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Abstract: With the rapid development of indoor localization in recent years; signals of opportunity
have become a reliable and convenient source for indoor localization. The mobile device cannot only
capture images of the indoor environment in real-time, but can also obtain one or more different types
of signals of opportunity as well. Based on this, we design a convolutional neural network (CNN)
model that concatenates features of image data and signals of opportunity for localization by using
indoor scene datasets and simulating the situation of indoor location probability. Using the method
of transfer learning on the Inception V3 network model feature information is added to assist in scene
recognition. The experimental result shows that, for two different experiment sceneries, the accuracies
of the prediction results are 97.0% and 96.6% using the proposed model, compared to 69.0% and 81.2%
by the method of overlapping positioning information and the base map, and compared to 73.3%
and 77.7% by using the fine-tuned Inception V3 model. The accuracy of indoor scene recognition
is improved; in particular, the error rate at the spatial connection of different scenes is decreased,
and the recognition rate of similar scenes is increased.
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1. Introduction

Innovative positioning technologies and wireless networks promote the development of the
indoor positioning system [1,2]. At the same time, with the improvement of hardware and
developments in behavior calculation, more and more intelligent devices are being used in scientific
research and real-world scenery [1]. The acquisition of real-time location information on mobile
devices has become an indispensable element of intelligent devices [3]. Since the mobile terminal
contains built-in physical devices, such as vision and multi-sensors, it has become a new type of scene
perception [4] and communication [5] platform for image acquisition and decision-making. Mobile
terminals can provide basic communication information and perception for positioning and scene
recognition technology [6]. In indoor positioning, which uses the mobile terminal as the development
platform, Signals of Opportunity (SoOP) [7], such as Wi-Fi or Bluetooth signals, are not specifically
built to be positioning signals [8], but these signals have become a widely-researched topic of indoor
positioning, because they are easy to build up and are cost-effective. Chen et al. [3] achieved positioning
accuracy of up to 2–5 m by using the fusion signal of the built-in sensor, Wi-Fi, and magnetic field.
This indicates that SoOP can work in combination with other positioning sources to provide accurate,
reliable, and real-time positioning.

However, current research is mainly focused on the aspects of implementation or auxiliary
positioning [9]. There is insufficient usage of the relationship between positioning information and
the scenery semantic, for example, when users are in an indoor environment holding their mobile
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devices, through the positioning signals, we can obtain the positioning information that relates to the
scenery’s geometry structure; then, we can obtain the semantic information of the current position
by combining the positioning information with the elements that describe the scene (such as the
indoor map). Therefore, in this paper, we will discuss a method to mine the positioning information
of SoOP, and use that information in scene recognition.

The traditional method [10] of scene recognition mainly focuses on the description of image
features. Differing from outdoor scenery, indoor scenery is relatively complex with various layouts
and decorations [11]; therefore, indoor scene recognition should take both the local features and
the global features of the image into consideration. In 2009, Quattoni et al. [12] designed a scene
recognition model called the Spatial Envelop Model, which combines local and global descriptors of
the image. In other studies, Swadzba et al. used 3D geometric models [13] and 2D global GIST features
to recognize indoor scenes, and Lanzebnik et al. designed a new type of visual descriptor for image
features [14]. Since these traditional methods cannot achieve high classification accuracy, they cannot
satisfy the processing of large-scale data.

With the growth in the quantities of image data and categories to be classified, a method based
on deep learning is introduced into the scene recognition task, such as Place-CNN, which is trained
by the large-scale dataset Places2 [15] to focus on scenery issues. After AlexNet [16] won the LSVRC
(large-scale visual recognition challenge), deep learning has been more and more frequently applied
to scene recognition tasks and daily life, such as project tensorflow-for-poets: Inception-V3 [17],
which has realized a relatively high accuracy on real-time scene recognition. The feature extracted
by the Inception-V3 neural network is more discriminative and accurate than those for manual
fabrication. There are also ways to deal with recognition tasks with several different forms of
information, like Nguyen et al. [18] did, where they concatenated the underlying features of three
deep convolutional neural networks to come up with the final decision. Tang et al. developed a CNN
model, which learns the features in the convolutional neural network in multi-stage [19].

However, the existing methods are still unable to solve the task of scene recognition in indoor
environments. The indoor scenery has rich and disordered indoor environment features, providing a
deep learning method with a considerable source of training image data. Additionally, this also causes
problems in image processing. The image from the mobile device inside the indoor environment has
a similarity between categories (such as office and machine room), and differences within the same
category (such as administrative office and teaching office), and the label classification contains strong
subjectivity. The aforementioned points make the accuracy of indoor scene recognition lower than that
of outdoor scene recognition. Further, all the methods above rely on the image feature information
unilaterally, which requires massive data to guarantee the quality of model training; furthermore,
this may limit the generalization ability of the model. Considering that indoor scenes have complex
spatial geometry relationships, the feature information of indoor scenery is difficult to extract from
the image.

