
sensors

Article

A Distributed Parallel Algorithm Based on Low-Rank
and Sparse Representation for Anomaly Detection in
Hyperspectral Images

Yi Zhang 1, Zebin Wu 1,2,* , Jin Sun 1, Yan Zhang 2, Yaoqin Zhu 1, Jun Liu 1 and Qitao Zang 1

and Antonio Plaza 3

1 School of Computer Science and Engineering, Nanjing University of Science and Technology,
Nanjing 210094, China; yzhang@njust.edu.cn (Y.Z.); sunj@njust.edu.cn (J.S.); zhuyaoqin@163.com (Y.Z.);
liuj302@126.com (J.L.); zangqitao@163.com (Q.Z.)

2 Lianyungang E-Port Information Development Co. Ltd., Lianyungang 222042, China;
yzhang@lygeport.gov.cn

3 Hyperspectral Computing Laboratory, Department of Technology of Computers and Communications,
University of Extremadura, 10003 Caceres, Spain; aplaza@unex.es

* Correspondence: wuzb@njust.edu.cn; Tel.: +86-25-8431-8108

Received: 4 September 2018; Accepted: 23 October 2018; Published: 25 October 2018
����������
�������

Abstract: Anomaly detection aims to separate anomalous pixels from the background, and has
become an important application of remotely sensed hyperspectral image processing. Anomaly
detection methods based on low-rank and sparse representation (LRASR) can accurately detect
anomalous pixels. However, with the significant volume increase of hyperspectral image repositories,
such techniques consume a significant amount of time (mainly due to the massive amount of matrix
computations involved). In this paper, we propose a novel distributed parallel algorithm (DPA)
by redesigning key operators of LRASR in terms of MapReduce model to accelerate LRASR on
cloud computing architectures. Independent computation operators are explored and executed in
parallel on Spark. Specifically, we reconstitute the hyperspectral images in an appropriate format for
efficient DPA processing, design the optimized storage strategy, and develop a pre-merge mechanism
to reduce data transmission. Besides, a repartitioning policy is also proposed to improve DPA’s
efficiency. Our experimental results demonstrate that the newly developed DPA achieves very
high speedups when accelerating LRASR, in addition to maintaining similar accuracies. Moreover,
our proposed DPA is shown to be scalable with the number of computing nodes and capable of
processing big hyperspectral images involving massive amounts of data.

Keywords: hyperspectral images; anomaly detection; distributed and parallel computing; apache
spark; clouds

1. Introduction

During recent years, hyperspectral remote sensing has been widely used in various fields of
Earth observation and space exploration [1–6]. Hyperspectral sensors are able to simultaneously
measure hundreds of contiguous spectral bands with fine spectral resolution [7]. In hyperspectral
image (HSI) cubes, each pixel can be represented by a vector whose entries correspond to the
spectral bands, providing a representative spectral signature of the underlying materials within
the pixel [8–13]. This type of imagery offers detailed ground information in both the spectral and
spatial domains. Therefore, HSIs have been popular in remote sensing applications such as urban
mapping, environmental monitoring, object identification, and military defence [14–18].
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Anomaly detection is one of the most popular and important techniques for distinguishing subtle
differences among ground objects by exploiting the hundreds of narrow and nearly continuous bands
provided by HSIs [19]. In fact, anomalous targets can be detected in HSIs without prior knowledge,
i.e., the background refers to non-target pixels that are predominant in an image compared with
the target pixels [20]. In the literature, many methods were proposed to improve the efficiency and
effectiveness of hyperspectral anomaly detection [20–29]. An anomaly detection method based on
low-rank and sparse representation (LRASR) was proposed in [30], which achieves robust anomaly
detection with high accuracy, by taking full advantages of the correlations of all the pixels in HSIs and
global information. However, LRASR involves a massive amount of matrix computations that are
both computation-intensive and data-intensive, and becomes inapplicable to process big HSIs, since a
single machine, even with powerful GPUs (note that GPUs have already been used to accelerate some
serial algorithms [31–33]), can hardly provide sufficient computational resources. For instance, LRASR
consumes 1.1 GB of memory when processing a small HSI with the size of 8000× 162. However,
it could not process a big HSI with the size of 800,000 ×162 on a single machine with 12 GB of memory,
since all the memory is exhausted and the execution of LRASR is terminated with an “out of memory”
exception, accordingly.

