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Abstract: To better solve the problem of target detection in marine environment and to deal with
the difficulty of 3D reconstruction of underwater target, a binocular vision-based underwater target
detection and 3D reconstruction system is proposed in this paper. Two optical sensors are used
as the vision of the system. Firstly, denoising and color restoration are performed on the image
sequence acquired by the vision of the system and the underwater target is segmented and extracted
according to the image saliency using the super-pixel segmentation method. Secondly, aiming to
reduce mismatch, we improve the semi-global stereo matching method by strictly constraining the
matching in the valid target area and then optimizing the basic disparity map within each super-pixel
area using the least squares fitting interpolation method. Finally, based on the optimized disparity
map, triangulation principle is used to calculate the three-dimensional data of the target and the 3D
structure and color information of the target can be given by MeshLab. The experimental results
show that for a specific size underwater target, the system can achieve higher measurement accuracy
and better 3D reconstruction effect within a suitable distance.

Keywords: underwater target detection; binocular vision; semi-global stereo matching; disparity
map optimization; 3D reconstruction

1. Introduction

With the rapid development of computer vision and robotics, now an enormous number of
underwater operations can be conducted by underwater robots [1,2]. To succeed in autonomous
underwater intervention, the integration process of the required robotic system is critical,
which includes the mechatronics integration and the software integration. The mechatronics
integration usually composes of three parts: underwater vehicle, robotic manipulator and a stereo
vision system, while the software integration may include vehicle navigation, target identification,
target tracking, arm control and visual control of the manipulator [3]. Underwater target detection
and 3D reconstruction offered by the vision system, is a key issue for intervention missions carried
out by underwater robots [4,5]. For intervention missions requiring grasping and manipulation of
objects, the vision system must provide accurate target detection and distance estimation [6]. However,
water not only influences the mechanical and electrical design of the robot sub-systems but also
causes difficulties to the underwater vision. Water turbidity, color distortion, light absorption and
scattering phenomena represent the major problems with underwater vision applications, which may
affect the perceived features of the object and accordingly brings difficulties to underwater target
detection and 3D reconstruction of the vision system [6]. Moreover, due to the flat-panel glass windows
that are usually adopted for underwater vision housings, significant distortions due to refraction in
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air-glass-water transitions may happen and therefore an axial camera model may be more accurate than
a pinhole model with the parameters obtained by an in-water calibration using a checkerboard [6,7].

In recent years, binocular stereo vision, which uses two cameras to get disparity map that can
then be used to calculate the depth information and to achieve 3D reconstruction, has become popular
in the field of computer vision [8]. Stereo matching, used for obtaining the disparity map, is a
key issue and one of the most extensively studied problems in computer vision applications [9,10].
Stereo matching algorithms always have two major concerns: matching quality and computational
efficiency [11-13]. Depending on whether the global search and refinement are performed or not,
stereo matching algorithms can be divided into three categories: global, local and semi global [14].
The core of global matching algorithms is to define an energy function, which includes both data
and smoothness energy terms [15-17]. Stereo matching can be regarded as an energy minimization
problem and global disparity allocation can be obtained via optimization methods such as dynamic
programming (DP) [18,19], graph cuts (GC) [20,21] and belief propagation (BP) [22,23], which are
usually time-consuming and need substantial computational resources to achieve the optimal
solution. The global methods could significantly improve the matching accuracy by a considerable
computation cost [14,24]. The computation cost can be efficiently optimized by GPU-based methods,
which could achieve higher processing speed. But porting existing techniques directly to GPU is also a
cumbersome procedure because there are complex data structures and sequential processing [25-27].
Stereo algorithms based on local matching could overcome the afore-mentioned drawbacks. They
can work much faster because they estimate pixel correspondence only within a small window [8,28].
However, the matching costs of local matching are more susceptible to noise. In a texture-less
region, which contains minimal information, the costs of neighboring support regions are aggregated
together, which may cause a less accurate result. In addition, the window size selection is a
challenge as well [29,30]. Semi global matching (SGM) algorithm is known as a trade-off between
accuracy and efficiency [31,32]. SGM methods adopt multiple paths optimization of disparity and
achieve a minimum matching cost by the means of a winner-takes-all strategy based on hierarchical
mutual information [33,34], which not only improves the calculation speed but also effectively
solves the mismatch problem caused by the uneven illumination in images [35]. Therefore, it is
a compromise strategy which is suitable for a real-time dense disparity map acquisition system based
on binocular vision.

In this paper, aiming to reduce mismatch faced by underwater stereo matching, we mainly focus
on further improving the SGM method by adopting two strategies: the first one is extracting the target
area from the background with super-pixel segmentation and then constraining the matching within
the valid target area and the second is optimizing the basic disparity map within every super-pixel
area by the least squares fitting interpolation method. Based the improved SGM method, we also give
a complete binocular stereo vision system that can be used by the underwater vehicles, which includes
stereo calibration, image rectification, image denoising and color correction, image segmentation,
stereo matching, depth calculation and 3D reconstruction. The proposed system can work well within
a distance of 2 m. Firstly, the proposed system obtained the image sequence by high definition cmOS
sensors on an underwater robot. Then, the image sequence is transmitted to the server through the
Ethernet transmission module. And the data transmission between the server side and the PC end is
realized by the wireless local area network (WLAN). After image rectification, denoising and color
correction, the images are well restored and then the target areas in the left and right view images
are detected by human visual attention mechanism and are segmented by the method of super-pixel
clustering which is based on image saliency. After the segmentation, the stereo matching between the
segmented areas are conducted by an improved SGM method. Moreover, an optimized disparity map
was obtained by the least square plane fitting method. Finally, the depth information of the underwater
targets was obtained by the principle of triangulation and a 3D model was reconstructed based on the
three-dimensional coordinates. The experimental results show that the proposed method can achieve
higher measurement accuracy and better 3D reconstruction effect.
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2. The Underwater Target Detection and 3D Reconstruction System