According to the problem mentioned above, to build up the relationship between the positioning
information and the scenery, and get rid of the limitation where deep learning-based scene recognition
only relies on image information for learning and classification, in this paper, a neural network is
designed to combine the positioning and image features, and improve the accuracy of indoor scene
recognition by taking advantage of real-time images and positioning information. In this paper,
we use the fine-tuned Inception-V3 model to extract image features from the scenery image, and we
describe the non-image features using the probabilistic features of scene recognition within the range
of positioning error. By connecting the image and non-image features, we built a scene recognition
network based on indoor SoOP enhancement. Compared to the scene recognition method based solely
on image or positioning features, the proposed model has a significant improvement in recognition
accuracy, and obtains a high recognition accuracy and good generalization ability when trained with a
small amount of training data.
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2. Related Work

There is a large number of studies related to scene recognition and to deal with this problem,
large datasets have emerged. In order to understand the scene-centered way of human recognition,
reference applied the gist of a scene for improving scene image recognition by the mean of global image
features [20]. A popular way of bridging the semantic gap in scene recognition is semantic modeling,
in [21], a manifold regularized deep architecture is designed to get good performance. In fact, data is
also an important direction in scene recognition tasks. In the case of sufficient data, even the simplest
model algorithm can be used and get a pretty good classification result. There is a diverse set of
67 indoor scenes for indoor scene classification, which contains 15,620 images [12]. Based on deep
learning, the places [22] provide tremendous indoor and outdoor scene images and the reference
trained models for learning deep features of scene-centered images. The Places dataset contains seven
million tagged images, a total of 476 categories, are the largest image dataset including number of
scenes and locations. Additionally, the most famous database named ImageNet [23], hierarchical
and diversified, is widely used, which can be applied to object recognition, image classification,
and automatic target clustering, etc. Due to these large databases, ImageNet-trained deep features
can actually have success in different types of work [24]. Likewise, our work is to transfer learning
the well pre-trained model based on large Imagenet datasets and then feed the model with our own
dataset for the purpose of tackling the problems of our work.

Currently, some work of computer vision has realized the importance of utilizing geographic
information. One focus is on the research of visual location. In [25], the image geolocalization can
be greatly extended by the proposed cross-view feature translation method, which means to enrich
attributes of geo-tagged imagery. In addition to the image itself, the methods [26] consider the digital
elevation models with target mountain terrain to exploit the visual location. However, the other focus,
putting geographic information into visual tasks, like image classification, is more similar to our study.
In [27], to estimate priors of spatio-temporal classes at irregular and biased locations significantly
improves performance. In [28], the encoding of GPS coordinates are extracted and merged into a
convolutional neural network for image classification and it achieves improvement in the mean average
precision. In [29], a geographical information system (GIS) assists in object detection, which computes
GIS priors of the visible objects in the image to detect the final bounding boxes. In [30], the problem
of object recognition is tracked with image appearance and geo-services positioning information on
mobile devices. In [31], through picture metadata, the method uses the nonvisual context information
(season and location) to achieve scene understanding in customer photos. In [32], they deeply study
three spatial contexts to improve image classification.

Compared with previous approaches, this paper explicitly exploits the combination of positioning
information and image information to improve scene recognition. We are interested in the performance
of two types’ combination. By transfer learning, we learn and extract image features; by simulative
positioning error, we design two positioning features representing the scene attribute. We assess
two scene places’ recognition accuracy in different categories under four schemes. This can provide
different situations which improve the scene recognition.

3. Feature Fusion Algorithm

Indoor scenes are different from outdoor scenes, which have a wide range of background elements
with relatively stable features. Based on the convolutional neural network [16], to obtain more
accurate scene prediction results, we only need to extract the most prominent and typical background
information from the outdoor scenery. The indoor scene has a large number of foreground objects,
and even for the same kind of scenery, due to the differences in interior decoration, style, and other
factors, the features are very diverse. Therefore, it is difficult to obtain high recognition accuracy
by using the convolutional neural network with limited typical indoor scenery image for training.
When considering real-time images captured by mobile devices, due to the high randomness and
disturbance in the shooting angle, focus, and exposure (as Figure 1 shows), the captured image will
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have a large amount of random noise, and its features are much weaker than those of a typical indoor
image, which makes it difficult for convolutional neural networks trained with typical indoor scene
images to extract prominent scenery features from this type of image.
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Figure 1. Comparison between normal indoor image and real-time image from a mobile device.

Compared with image information, positioning information in the indoor scene cannot directly
offer scene features, but the spatial relationship with each scene can be reflected through certain
calculations, along with the indoor map. In this way, we can also judge the category of the scene at
the current location. However, as indoor positioning accuracy is difficult to guarantee in situations of
weak positioning signals or few signal sources, there will be a high risk of inaccuracy in the scenery
prediction by using this information directly, especially in the area of multi-scene junctions and scene
boundary areas. Thus, it is difficult to guarantee a high accuracy of indoor scene recognition when
indoor image information or positioning information is provided alone.