Distributed computing technologies are highly demanded for efficient processing of big HSIs.
Cloud computing offers the potential to tackle massive data processing workloads by means of its
distributed and parallel architecture. With the continuously increasing demand for massive data
processing in HSI applications, there have been several efforts in the literature oriented towards
exploiting cloud computing infrastructure for processing big HSIs [34–40]. Several parallel anomaly
detection algorithms were proposed based on a master and slave model in [38–40] and executed
on commodity clusters (or called public clouds). Based on the MapReduce parallel model [41–45],
the approaches [34–37] use the Hadoop Distributed File System (HDFS) to implement distributed
storage, and use Apache Spark [46] to execute HSI applications in parallel. Actually, Spark is an
effective and state-of-the-art platform for parallel computation designed to efficiently deal with
iterated computational procedures in terms of the MapReduce parallel model [47]. Spark employs
HDFS to store the processed data in terms of blocks. The main abstraction of Spark is given by Resilient
Distributed Datasets (RDDs), which represent a distributed, immutable, and fault-tolerant collection of
objects [48]. When a task is executed on a computation node (called node for simplicity in this paper),
all the data sets required by this need to be loaded into an RDD to construct a partition. In other words,
a task corresponds to a partition. Meanwhile, users can also explicitly cache an RDD in memory across
machines, and reuse it in multiple MapReduce parallel operations.

In this paper, we propose a novel distributed parallel algorithm (DPA) based on low-rank and
sparse representations for hyperspectral anomaly detection. The proposed algorithm intends to
accelerate LRASR on clouds. Independent computation operators in LRASR are first explored and
executed in parallel on Spark. The hyperspectral data are reconstituted in an appropriate format for
efficient DPA processing. The optimized storage is designed and a new pre-merge mechanism is
developed for the purpose of reducing data transmission. Mean while, a new repartitioning policy is
designed to improve DPA’s efficiency. Our experimental results show that the proposed DPA is able
to achieve not only similarly good accuracies as LRASR but also very high speedups. Furthermore,
DPA is verified to be scalable with the number of nodes and capable of processing big HSIs involving
a massive amount of data.

The reminder of this paper is organized as follows. Section 2 gives a brief introduction to LRASR.
Section 3 describes the newly proposed DPA, followed by the a presentation of experimental results in
Section 4. Section 5 concludes with some remarks and hints at plausible future research lines.

2. Anomaly Detection Using Low-Rank and Sparse Representation (LRASR)

In a remotely sensed hyperspectral image, Anomalous pixels should be different from background
pixels, while there usually exist strong correlation among background pixels. On this basis, our
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assumption is that background pixels can be linearly represented by some other background pixels,
meaning that a HSI X can be decomposed into an anomalous part E and a background part D× S,
where D is the background dictionary constructed from m background pixels, and S denotes the
representation coefficients. In other words, we have X = DS + E. The data model of LRASR is shown
in Figure 1 [30].

Figure 1. Data model of LRASR.