2.1. Description of the System

The underwater target detection and 3D reconstruction system based on binocular vision proposed
in this paper is shown in Figure 1. The whole system can be divided into two parts: perception module
in underwater environment and data processing module on land surface. Under the normal operation
of the system, the binocular vision sensing module, which is composed of two optical cameras, is used
as the system input. The client of the data processing module on the land surface is set as the output of
the system. The whole process mainly includes three steps: (1) Underwater target image sequence is
collected by binocular vision system through video input interface module. (2) The collected image
sequence is transmitted by the embedded subsystem through the data sending module, received by
the data receiving module of the server and stored in the server’s memory. (3) The clients access the
server’s memory through the Wireless Local Area Network (WLAN) to acquire the binocular image
sequence and accomplish the image processing, which includes image pre-processing, stereo matching
and 3D reconstruction. The disparity map and 3D coordinate information of targets are finally output
by the system software interface.

Figure 1. The Underwater Target Detection and 3D Reconstruction System.
2.2. Hardware of the System

As shown in Figure 2, the system hardware consists of three parts: data acquisition module,
embedded subsystem and data transmission module. The cmOS Sensors (model FMVU-03MTC
supplied by Lingliang Photoelectric Technology company in Shanghai, China) are adopted in this
paper. Their resolution and frame are 640/480 and 60 fps, respectively. They are connected to the
embedded subsystem through LVDS/HiSPi interface. The subsystem works based on HUAWEI Hass
Hi3519V101 scheme, which uses ARM Cortex-Al7 as the control core and supports video image
acquisition of 1920 x 1080 30 fps and Gigabit Ethernet connections. The data transmission module
uses optical fiber communication technology to transmit the collected image sequence data to the data
receiving module of the server through the TCP/IP protocol.
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Figure 2. System hardware diagram.
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2.3. Processing of The Binocular Vision System

As shown in Figure 3, the binocular vision system processing consists of stereo calibration,
image rectification, image denoising, color correction, image segmentation, stereo matching,
depth calculation and 3D reconstruction. Stereo calibration is done off-line by an in-water calibration
using a checkerboard in our current work, which will be described in Section 3.1.1. Image rectification
projects the left and right images onto a common plane in such a way that the corresponding points
have the same row coordinates and will be given in Section 3.1.2. Image denoising and color correction,
offered in Sections 3.2.1 and 3.2.2 respectively, together improve the quality of underwater images
for better image segmentation and stereo matching. Image segmentation in Section 3.2.3 is used for
target extraction and matching area restriction. Stereo matching, which is described in Section 3.2.4,
can produce the disparity map, which will then be used for depth calculation and 3D reconstruction.
Based on the above processing, we have developed a software of the binocular vision system using the
Microsoft Foundation Class (MFC) library and C++ language. The user can view both left and right
images in the current frame, obtain the disparity map and depth information of the target and view
the 3D scene of the target if necessary.

Input Image Image Color I Stereo
P g g | olor mage
Images Rectification Denpising Correction Segmentation Matching
b
Parameters of the vision system Disparity map
Y
Sy Parameters of the vision system .| D Output
> —
Calibration 3D Reconstruction Depth

Figure 3. The binocular vision system processing flow chart.

3. Methods and Implementation
3.1. Off-Line Calibration of the Binocular Vision System

3.1.1. Stereo Calibration

Stereo measurement based on binocular vision has the similar principles as triangulation
technology. The target images are obtained by two cameras from different angles. Then the 3D
geometric information is acquired from the 2D image coordinates of the feature points in the left and
right views. The calibration accuracy of binocular stereo vision system is an important factor affecting
the accuracy of 3D reconstruction. The fundamental task of calibration of stereo vision system is to
determine the mapping relation between the 2D image coordinates and the 3D world coordinates,
including the optical geometry parameters and distortion parameters (intrinsic parameters) that
describe the internal structure of each camera and the structural parameters (external parameters) that
describe the spatial relationship between the two cameras. Due to light refraction in air-glass-water
transitions, an axial camera is more suitable for modeling an underwater camera [6,7]. However,
an axial camera model is still difficult to use with stereo processing and therefore it is still common in
underwater vision to adopt a pinhole model with the parameters obtained by an in-water calibration
using a checkerboard [6]. The calibration method based on the chessboard template proposed by
Zhang [36] has a higher calibration precision and is widely used. According to the convenience
and maneuverability, the proposed system currently uses Zhang’s chessboard calibration method to
restrict the intrinsic parameters of cameras through the corner feature and the homographic matrix.
The mapping relation between the 3D world coordinate system and the 2D pixel coordinate system is
defined as follows:

sp=MI[RT]P 1)

where P = [Xy Yy Zw 1] is the homogeneous coordinate of a given point in the world coordinate
system; p = [u v 1] is the corresponding homogeneous coordinate of this point in the pixel coordinate
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system; s is a scaling factor; R is a rotation matrix and T is a translation vector; M is the camera intrinsic
matrix and can be given by the following:

fx O Ll()
M=|0 f, v @)
0 0 1

where f; = f/dy, fy = f/dy; dx and d,, are the sizes of a single pixel in the direction of the X axis and
that of the Y axis of the image coordinate system respectively; (1, vp) is the position of origin point
of pixel coordinate system in the image coordinate system. If a point is at the position (1, v) in the
pixel coordinate system and at (xc, y.) in the image coordinate system, the corresponding coordinate
relations will be given by the following:

u =% 4y
{v:dx ©)