Based on the above analysis, this paper puts forward a deep learning scene recognition method
based on localization enhancement. Here, we extract image and positioning features from the scenery
image and positioning data from positioning points, then use the method of deep learning to train
the optimal feature fusion strategy for the fusion operation of these two features; finally, the fusion
feature is used to obtain the scenery prediction results. The algorithm is shown in Figure 2. We extract
the scene level feature vector of the scene image (labeled as Vimage) by using a convolutional neural
network that is fine-tuned to the scene studied, and extract the positioning feature vector by overlaying
the operation using the positioning information of the location site with the estimated error and
the indoor scene base map. Further, the image feature vector and the positioning feature vector are
combined into one feature, denoted as follows:

Vf use = {Vimage
...Vpositioning} (1)
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The combined feature vector Vf use is transformed by the feature fusion fully connected layer,
then the output, called the fusion vector, is processed by the final decision fully connected layer and
the output is the final prediction result.

3.1. Image Feature Vector

GoogleNet [33] improves the prediction result of the neural network by increasing the depth and
width of the network. The depth of the network represents the number of layers the network has,
and the width of the network represents the number of neurons in every layer. In order to solve the
problem of overfitting of the network and the cost surging of model training, GoogleNet is added with
the Inception structure (as shown in Figure 3). In the Inception V1 [33] version, a 1 × 1 convolution
kernel is introduced into the structure to make the feature map thinner; for Inception V2 [34], on the
one hand, the BN [35] layer is introduced to make the output parameters of every layer normalized
into the Gaussian distribution of N(0, 1), in order to lower the risk of overfitting, and on the other hand,
the method of replacing the 5 × 5 convolution kernel with two 3 × 3 convolution kernels, which is
used in VGG [36] net, is introduced into the Inception structure for further reduction of the number
of parameters; the Inception V3 [17] version introduced the concept of convolution decomposition,
that is, decomposing the n × n convolution kernel into two one-dimensional 1 × n and n × 1 kernels,
to speed up computing of the network and increase the depth of the network.
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There are foreground objects of different scale, size, and scope in an indoor scene image, making
it difficult for a single type of convolution kernel to fully perceive these different scene features.
However, the model construction method of the Inception module with different size of the paralleled
convolution cores is suitable for solving the feature extraction task of such complex scene images.
Therefore, we select the Googlenet model with Inception V3 structure as the image feature vector
extraction module. By inputting the scene image obtained by the mobile device into the module,
we can extract the scene level image feature vector, which is used to reflect the image feature of the
current scene of the mobile device. The image feature is involved in the subsequent feature fusion
layer, and conducts the fusion operation in combination with the positioning feature vector.

In order to avoid overfitting due to the module learning to the random noise from mobile device
images, we will use a small number of typical scene images in the fine-tuning [37] process of the
Inception V3 module. The typical scene images should have prominent scene features, significant
difference between categories, rich features in every category, and a nearly even quantity of images in
every category. After several layers of convolution, pooling and other operations on the image data,
the Inception V3 module will output a bottleneck value tensor of [1, 2048] size, which reflects the
underlying features in the output of the convolution operation on the image. The process of fine-tuning
can be seen as the process of transforming the bottleneck value feature into the scene level image
feature, and its essence is to adjust the shape and parameter of the fully connected layer behind the
convolution operation, so as to make the final output results of the model adapt to the problem studied.

According to Ncategory, which represents the number of scene categories of the studied area in
this paper, all parameters connected to the activation of the last convolution layer of Inception V3
are replaced with the fully connected layer with (2048× Ncategory) + Ncategory parameters, and the
new layer outputs the final result through Softmax operation. The parameters of the fully connected
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layer are trained by using the typical image dataset collected from the studied scene in this paper,
while the original parameters of all convolution layers are maintained. After the training is completed,
the parameters of the fully connected layer are fixed and saved with the original convolution layer
parameters as a new Inception network model.

3.2. Positioning Feature Vector

As the positioning points in the scene are affected by the signal intensity and number of signal
sources, the positioning result often has some uncertainty, which is manifested as the random
distribution of the positioning points within a certain error range. Therefore, the scene prediction result
obtained by the positioning information is only a probability value instead of a certain prediction result.
To conduct the prediction by making full use of the geometric location information of the positioning
points in the scene and the feature information of the relationship with the surrounding scene, in this
paper, we will use the location features and the features of the relationship with all surrounding scenes
to describe the positioning feature of the positioning points.