The math model of LRASR can be described using Equations (1) and (2), where ‖ · ‖ denotes the
matrix nuclear norm (sum of singular values of a matrix), and ‖ · ‖1 is the l1 norm of a matrix, i.e.,
the sum of the absolute value of all entries in the matrix. ‖ · ‖2,1 is the l2,1 norm defined as the sum of
l2 norm of the column of a matrix. Besides, β > 0 is a parameter to trade off low rankness and sparsity.
λ > 0 is used to balance the effects of the two parts.

minS,E{‖S‖∗ + β‖S‖1 + λ‖E‖2,1} (1)

s.t.
X = DS + E (2)

The algorithm LRASR was developed to solve the aforementioned problem, and its flowchart
is given in Figure 2. From this figure, it can be seen that, after reading data from disks to obtain a
HSI X, LRASR first employs the K-means algorithm to cluster all pixels, and then uses a dictionary
construction method to obtain the background dictionary matrix D based on the obtained K clusters.
Afterwards, an alternating direction multiplier method (ADMM) is used to generate the anomaly
matrix E. Finally, the obtained anomaly matrix E is written to disks. Details of LRASR are given in
Algorithm 1, in which Steps 1–16 denote the K-means algorithm, whereas Steps 17–24 represent the
dictionary construction method. Step 25 is the ADMM, which is a complex algorithm and can be seen
in [30].
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Figure 2. Flowchart of LRASR.
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Algorithm 1: LRASR
Input: A HSI X
Output: An anomaly matrix E

1 Select K pixels from X as centers randomly;
2 while (TRUE) do
3 Record the K centers as old centers;
4 for (each pixel x in X) do
5 Calculate the Euclidean distances between x and all the K centers;
6 Assign the pixel x to the cluster having the center that has the shortest distance between

it and x;
7 end
8 for (each cluster Xi(i = 1, 2, · · · , K)) do
9 Calculate the mean of all the pixels in Xi;

10 Set the center of Xi to be the obtained mean;
11 end
12 Calculate the Euclidean distances between the obtained new centers to those old centers

respectively;
13 if (the maximum among the obtained K distances is lower than a given threshold) then
14 break;
15 end
16 end
17 Set the dictionary matrix D = ∅;
18 for (each cluster Xi(i = 1, 2, · · · , K)) do
19 Calculate its mean value µ and covariance matrix C;
20 Calculate the RX detector of each pixel x in Xi by RX(x) = (x− µ)TC−1(x− µ);
21 Select P pixels x1, x2, · · · , xP whose RX detectors are lower than those of the other pixels

in Xi;
22 Construct Di = [x1, x2, · · · , xP];
23 Set D = D

⋃
Di;

24 end
25 Use ADMM to generate the anomaly matrix E;
26 return E;

3. Distributed Parallel Algorithm (DPA)

Our newly developed DPA first explores the independent computation operators in LRASR and
processes them in parallel on multiple nodes provided by Spark. In Algorithm 1, we can see that all the
pixels are clustered by the K-means algorithm (Lines 1–16). In other words, the processing operator on
each pixel, i.e., the calculation of Euclidean distance between the pixel and all K centers (Line 5) and the
assignment of the pixel to a cluster whose center has the shortest distance to the pixel (Line 6), is not
dependent on other pixels. Accordingly, the processing operators can be executed in parallel, and we
propose a distributed parallel K-means algorithm to achieve this goal. Similarly, in the dictionary
construction method (Lines 17–24), the processing operator on each cluster, including the calculation
of the cluster’s mean value and covariance matrix (Line 19), the calculation of each pixel’s RX detector
in the cluster (Line 20), the selection of P pixels from the cluster (Line 21) and the construction of
Di (Line 22), is independent from other clusters. Accordingly, we establish a distributed parallel
dictionary construction method, in which a new repartition policy is developed to use K nodes for the
purpose of executing the processing operators of clusters in parallel. However, there is no independent
computation operator in ADMM (details can be seen in [30]), since ADMM includes a loop in which
each iteration depends on the previous one. Nevertheless, we construct a distributed parallel ADMM
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in which ADMM is conducted on each partition to generate a partial anomaly matrix, and a complete
E can be obtained by composing all the partial matrices. The flowchart of our DPA is illustrated
in Figure 3. Before detailing the three distributed parallel methods, we need to first describe data
organization and storage optimization methods, which help the proposed DPA to reduce the data
transmission and improve the efficiency.
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Figure 3. Flowchart of DPA.