4o
dy 0

The above solving process of camera intrinsic parameters assumes that the lens is an ideal
model. The image is usually distorted by the influence of the lens manufacturing process. According
to Brown’s theory for distortion parameter solution, the lens distortion can be described by radial
distortion and tangential distortion and the expression is as follows:

Xrec 2 4 6)| ¥ 2p1xy + pa(r* 4 2x%)
= (1+ ki +hor* +k + 4
l Yrec ] (1007 +hart k) l y ] [ p1(r* +2y%) + 2paxy @

where (x, y) is the original position of the distortion point and (x/ec, Yrec) is the new position after
correction; r is the radius of the lens model; kj, k, and k3 are radial distortion parameters; p1, p are
tangential distortion parameters; and D = [k1, ky, k3, p1, p2] is the distortion parameter vector of the
non-ideal lens model.

The external parameters of the binocular camera include the rotation matrix R, the translation
vector T and the re-projection matrix Q. The rotation matrix R and the translation vector T are used to
describe the relative position of the binocular cameras and can be given by:

B T
i
= ir— 1

where R, and T, are the rotation matrix and the translation vector for the right camera; while R,
and T; are those for the left one. The re-projection matrix Q is used to convert the two-dimensional
image point coordinates into three-dimensional coordinates, which can be calculated according to
the following:

1 0 0 _Cx
o1 o0 —c,
=100 o ; (6)
0 0 —1/Tx (cx—cy)/Tx

where (cy, ¢y) is the origin position of the left view image and c,’ is the horizontal ordinate of the
right view image origin; T is the component of the translation matrix in the direction of the X axis,
which equals the baseline distance B between the binocular cameras in the ideal situation; and f is
the focal length of the lenses. To measure the calibration accuracy, the error of the calibration result is
characterized by calculating the re-projection error of the corner point of the checkerboard, which is
defined as:
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err = EE \/(Mh' - 1421‘)2 + (01 — in)z @
i=1

where (u1;,v1;) is the sub-pixel corner coordinates extracted from the feature points; (15;, v5;) is the
coordinates calculated according to the re-projection matrix; and 7 is the total number of calibration
checkerboard corners.

After stereo calibration using a checkerboard with 1-m distance in water and in the air, intrinsic
parameters of the binocular vision system in water are given in Table 1 and the corresponding intrinsic
parameters in the air are given in Table 2. According to Tables 1 and 2, the average focal length ratio in
water and in the air can be calculated by

1 f x_water_L

ter R f _water_L f _water_R
Déavg - Z + fx_wu = + J + J

f x_air_L f x_air_R f y_air_L f y_air_R

~ 1.357 8)

which is a little bigger than the ideal focal length ratio of 1.333. External parameters that gives the relative
spatial position between the two optical sensors are given in Table 3. Besides, the calibration errors
of 0.173 (unit: pixel) in water and 0.155 (unit: pixel) in the air are also given in Table 3. From Table 3,
it can be seen that in water, the external parameters are relatively small, that is, the binocular images in
water can be corrected by the rotation of a smaller angle and the translation of a smaller distance than
in the air.

Table 1. Intrinsic parameters of the binocular vision system (in water, at 1 m distance).

Vi Optical Geometry Parameters Distortion Parameters
iew

fx fy L) Vo k1 k2 121 P2 ks

Left 744 x 10> 746 x10> 316 x 10> 222x 10> -235x10"! 522x1072 —6.60x107% 1.09x1073 0
Right 740 x 102 742 x 10> 277 x 10> 244 x 10> -245x107! 794x 1072 —626x107% 794x107* 0

Table 2. Intrinsic parameters of the binocular vision system (in the air, at 1 m distance).

View Optical Geometry Parameters Distortion Parameters

fx Ty 0 Vg k1 k2 21 P2 ks

Left 551 x102 553 x102  3.04x102 220x102 —360x1071 1.62x1071 —156x10"3 545 x10~* 0
Right 550 x 10> 551 x 10> 274 x 10> 244 x 10> 366 x 107! 179 x 1071  -155x 1073 449 x107* 0

Table 3. External parameters of the binocular vision system (in water and in the air, at 1 m distance).