The location scene feature mainly represents the semantic representation of the plane coordinate
(x, y) of points in the scene, that is, the scene category where the positioning point is located.
Considering that the positioning point may be located outside the scene boundary due to an error, it is
necessary to see this situation as a specific scene category. This feature can be expressed in the form of
a one-hot encoding in {0, 1} distribution, with the shape of [1, Ncategory + 1], where Ncategory represents
the number of scene categories studied. By overlaying the positioning points with the scene base map,
we assigned 1 to the element whose index corresponds to the category index number of the scene that
the point falls into, and set the remaining elements in the one-hot vector to 0. If the positioning point is
outside the scene, the first element is set to 1 and the rest to 0, as follows:

Vlocation =


{

1
...{V1 · · ·VNcategory}

}
, ∀Vi = 0 (a){

0
...
{

V1 · · ·VNcategory

}}
, Vk = 1 (b)

(2)

where i and k represent the scene category index, and Equation 2a represents the situation where the
point belongs to no category, and Equation 2b represents the situation when the point is located in the
kth type of scene category.

The algorithm of overlaying the positioning points and scene base map can be equivalent to
the method of judging whether the point is inside a polygon. There are several popular algorithms
to solve this, including discriminating by the sum of area, discriminating by sum of angle, and the
leading ray method. In this paper, we use the sum of area for discrimination. By saving the scene
base map in the format of GeoJSON, we can use the type of polygon to save the boundary of scenes,
and the points encoded around the outer boundary of the scene are anti-clockwise. A positioning

point Po can form vector
→

PoPi and
→

PoPi+1 along with any two sequential points Pi and Pi+1, and we

can obtain the angle between these two vectors using the formula θ = cos−1
→

Po Pi ·
→

Po Pi+1

‖
→

Po Pi‖‖
→

Po Pi+1‖
. Sum up

all the angles formed by the positioning point and all the possible combinations of sequential points;
the point is located inside the scene if the sum equals 2π, otherwise the point is located outside the
scene. In addition, we need to consider the situation where some scenes have inner boundaries, and in
this situation if the sum of angles equals 2π, the point is located outside the boundary, as shown in
Figure 4. The algorithm’s flow chart is shown in Algorithm 1.
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Algorithm 1 Feature vector V_location

Input: positioning point Po(xo, yo);
collection of all scene boundaries D = {D1, D2, · · · , Dn}.
Procedure: function GetSceneCategory(Po, D)

1: feature vector Vlocation ← {0}Ncategory+1

2: For each scene Di = {T1, T2, · · ·} in collection D
3: For each polygon Ti = [(x1, y1), (x2, y2), · · · , (xn, yn), (x1, y1)] in Di
4: For each pair of sequential points Pi, Pi+1 in Ti

5: calculate the angle θi between
→

PoPi and
→

PoPi+1
6: sum up angles θSum ← θSum + θi
7: End For
8: If Ti is the outer boundary and θSum equals 2π
9: element Vk ← 1 in feature vector Vlocation, where k represents the category of scene Di
10: Else If Ti is the inner boundary and θSum equals 2π
11: element Vk ← 0 in feature vector Vlocation, where k is the category of scene Di
12: End If
13: End For
14: End For
15: If elements of feature vector Vlocation all equal to 0
16: element V0 ← 0 in feature vector Vlocation, means the point locates outside all the scenes
17: End If
Output: feature vector Vlocation

The feature of the relationship between the positioning point and the surrounding scenes is
related to the current positioning error. The larger the error is, the larger the region of scenes related to
the positioning point, and the more complicated the scene category involved. In particular, when the
point is near the junction of multiple scenes, the uncertainty of scene prediction is greater, so the
relationship between the positioning with error and surrounding scenes needs to be expressed in
some way. The positioning error can be estimated by using parameters such as the intensity of
the positioning signal and the number of available signals while, in the experiment in this paper,
the positioning error in the indoor scene is simulated by using the preset parameters. By overlaying
various scene boundaries with the error circle whose center is the positioning point and radius equals
the positioning error, we can measure the area of intersection between scenes and the error circle.
The value of the area can reflect how significant the relationship between the current positioning point
and the scene is. The more significant the relationship is, the more likely this positioning point is
located inside this scene. By organizing the value of each area into a [1, Ncategory] sized tensor and
normalizing the element values to the range of [0, 1], the significance of the relationship with the scene
is expressed by the size of the probability values, such as:

Vrelation = {Si/ ∑ Ncategory
1 Si} (3)
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where Si represents the area of intersection of the ith scene category and the error circle.
The calculation of the intersection area of the multi-boundary scene and the error circle can be

divided into the calculation of the intersection area of the triangle and circle. As shown in Figure 5,
every positioning point, say Po, can form a triangle ∆PoPiPi+1 with any two of the sequential points
in the boundary, such as Pi and Pi+1. In this way, we can calculate the intersection areas of the error
circle with each triangle corresponding to each border line; finally, the intersection area of the error
circle and the scene boundary is the sum of the areas above. It should be noticed that, according to
the encoding rules of GeoJSON, the outer boundary of polygons is encoded counterclockwise, while
the inner boundary is encoded clockwise, so the value of area calculated by the outer boundary is
positive in the method of the vector’s cross product, and by the inner boundary, the result is negative.
The detailed algorithm flow chart is shown in Algorithm 2.Sensors 2018, 18, x FOR PEER REVIEW  8 of 20 
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Algorithm 2 Feature vector V_relation

Input: positioning point Po(xo, yo);
pre-set error R;
collection of all scene boundaries D = {D1, D2, · · · , Dn}.
Procedure: function GetRelation(Po, D)

1: feature vector Vrelation ← {0}Ncategory

2: For each scene Di = {T1, T2, · · ·} in collection D
3: For each polygon Ti = [(x1, y1), (x2, y2), · · · , (xn, yn), (x1, y1)] in scene Di
4: For each pair of sequential points Pi,Pi+1 in Ti
5: If segment PiPi+1 is inside the error circle
6: sum up the area SSum ← SSum + S∆PoPiPi+1

7: Else If segment PiPi+1 is outside the error circle
8: respectively calculate the intersection P′i and P′i+1 of PoPi, PoPi+1 and the error circle
9: sum up the area SSum ← SSum + Ssector P′iPoP′i+1

10: Else
11: calculate the intersection Pc of PiPi+1 and the error circle
12: calculate the intersection P′i (or P′i+1) of PoPi (or PoPi+1) and the error circle
13: sum up the area SSum ← SSum + S∆PoPcP′i+1

+ Ssegment PcPoP′i
14: End If
15: End For
16: element Si ← Si + SSum in feature vector Vrelation, where k is the category of scene Di
17: End For
18: End For
19: normalize elements in feature vector Vrelation
Output: feature vector Vrelation
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The location scene feature vector and the relation vector between the positioning point and the
surrounding scene are merged to form the positioning feature vector, sized as

[
1, 2 ∗ Ncategory + 1

]
,

as follows:

Vpositioning = {Vlocation
...Vrelation} (4)

3.3. Neural Network Model Design

The feature fusion model designed in this paper is mainly composed of the Inception V3
convolution processing image feature extraction module, and the feature fusion and decision module
(as shown in Figure 6). The Inception V3 convolution based image feature extraction module is
obtained through fine-tuning with typical scene images, as described in Section 3.1. The feature
fusion and decision module is composed of a feature fusion fully connected layer and final prediction
fully connected layer, and the parameters are obtained through the simulative localization and image
training set.Sensors 2018, 18, x FOR PEER REVIEW  9 of 20 
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The neural network requests two types of input data, one is the image data of the corresponding
positioning point and the other is the positioning feature vector Vpositioning, which is obtained through
the localization data process in Section 3.2. The image will be processed into a one-dimension image
feature vector sized as

[
1, Ncategory

]
by the Inception V3 module’s convolution process, and the image

feature vector will be combined with the positioning feature vector Vpositioning as a one-dimension
vector Vf use, sized as

[
1, 3 ∗ Ncategory + 1

]
, which will be the input in the latter process module. Through

training a fully connected layer with
(
3× Ncategory + 1

)2
+ 3×Ncategory + 1 parameters using the ReLU

function as the activation function, we can turn the feature vector combined with the image feature
vector and the positioning feature vector into the fused vector of image information and positioning
information. Finally, we train a fully connected layer with

(
3× Ncategory + 1

)
× Ncategory + Ncategory

parameters using a Softmax operation to output the final scene prediction result.

3.4. Model Training

The training process of the model mainly focuses on two major modules, namely, the image
feature extraction module and the feature fusion and decision module. The processes are as follows:

• Fine-tune the Inception V3 model: We used the typical scene image set to fine-tune the pre-trained
Inception V3 model and replaced the fully connected layer behind the previous convolution
layer with a new fully connected layer whose input tensor has the dimensions [1, 2048] and
output tensor with

[
1, Ncategory

]
dimensions. The original parameters of the convolution layers

are retained and the parameters of the new fully connected layer are updated via training.



Sensors 2018, 18, 3376 10 of 20

• Training the feature fusion and decision layers: Using the processed positioning feature vector
and the image feature vector from the fine-tuned Inception V3 module as the input data for the
fully connected feature fusion layer, the output tensor propagates forward to the decision fully
connected layer. Together with the ground-truth data, we can calculate the loss of training by the
prediction result from the fully connected decision layer, and we use the training loss to update
the parameters of the previous two fully connected layers.

In this paper, we built the feature fusion model base on the TensorFlow [38] framework, which
is an open source artificial intelligence learning system developed by Google and is widely used in
machine learning. The following hardware was used for training: CUP: 2.50 GHz Intel i5-7300HQ
and GPU: GTX 1050 4 GB. The main parameters set in the training process are listed in Table 1:

Table 1. Main parameters set in the training process.

