from other
satellite systems, such as GPS, GLONASS and Galileo, in order to achieve greater efficiency.
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