In Water In the Air
0.99 636 %1073 —374x1073 0.99 —372x1072 215x 1072
R —6.43 x 1073 0.99 1.88 x 102 3.79 x 1072 0.99 —3.42 %1072
362x107%  —1.88 x 102 0.99 —2.02x1072 349 x 1072 0.99

T [—45.54 0.69 —1.82] [—119.53 —5.88 2.62]

10 0 —2.62 x 102 10 0 —2.94 x 102
0 0 1 0 —2.22 x 102 0 1 0 —2.33 x 102

0 0 0 7.67 x 102 0 0 0 5.82 x 102

0 0 219x1072 0 0 0 835x1073 0

err /pixel 0.173 0.155

3.1.2. Image Rectification

The left and right images obtained by the binocular vision system usually have a certain image
distortion due to the imaging principle of the camera and the structure of the device. Therefore,
the same pixel may not be on the same pole line in the left and right images. This will bring difficulties to
the subsequent stereo matching and cause the increase in time consumption and mismatch. To improve
the accuracy of stereo matching, it is necessary to correct the image to achieve the strict coplane and
line alignment of the left and right images in theory. The search range of image matching points is
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reduced from two-dimensional to one dimension, so the range of search is reduced and the speed
of the operation can be improved. Image correction includes three steps: elimination of distortion,
image correction and image cutting. The proposed system made use of OpenCV Library. Firstly,
the ‘pillow’ distortion is eliminated based on the distortion parameters obtained from the calibration
process in Section 3.1.1. Secondly, the left and right view images are horizontally aligned by parameters
with the focal length and optical center of lens, rotation matrix and translation vector. Therefore, we can
ensure the position consistence of optical centers, parallelism of light axis and alignment of polar lines.
Finally, the image is cut and the irregular areas at the edges and corners of the image are deleted so
that the overlapped area of the left and right images is maximized. The rectification results of the
checkboard images are shown in Figure 4.

.\ N—
R VA NARAN

(b)

Figure 4. Comparison of the left and right images before and after correction. (a) The left and right
images before correction; (b) The left and right images after correction.

As shown in Figure 4a is the image pair before image correction and Figure 4b is the image pair
after image correction. Obviously, the ‘pillow” distortion is eliminated by stereoscopic correction and
the corresponding points of the same targets in the left and right images are basically aligned.

3.2. Implementation of 3D Reconstruction System

3.2.1. Image Denoising

Obtaining high-quality underwater images is important for accurate 3D reconstruction of
underwater targets. To effectively remove noise in the images, the proposed system adopts the
block matching and 3D filtering (BM3D) algorithm [37]. The BM3D algorithm can be divided into
two steps: (1) Initial estimation and (2) Final estimation. In the first step, the similarity between
search block and reference block is defined by a hard threshold. The similar blocks are stacked into
three-dimensional arrays. After each three-dimensional array is filtered through cooperative filtering,
that is, the spectrum transform is contracted, the initial estimate of the reference block is obtained
by inverse transformation. Finally, the initial estimation is aggregated by a method of the non-local
mean. In the second process, the original image and the initial estimation image are transformed by
three-dimensional transform and Wiener filtering and the final output is obtained by inverse transform
and aggregation.
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3.2.2. Color Correction

Due to the limitations of the digital camera’s photosensitive device, there is a difference between
the recorded color and the real color. This difference can be expressed as a relation of mapping.
Hirschmuller [33] estimated the downlink attenuation coefficients of different colors under the
water based on the multispectral or hyperspectral data of underwater images of target at a specific
location. By reversely creating an unenhanced image, the over-enhanced phenomenon caused by the
camera built-in functions of white balance and color enhancement is eliminated. Therefore, the color
information of the underwater image is effectively restored. The proposed system used three basic
color (RGB) calibration method to calibrate and restore the color information of images. Through a
variety of curve fitting tests, it is found that the three polynomial fitting results are the best and the
fitting formula of the photosensitive curve is as follows:

R - Arrs + Bﬂ"z + Cﬂ’ + Dr
G = Agg® + Bgg® + Cog + Dy ©)
B = Ayb® + Byb? + Cyb + Dy,

where 7, g and b are recorded values of digital cameras for red, green and blue, respectively; R, G and
B are standard values for red, green and blue. We carried out the color correction experiment with
‘ColorChecker 24’ using the method of three basic color calibration and achieved the fitting coefficient
of the photoreceptor curve. The photoreceptor curve fitting parameters of cameras are given in Table 4.

Table 4. Fitting parameters of photoreceptor curve.

A B C D
Left Right Left Right Left Right Left Right
r 0.0001 0.0001 —0.0349  —0.0309 5.7850 5.3128 —134.8712 —74.8997
g —0.0001  —0.0002 0.0378 0.0612 —2.6504  —4.0552 45.2350 64.2145
b  —0.0000  —0.0002 0.0166 0.0971 —0.2026 —10.5140 —98.9514 351.4542

To demonstrate the effectiveness of our proposal, Figure 5 gives a comparison of the original
underwater images, the results using the dark channel prior method in Reference [38] and the
results using BM3D filtering and color correction of our research. It can be seen from Figure 5
that, the ‘atomization” phenomenon is effectively eliminated and the true color information of the
image is well restored after BM3D filtering and color correction. By using BM3D filtering and color
correction, the targets in the underwater images become much clearer, which will contribute to the
following accurate stereo matching of the image pairs. Compared with our method, although the
method in Reference [38] can also well remove the ‘atomization” phenomenon, it may fail to recover
the true color, which can be seen from the first three images in the second row. In the first image of the
second row of Figure 5, the third and fifth blocks, which should have different colors, are made the
same color; and that is the same case for the square target and vase in the second image, which should
have different red colors; while in the third image, the red color is not well recovered. To clearly
demonstrate this, the standard color checkboard, the color checkboard restored by the method in
Reference [38] and that restored by BM3D filtering and color correction are further shown in detail in
Figure 6, from which it can be seen that the color checkboard restored by BM3D filtering and color
correction is much closer to the real one.
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Figure 5. Comparison of the original underwater images, the results using the method in Reference [38]
and the results using BM3D filtering and color correction, where the first row shows the original
underwater images, the second row shows the results using the method in Reference [38] and the third
row shows the results using BM3D filtering and color correction.