Parameter Type Parameter Name Recommended Value Way to Adjust

Fine-tune Inception
V3 model

Hyper-parameter

batch_size 100

Based on
experience

optimizer Gradient decent
learning_rate 0.01

iteration 4000
testing_percentage 10%

validation_percentage 10%

Normal parameter Woutput, boutput
Parameters of the fully

connected fine-tuned layer Training

Train the feature fusion
and decision layers

Hyper-parameter

batch_size 32

Based on
experience

optimizer Gradient decent
learning_rate 0.01

iteration 5000
testing_percentage 15%

validation_percentage 15%

Normal parameter Wfuse, bfuse
Parameters of the fully

connected feature fusion layer
Training

Woutput, boutput
Parameters of the fully

connected decision layer

4. Design of the Model Validation Experiment

4.1. Datasets

4.1.1. Model Training and Validation Set

In this study, we prepared different training data sets for fine-tuning the Inception V3 model
and training the feature fusion and decision layers. We divide the datasets into train dataset and
evaluation dataset (85%, 15% respectively). For fine-tuning the Inception V3 model, we collected five
classes in the 2nd floor of the laboratory, and each class has more than 600 images; eight classes in the
railway station, and each class has more than 800 images, except the indoor channel with 600 images.
For our proposed model, we collected 3000 images of the same classes in the 2nd floor of laboratory
and 3500 images of the same classes in the railway station, according to the number of simulative
positioning points.

We adopted a typical indoor image set for fine-tuning Inception V3. The dataset must have
prominent scene features, significant difference between categories, rich features in every category,
and the number of images in every category must be approximately equal. The dataset is used to
train the Inception V3 model to function as the image feature extraction module. The aforementioned
features of the dataset can ensure that the fine-tuned model is be sensitive to the important scenic
features of the image captured using a mobile device and reduce the effect of noise in the image.

We used simulative positioning and the image dataset to train the feature fusion and decision
layers. The dataset consists of two parts, the simulated point data and the corresponding image data.
Together, they can simulate a given state of a mobile device in an indoor environment. The simulated
point dataset is generated by adding random noise (in this experiment, the noise range is 5 m) to the
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appropriate positioning points that are chosen along the main roads of the scene. Each simulated point
corresponds to the scene image that was collected from the exact point in the scene that it belongs to.
The image must have strong randomness, which simulates the situation when the mobile device
moves indoors. This randomness can be implemented in different ways, such as shooting angle, focus,
and exposure.

In this paper, we chose the following two kinds of typical indoor scenes as the target for
experiment: The second floor of the laboratory and the railway station. The laboratory scenery
is classified into five categories, which includes a machine room, office, corridor, lobby, meeting room.
The railway station scenery is classified into eight scene categories, namely, indoor channel, ticket
office, service counter, waiting hall, stairs, foot court, shop, and security check channel. The scene
distribution is shown in Figure 7.
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4.1.2. Validation Set for Generalization Ability

In order to compare the generalization ability of the fine-tuned Inception V3 model and the
feature fusion model, we selected the third floor of the laboratory with a category of scenery category
similar to that of the second floor as the dataset for validation of the generalization. We prepared the
simulative positioning and image set with the same range of noise as the experiment on the second
floor, and we collected images from the third floor scenery including the machine room, office, corridor,
and lobby. The distribution of scenery is shown in Figure 8.
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4.2. Experimental Design

To compare the performance of the feature fusion model in this paper and the traditional
convolution neural network in the indoor scene identification task, in the experiment was conducted
to obtain the following four levels of comparison as shown in Table 2: Plan 1, in which the dataset of
the second floor of the laboratory was used to fine-tune the Inception V3 model and to train the model
designed in this paper. A subset of the data was used as a test set to test the identification performance
of the two models. Plan 2 is similar to plan 1. We tested the identification performance of models
with the same method in the railway station scenery. Plan 3, to determine the performance of this
model with positioning points at different positioning accuracies, we constructed different positioning
datasets with different positioning errors in the second floor of the laboratory scene while retaining
the image information. We used the datasets of different positioning accuracy to test the performance
of the models. In plan 4, to compare the generalization ability of the Inception V3 and the model in
this paper, we selected the third floor of the laboratory as the experimental site. The third floor has
scenery similar to that of the second floor. We then constructed the test set based on the procedure of
construction for a simulative localization and image set and we tested the model trained based on the
dataset of the second floor.

Table 2. Design of different experimental approaches.

Plan Data Set Tested Model Method of Comparison

1
Training and test set of simulative
positioning and image in the second floor
of the laboratory Fine-tune Inception V3 model

The feature fusion model

Distribution of prediction result.
Total prediction accuracy
Confusion matrix of the prediction result.