Figure 6. Comparison of the standard color checkboard, the color checkboard restored by the method
in Reference [38] and that restored by BM3D filtering and color correction, which are shown from left
to right.

3.2.3. Image Segmentation

After image denoising and color restoration, the true colors of images are obtained. However,
due to the particularity of marine environment, the background of underwater images usually contains
less texture information, which may cause many mismatched regions. Therefore, the proposed system
implemented the segmentation and extraction of the target from the background before the stereo
image matching. Taking the advantages of the super-pixel segmentation algorithm that can reduce
the complexity of the subsequent image processing, a segmentation algorithm based on super-pixel
clustering is adopted in this paper. First, the brightness and texture features are extracted from the
underwater image after the noise reduction. Next, the similarity of the two features is calculated to
make a weighted fusion. Then, the pixels are clustered to generate the super-pixels by using the fusion
similarity as the distance measurement. The calculation formula of the distance metric D is as follows:

2
D=A-di+(1-A) d%'f’(%‘ds) (10)
s

where d;, d. and ds are similarity distances for texture, color and spatial features, respectively; N is the
maximum space distance within the cluster; N, is the maximum color similarity; and A is a weight
parameter. Obviously, the smaller the distance metric D is, the greater the similarity between the pixels.



Sensors 2018, 18, 3570 10 of 21

Figure 7 shows the results of the target segmentation. Based on the feature, the generated
super-pixels are detected and the super-pixels with saliency are marked by red line. All the super-pixels
are clustered by the method of the Max-Flow/Min-Cut algorithm. After that, the proportion of
the significant super-pixels in clustering is calculated and compared with the preset threshold.
Thus, the segmentation result for the foreground object is obtained.

Figure 7. Segmentation results of targets (super-pixels number: 200).

3.2.4. Stereo Matching

Stereo matching is an important part of the system implementation. The system uses binocular
cameras to get different views of the left and right images, to calculate the cost of stereo matching
and get the matching disparity map. Considering both matching accuracy and time efficiency,
the Semi-Global Matching (SGM) algorithm that has the advantages of fast matching speed and
high matching accuracy is preferred. According to this, we proposed an improved algorithm based on
the semi-global matching algorithm in our system. Taking the right view as the reference, Figure 8a
shows the stereo matching principle of SGM algorithm. If there is a point to be matched in the right
view image and its horizontal ordinate is x, we could search for the best match point starting from
the position minDis within the range of Windows in the left view image. However, the disadvantage
of this algorithm is that the color characteristics of underwater images are seriously disturbed and
degraded by the influence of light and water scattering. Therefore, there are many mismatches in the
background areas.

Rlllp)illlllllllll
x+d
I T TPTP TP Td
minDis Wim!.iows
N (a)
] HEEEEEEEEEE |
x+d
5 HEEENEEEEEE |
Win(liows
x (b)
] HEEEEEEEEN |
x+d
5§  EEENEEEEEE |
;I—/
Windows

(c)

Figure 8. Comparison of disparity calculation. (a) The stereo matching principle of SGM algorithm;
(b) Stereo matching without constraint of the valid target area; (c) Stereo matching strictly constrained
within the valid target area.
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The improved stereo matching algorithm based on SGM algorithm proposed in this paper can
accurately extract the target area from the background in underwater images. The stereo matching
process is strictly constrained within the valid target area. As shown in Figure 8b,c, the black pixels
belong to background that are invalid for stereo matching, while the white ones belong to target areas
that are valid for stereo matching; and the gray one is the current pixel to be matched. If the matching
pixel in the left image of the current pixel to be matched in the right one is in the valid target area,
the matching search process starts directly from the position x in the left image until the matching
pixel reaches the boundary of search window. If the boundary of search window is in the invalid
background area, the search process ends in advance. If the matching pixel in the left image of the
current pixel to be matched in the right one is in the invalid background area, the matching search
process starts from the first valid pixel in the search window until the matching pixel reaches the
window boundary or the invalid background. The implementation of the improved algorithm can be
divided into the following four steps:

(1) Gradient information extraction. To further eliminate the effect of image noise on calculation
of disparity map, the horizontal Sobel operator is used to extract the gradient information of the image.
The Sobel operator is given as follows:

Sobel(x,y) =2[I(x+1,y) = I(x=Ly)]+[I(x+1Ly—1)—I(x—1Ly—D]+[I(x+1Ly+1)—I(x—1y+1)] (11)

where I represents the pixel value of the image. After processed by the Sobel operator and smoothed
by the Gauss filter, the original image is mapped to generate a new image. The mapping function is

given by:
0, I < -Ty
Liew =S 1+Ty, -T,<ILT, (12)
2+T,, I>Ty

where I represents the pixel value of the original image; I,y indicates the pixel value of the remapping
image; and Ty, is the threshold of the filter.

(2) Matching cost calculation. In practical applications, the different visual angle of the binocular
vision system always leads to an inhomogeneous phenomenon between the left and right view images,
which causes an increase in the mismatch rate. Mutual information has the advantage of insensitivity to
light, so the semi-global matching algorithm is based on such information. The computational efficiency
and accuracy of the stereo matching are improved by the cost calculation of the hierarchical mutual
information instead of the traditional gray value calculation. The definition of mutual information is
as follows:

My, = Hy, + H, — Hy, 1, (13)

where Hj, and Hj, are the entropies of the left and right images, respectively; H, j, is the combined
entropy for the two images. According to the Taylor expansion formula, entropy Hj and combined
entropy Hy, , can be respectively expressed as:

H; = ghl(lp), hy(i) = —Llog(Pi(i) ® g(i)) ® g(i)

. . . . 14
Hyp, = Y hin(hp bop) , by 1, (ik) = — 2 log(Pp, 1, (i, k) @ g(i, k) @ g(i, k) (14)
p

where Py, 1, (i, k) represents the joint probability distribution of the images; g(i, k)is the Gauss kernel
function. Therefore, the mutual information My, ;, can be finally given by:

Mll,lz = th,fz(llpf Izp) ,mp g, (l, k) = hIl (l) + h[z (k) — h[lllz(ll,k) (15)
p



Sensors 2018, 18, 3570 12 of 21

Then, the corresponding matching cost is defined as:

Clp,d) = —my 1y (Ip, Io) (16)

where [, is the value of point p and q is its corresponding point on the polar line in the left view
image. If the horizontal ordinate of p is x, then the horizontal ordinate of q is x + d, where d is the
disparity value.

(3) Cost aggregation. The matching cost based on the mutual information has been obtained
after the above calculation process for matching cost. But such matching cost with the form of pixel
by pixel can be easily affected by mismatch points or noise and other factors. Therefore, the penalty
function based on the neighborhood disparity data is introduced to increase the smoothness constraint.
Accordingly, the energy function can be defined as:

E(d) =) C(pdp) + ) PiT[|dp —dq| =1] + ) PoT[|dp —dq| > 1] (17)
P

q<p q<p
where Y_C(p, dp) is the data item representing the matching costs of all pixels in the image and the
p

next two items are used for punishment. If the disparity value between the point p and the point
q equals 1, the punishment item P; works; otherwise if the disparity value is greater than 1 and P,
is larger than P; at the same time, the punishment item P, works. Besides, q is a point within the
neighborhood (p) of point p. To minimize the energy, the dynamic programming method is adopted
and the idea of scanning line optimization is introduced. The matching cost on the direction r could be
defined as:

Lr(p_r/d)r
L:(p,d) = C(p,d) -+ min L(p—1r,d—1)+P,L(p—rd+1)+ P1,miinLr(p —1,i) + Py, (18)
mkinL,(p —r,k)

where C(p, d) indicates the matching cost of point p on disparity value d; the second term represents the
minimum matching cost of the path adjacent point p—r based on the disparity smoothing constraint;
and the third term represents the minimum matching cost of the path adjacent point p—r along the
direction r. Therefore, the sum of the matching costs of point p can be obtained by aggregation of the
path costs in the direction of each scan line, which is given by Equation (18):

S(p,d) =) Li(p,d) (19)

(4) Disparity map optimization. According to the above matching cost calculation method,
the right view image was set as the reference and the left view image was the one to be matched.
The effective area of the whole image is traversed by progressive scanning. Upon every valid pixel in
the right view getting the best matching point with the lowest matching cost in the left view, the basic
disparity map was consequently formed. Aiming at the problem of mismatching or invalid disparity
in the weak texture area, the proposed method made use of the super-pixel segmentation data to
optimize the basic disparity map within every super-pixel area by the least squares fitting interpolation
method. The plane template used in this paper is given by Equation (20):

d(x,y) =ax+by+c (20)

The weighted least square method was used to calculate 4, b and ¢, which formed the parameters
set of the disparity plane template. The calculation formula of the weighted least square method is
as follows:
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X2 Lxy L T Y xid;
Yxyi Ly Ly [ a b c } = | Ly, (21)
Yxi Yyi N Y. d;

where N is the total number of pixels in the plane area; (x;, y;) and d; are the coordinates and disparity
values of the pixel indexed by i, respectively.

As shown in Figure 9, compared with the basic disparity maps obtained by stereo matching,
the optimization results of the least squares plane fitting interpolation method are smoother and more
complete, with fewer holes. The invalid matching areas have been basically eliminated. In addition,
the disparity plane in the same area is effectively smoothed and the transition of disparity values is
more placid. The fitting parameters of the disparity plane templates obtained for optimizing the three
basic disparity maps are given in Table 5.

-n

Figure 9. Optimization results of the disparity maps, where the basic disparity maps and the

optimization results of the least squares plane fitting interpolation method are given in the first
row and second row, respectively.

Table 5. The fitting parameters of the disparity plane templates.