2 Training and test set of simulative
positioning and image at the railway station

3
Training and test set with different
positioning errors in the second floor of
the laboratory

The feature fusion model Total prediction accuracy
Prediction accuracy for each category.

4 Test set in the third floor of the laboratory Fine-tune Inception V3 model
The feature fusion model

Distribution of prediction result.
Total prediction accuracy.
Confusion matrix of the prediction result

5. Experiment

5.1. Comparison Experiments on Prediction Performance

5.1.1. The Result of Laboratory Scene

For the laboratory scene, the fine-tuning procedure on the Inception V3 model achieves
convergence after 2000 iterations, and the training of feature fusion and decision module achieves
convergence after 10,000 iterations. The test set is 15% of the simulative localization and image data.
Figure 9 shows the result of the overlapping of the positioning point of the test sample set and scene
boundary (black spots are prediction error points). The percentage of the scene in the positioning point
that is consistent with the real value is 69.0%. The error points are mainly concentrated near the scene
boundary, especially at the intersection of the machine room, corridor, and lobby.

The fine-tuned Inception V3 model is fed on the image dataset corresponding to the positioning
points. The prediction results are as shown in Figure 10a. The prediction results of the feature fusion
model are shown in Figure 10b.

The prediction accuracy of the fine-tuned Inception V3 model is 73.3%. The distribution of error
points vary between scenes. For example, in the lobby scenes, the error points are mainly concentrated
in the lower part of the scene map. In addition, Inception V3 yields good recognition results in scenes
with relatively simple and singular layouts (such as the corridor). Since there are fewer foreground
objects and a higher similarity in terms of background features, the image obtained by the mobile
device is subjected to lesser disturbance in terms of shooting angle, focus, and exposure. Additionally,
even the noise is relatively weak.
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The accuracy obtained for the second floor of the laboratory using the feature fusion model is
97.0%. The error points near the boundary of the scene have generally been corrected compared with
results of overlapping way as Figure 9. In particular, the prediction results for locations beyond the
scene showed the most significant improvement. In contrast to the fine-tuned Inception V3 model,
the feature fusion model that combines positioning and image features, is less-dependent on image
features and extends the Eigenspace of positioning points. When the image quality is poor, results
cannot always accurately reflect the scene feature; however, accurate prediction results can still be
yielded. As a result, there is no significant difference in the distribution of error points in terms of the
scene category.
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As for the prediction result in individual categories, we can refer to the confusion matrix of the
experimental result (as shown in Figure 11). The prediction of Inception V3 is highly efficient for the
office and corridor categories. This is mainly because the features of these scenes are relatively simple.
For instance, the corridor contains relatively fewer foreground objects. However, this model fails to



Sensors 2018, 18, 3376 14 of 20

capture prominent features due to the confusion in corridor and other categories. Images from other
categories are easily misclassified as belonging to the office or corridor category. The feature fusion
model yields a relatively average accuracy for each category. Given that the lobby is adjacent to several
other types of scenes, a higher amount of test data is misclassified into the lobby category. The results
of the feature fusion model show that error points are focused in the junction area of scenes with
transparent surfaces (because of glass doors and so on.), such as the boundary between the corridor
and the machine room or lobby. At these transparent junctions, significant errors might occur in image
information. This might lead to the situation where the location and image information are biased and
classified into a false category.
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5.1.2. The Result of Railway Station Scene

For the railway station scene, the fine-tuned Inception V3 model achieves convergence after
2000 iterations. The proposed model achieves convergence after 15,000 iterations. The test set is 15% of
the simulative localization and image set. The results of the overlapping of the positioning point of
the test sample set and scene boundary are shown in Figure 12. As the area of railway station scene is
wider than that of the scene on the second floor of the laboratory, the effect of the positioning error is
reduced. The proportion of the scene categories in the positioning points that are consistent with the
real value is 81.2% and the error points are still mainly concentrated near the scene boundary.

The accuracy of the results using the fine-tuned Inception V3 model is 77.7%, and the distribution
of the prediction results is shown in Figure 13a. In contrast to smaller indoor scenes (such as the
laboratory), the proportion of the background in the railway station image has increased. Thus,



Sensors 2018, 18, 3376 15 of 20

a smaller scene area (such as the service counter and the security check channel) is easily affected
by background information from scenes with larger areas at the railway station. The features of the
images are biased towards background information of the larger area scene. Thus, the number of error
points increase.Sensors 2018, 18, x FOR PEER REVIEW  15 of 20 
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The accuracy of the railway station scenery using the feature fusion model is 96.6%.
The distribution of predicted result is shown in Figure 13b. Compared with the fine-tuned Inception V3,
owing to the combination of image features and positioning features, the description information of
the scenes with smaller regions is more detailed, and the influence of the background information of a
larger scene area is reduced. Hence, the occurrence of the situation in which a smaller area scene is
incorrectly predicted is relatively less frequent.
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fusion model.