Plane No. Map1 Map 2 Map 3
a b c a b c a b c
1 —0.015 0.024 33.135 —0.017 0.359 76.050 0.020 0.014 59.434
2 0.066 0.309 6.412 —0.043 0.023 89.671 0.185 0.494 —55.594
3 —0.096 0.4856 14.104 —-0.177 0.222 108.943 —0.391 0.480 35.146
4 0.017 0.086 28.928 —0.015 0.120 106.618 —0.031 0.271 52.872
5 —0.057 0.315 37.055 —0.187 0.218 113.908 —0.002 0.268 42.797
6 —0.101 0.350 44.062 —0.051 0.460 3.560 —0.002 0.250 48.037

In Figure 10, we provide a comparison of the disparity maps produced by our method and four
state of the art stereo matching methods, which are AD-Census method by Mei et al., Fast Cost-Volume
Filtering (FCVF) method by Hosni et al., Adaptive Random Walk with Restart (ARWR) method by
Lee et al. and Semi Global Matching (SGM) method by Hirschmuller et al. Among the five methods,
the proposed method usually can provide best disparity maps, which are smooth and continuous,
with fewer black holes. The two global matching methods, that is, the AD-Census method and the
ARWR method, have better performance than the FCVF method and the SGM method. By constraining
the matching within the valid target area and further optimizing the basic disparity map using the
least squares plane fitting interpolation, the proposed method has made a remarkable improvement of
the SGM method.
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Figure 10. Comparison of the disparity maps produced by the AD-Census method, the FCVF method,
the ARWR method, the SGM method and the proposed method, from top to bottom.

4. Results and Discussion

Based on the disparity map, the depth information that gives the distance from the target to the
camera can finally be calculated. In this section, we first give the measurement principle of binocular
vision and then provide a comparison of the distance measurement accuracy using different disparity
maps produced by the five stereo matching methods mentioned above. The 3D reconstruction results
using different disparity maps are also shown here.

Figure 11 shows the measurement principle of binocular vision. Assuming the imaging planes
of binocular cameras are coplanar and the distances to the camera’s optical centers (O; and Oy) are
f. The baseline distance between two camera optical centers is B. If the objective point P is located at
p1(x1, yp) in the left view image and at py(x,, y;) in the right view image, then the distance Z from the
objective point P to the imaging plane, also known as the depth value, can be calculated according to
the following:

B _ B—[(xj—cx)+(ci—x)]
Z Z—
Uf (22)
‘B
Z= d—(cx—ck

where d represents the disparity value; cx and ¢/ are the horizontal ordinates of the center points of the
two imaging planes. In addition to the depth value, we can also use the reprojection matrix computed
in the previous stereoscopic calibration process to get the horizontal and vertical coordinates of the
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objective point P in X-axis and Y-axis directions. Based on the dense disparity maps, we can transform
2D coordinate into 3D coordinate information according to the following;:

XYZW]T:Q[xydl}T (23)

where (x, y) is the pixel coordinate of a point in the disparity map and d is the disparity value of the

point. Then, the real-world coordinate of the point can be expressed as (%, %, %)

A
/ :\\\
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/ | \
’ | \,
’ | N,
pl(xl/j’z) i pZE\xr’yr
/ ! ' i
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l/’ ' 1 N H
01 M N _x_ o—>

Figure 11. Diagram of binocular vision measurement principle.

To evaluate the accuracy and precision of the proposed method, we carried out a series of distance
measurement experiments. We sampled several points from different underwater targets and obtained
10 distance values measured by our method and the compared methods, separately. According to the
implementation, we set a valid distance range of measurement within [0, 200]. And the distance unit is
centimeter. The sampling points positions are shown in Figure 12. Sampling points’ pixel coordinates
are (380, 40), (380, 385), (460, 400) and (250, 400) in image A; (350, 120), (390, 450) and (340, 335) in
image B; (200, 380) and (300, 310) in image C.

Figure 12. Sampling points of our measurement experiments. (A) The underwater image of a barrier;
(B) The underwater image of a warning notice; (C) The underwater image of a flowerpot.

Table 6. Data of distance measurement experiments for underwater targets (unit: cm).

No. True Value AD-Census FCVF ARWR SGM Ours
1 167.096 165.722 168.924 152.695 155.410 156.804
2 150.310 149.433 164.940 150.074 139.312 154.041
3 163.845 170.572 172.253 168.924 197.555 166.511
4 50.912 47.590 47.442 46.539 53.170 49.326
5 70.200 74.339 74.962 68.152 67.053 71.222
6 153.310 155.410 152.695 150.074 146.921 154.722
7 142.698 148.166 137.127 142.143 155.410 145.092
8 172.380 137.127 142.143 162.638 139.312 169.744
9 139.237 172.253 168.924 144.493 172.253 138.759
10 137.437 137.127 168.924 137.127 139.312 137.127

Mean Error 6.752% 9.564% 3.553% 10.114% 2.320%
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In our implementation, all experiment data are obtained in Intel (R) Core (TM) i5-2467M processor,
4 GB memory, CPU frequency 1.6 GHz, Windows 7 system PC machine, Visual Studio 2015. Table 6 shows
the data of measurement experiments for underwater targets. As known from Table 6, all the values of
sampling points are valid. The proposed method has the lowest error rate (mean error of 2.320%) compared
with the other four methods and has made a great progress of SGM algorithm (mean error of 10.114%).

To display the structure information of the underwater targets more intuitively and effectively,
the 3D scene can be reconstructed. Figure 13 gives the results of AD-Census method, the FCVF method,
the ARWR method, the SGM method and the proposed method, respectively. The proposed system
adopts the open source and extensible 3D geometric processing software MeshLab to reconstruct the
color information and 3D spatial data of the targets. Figure 13 effectively demonstrates the accuracy of
the system for underwater target detection and 3D reconstruction.

Figure 13. Comparison of 3D reconstruction of underwater targets using disparity maps provided
by methods of AD-Census method, the FCVF method, the ARWR method, the SGM method and the
proposed method, which are demonstrated from the first row to the last row, respectively.
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From Table 6 and Figure 13, it can be seen that:

(1) Among the four methods compared with our method, the ARWR and AD-Census methods have
better performance than the other two because their matching cost computations are both global
and have taken account of the overall scene structure. As shown in Table 6, they can produce
more accurate distance measurement results than the other two, with mean error rates at 3.553%
and 6.752%, respectively. But meanwhile, they reduce the computational efficiency of the system.

(2) The SGM method has a trade-off between accuracy and computation requirements, which is
suitable for practical applications. However, many invalid matches are made on the surface
where there is a large area or a smooth changing, which can be clearly seen in Figure 13e. This is
because that considering pixel correspondence only within a small window are more susceptible
to noise and that the costs of neighboring support regions in the texture-less area are aggregated
together to give a less accurate result.

(3) The proposed method is based on the SGM method and therefore it inherits the advantage of
high efficiency. For the above testing images, the average execution time of the proposed method
is about 90 milliseconds, which is close to the average execution time of the SGM method at
70 milliseconds. The FCVF method is the fastest one with an average 40 milliseconds. While the
AD-Census method and the ARWR method cost about 600 milliseconds and 5 s, respectively.
Moreover, by strictly constraining the stereo matching in the valid target area and optimizing
the basic disparity map within each super-pixel area using the least squares fitting interpolation
method, the accuracy of measurement can be greatly improved. Therefore, the proposed method
has the lowest error rate (mean error of 2.320%) among all the five methods.

5. Limitations of the Proposed Method

We have given a complete vision system in our work and successfully tested it on targets
around 1-m distance in a reasonably clear water pool. Now the system can stably capture the images
underwater for more than one hour and processes a pair of left and right images with a total latency
of about 100 milliseconds. But the system does have a restriction on measuring distance, because we
currently focus on improving the stereo matching, without thoroughly considering the problem of
camera calibration caused by light refraction in air-glass-water transitions, which is another important
issue. In our current work, following the common practice, we adopt a pinhole model with the
parameters obtained by an in-water calibration using a checkerboard at about 1 m away. According to
the work in Reference [7], the distance measurement accuracy will descend if the target is not close
to the distance at which the camera was calibrated. To find the maximum distance of our system,
we then test it on other three underwater targets at different distances (1-m, 1.5-m and 2-m distances).
The images with the observed points marked are given in Figure 14 and the measured distances of
these points are given in Table 7. Table 7 also gives the true distance values of the observed corner
points when the targets are put about 1 m away and the true values of these points should be added
50 cm and 100 cm when the targets are measured at 1.5 m and 2 m, respectively.

From Table 7, it can be seen that the proposed method has the lowest distance measurement error
rate (mean error of 0.82%, about 0.85 cm) at 1-m distance, which is the distance at which the camera
was calibrated. The error rate (mean error of 1.533%, about 2.5 cm) becomes a little bigger at 1.5-m
distance. However, when the distance comes to 2 m, the error rate becomes much bigger (mean error
of 5.260%, about 11 cm), which may not be acceptable. The main reason for this is that the pinhole
model used in our system can only very well approximates an axial camera model around the distance
at which the camera was calibrated [7]. Therefore, the working distance of the current system should
be restricted around 1 m and within 2 m distance.
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Table 7. Distance measurement experiments for underwater targets at different distances (unit: cm).

No. True Value (at1m) Measured (at 1 m) Measured (at 1.5 m) Measured (at 2 m)
1 126.110 124.960 170.434 213.432
2 126.510 125.460 173.511 215.253
3 126.251 127.342 170.552 213.721
4 126.680 125.978 173.822 214.737
5 119.012 118.203 165.351 206.198
6 119.112 118.250 166.354 207.935
7 105.420 104.560 156.326 194.759
8 106.450 105.881 154.442 194.275
9 105.300 106.566 156.500 195.964
10 100.011 101.052 148.911 189.896
11 100.120 100.800 151.120 189.742
12 97.200 98.100 146.115 187.613

Mean Error 0.821% 1.533% 5.260%

Figure 14. Underwater targets with observed points marked for distance measurement, the distances

are about 1 m, 1.5 m and 2 m from left to right.

6. Conclusions

To deal with the difficulty of underwater target detection and 3D reconstruction in optical image,
a binocular vision based underwater target detection and 3D reconstruction system is proposed in
this paper. The left and right views of the valid target area are obtained by image preprocessing
technologies, such as image denoising, color restoration, salient region segmentation and so on,
which will help to reduce mismatch caused by noise and distortion.

Based on the improved semi-global matching algorithm and the least squares plane fitting method,
the accuracy of the three-dimensional reconstruction of the targets are effectively improved, which is
good for practical engineering applications. However, due to the pinhole model adopted for camera
calibration in our research, the current system can only work well within 2 m distance. Therefore, it is
necessary to do more research on the pinax model, which is more accurate and apply it to our system
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in the future work. Moreover, for the convenience of the experiments and the validation, the current
work is carried out only in a reasonably clear water pool, its robustness in a more turbid water needs
to be verified in the future research.
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