Figure 14 shows the confusion table for the eight categories, namely indoor channel, ticket office,
service counter, waiting hall, stairs, food court, shop, and security check channel. The results of the
fine-tuned Inception V3 model show that the features of scenes with smaller areas are easily affected
by scenes with larger areas (such as waiting hall and indoor channel) and rich background information.
Therefore, more images are classified to the waiting hall and indoor channel categories. Meanwhile,
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the prediction for smaller area scenes (such as service counter, stairs, and check channel) is generally
not good as those of the larger area scenes. Owing to the fusion of image features and positioning
features, the feature fusion model in this paper has more detailed description information for scenes
with small areas and weaker confusion effects from the background information of scenes of larger
areas. Thus, the number of erroneous classifications for small areas is reduced. Furthermore, the results
show that scenes of larger areas are predicted more accurately. Categories such as service counters and
stairs, which is surrounded by larger scenes such as waiting rooms and indoor channels, are partly
misclassified to larger area scene but it is reduced compared to the prediction result of the fine-tuned
Inception V3 model.
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5.2. Generalization Experiments

In order to verify the generalization ability of the feature fusion model in the condition with
positioning data of different positioning accuracy, we change the positioning errors of the simulative
positioning and image dataset from 1 m to 10 m with the corresponding images remained the same.
The prediction result is shown in Figure 15.

As shown in the prediction results, by increasing the positioning error, the prediction accuracy
based on positioning information decreases significantly to 40% when the error comes to 10 m. As for
the feature fusion model, the image information can be used to compensate for the low accuracy
of the positioning information. In the broken line of accuracy, as shown in Figure 15, it can be
seen that the line representing the feature fusion model gets increasingly close to the line of the
Inception V3 as the positioning error is increased. This means that greater weight is given to the
image feature. The comparison of the results shows that, although the increase of error range causes
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a dramatic decrease in the accuracy of prediction solely with positioning information, the proposed
model’s prediction accuracy decreases within a relatively small range. It can be proved that the
feature-linking neural layers in the proposed model plays a role in the combined decision made
using image and positioning information. Even though the positioning is made in indoor conditions,
such as conditions when the signals of opportunity received by mobile devices are weak or under
interference, the proposed model can increase prediction accuracy by applying positioning information
as a supplementary feature to the image feature. Thus, the prediction has a stable accuracy and the
model has appreciable generalization when confronted with positioning data of varying accuracy.
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Figure 15. The prediction result of data set with different positioning error.

To validate the generalization of the model with images from different scenes of similar categories,
we chose the third floor of the laboratory, which has scenic similarities to the second floor of the
laboratory, as the place to collect the validation set. This validation set contains 500 positioning points.
We used the validation set to test the proposed model that was trained using the training set from the
scenery of the second floor. The results show that the accuracy of the fine-tuned Inception V3 model,
which was also trained using the dataset from the second floor (see Figure 16a), is 69.4%. Additionally,
the accuracy of the feature fusion model (see Figure 16b) is 91.4%. The feature fusion model achieves
better prediction results in recognizing other dataset apart from the training set, compared with the
fine-tuned Inception V3 model.
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The prediction results of the individual categories (shown in Table 3) shows that the accuracy
of the feature fusion model has increased significantly compared to that of the fine-tuned Inception
V3 model, especially with regard to scenery with wide areas, simple scenery features, or simple
layouts. However, regarding the office scenery, owing to the differences between the office scene in the
generalization test set and the office scene in the pre-training set, and the similarity of office scenery
and other scenery in the training sets, the validation result is still not ideal. Therefore, the different
functionality of similar scenes must be considered when constructing the categories for the scenery.
Furthermore, the prediction accuracy of the feature fusion model is greater at the junction areas of
scenes where the scenes can be seen through the junction boundary; the same as that of Inception V3
model, the junction area with transparent borders is still the main distribution area of the error points.

Table 3. Prediction result for each category.

Model
Scene

Machine Room Office Corridor Lobby

Inception V3 66.8% 45.0% 87.7% 69.1%

The feature fusion model 94.8% 57.5% 97.7% 90.8%

6. Conclusions

This paper proposed a deep learning scene recognition method based on localization enhancement.
We use the method of deep learning to enhance the scenery features by fusing the scene level image
feature and the positioning feature. The image feature is extracted from image data by a fine-tuned
convolutional neural network, while the positioning feature is extracted from positioning information,
in the form of the combination of the scene location feature and feature of the relationship with
surrounding scenes. Experiments show that the proposed model has better accuracy in the environment
with complex indoor scenes. Compared with the traditional convolution neural network, the proposed
model has better generalization ability when dealing with scene image data of the same kind, but from
different sources, and also works well in positioning data of different error ranges.
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