3.1. Data Organization and Storage Optimization Methods

Band interleaved by line (BIL), band interleaved by pixel (BIP) and band sequential (BSQ) are
three common formats for arranging HSIs’ data. BSQ stores bands sequentially, whereas BIL and BIP
store bands in terms of lines and pixels, respectively. Being similar as LRASR, the proposed DPA
processes pixels one by one. Accordingly, BIP is selected to organize HSIs’ data.

As the proposed DPA is executed in parallel on Spark, we need to upload HSIs’ data to HDFS
storing data in blocks, whose size can be set according to different conditions and its default value
is 64 MB. Given a program that can be divided into m computing tasks executed on m nodes in
parallel (i.e., the level of parallelism is m), if the data required by one task are stored in multiple blocks
on multiple nodes, all these blocks should be transferred to the node where this task is processed.
Obviously, if a task’s required data are included in one block and the task is scheduled to the node
storing the block, no data transmission is needed. Fortunately, Spark’s scheduler always targets an
“optimized” assignment, i.e., assigning a task to a node where the task’s required data reside. Thus,
a key aspect becomes how to make a task’s required data included in one block. This problem can be
easily solved by setting the size of blocks to be d/m, where d is the total size of HSIs’ data. Note that for
some special situations (e.g., the target node is extremely busy), Spark’s scheduler may fail to achieve
the “optimized” assignment. When this failure occurs, data transmission is still needed. However,
since the failure occurrence is in a relatively low probability, our proposed optimization method by
determining the block size can still reduce data transmission.
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From Figure 3, we can see that the HSIs’ data read from HDFS are used by all the three distributed
parallel methods. For the purpose of fast data loading, these HSIs’ data are always maintained in
memory after they are first read from HDFS.

3.2. Distributed Parallel K-Means Algorithm

The K-means algorithm shown by Lines 1–16 in Algorithm 1 contains three steps, which are described
as follows: (1) calculate the Euclidean distances between each pixel and all the K centers (Line 5),
and assign each pixel to a cluster with the center having the shortest distance to the pixel (Line 6);
(2) for each cluster, obtain the mean of all the pixels in this cluster and set the cluster’s center to be the
yielded mean (Lines 8–11); (3) check whether the termination criterion of the K-means algorithms is
met (Lines 12–15). As mentioned before, the first step can be executed in parallel and is accordingly
implemented as the Map method. Accordingly, as the second step needs all the pixels in each cluster
to update each cluster’s center, and the third step needs all clusters’ new centers, both the two steps
are implemented as the Reduce method. The algorithm outputs a center that is a set containing all
obtained clusters’ centers. However, as shown in Figure 4, pixels belonging to the same cluster may
appear in different nodes and need to be transferred to the Driver (i.e., a node where the Reduce
method is executed). Alternatively, there would be much data transmission.
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Figure 4. Data transmission before using the pre-merge mechanism.

A pre-merge mechanism is proposed to reduce the data transmission in our context. Before the
data transmission, local pixels on each node are clustered using current clusters’ centers and then the
sums of the pixels in each cluster are calculated. Rather than pixels, the obtained sums, the number
of pixels involved to generate these sums and the corresponding clusters’ IDs that are necessarily
required by the Reduce method are transferred from nodes where map methods are executed to the
Driver. After all the map methods on multiple nodes are finished, the Reduce method on the Driver
is able to calculate the mean of all the pixels in each cluster with these received data and update
each cluster’s center. Afterwards, the Reduce method can check whether the termination criterion
is met. Obviously, as the amount of transferred data (including the obtained sums, the number of
pixels involved in generating these sums and the corresponding clusters’ IDs) is much lower than
that of all the pixels, the pre-merge mechanism is able to reduce the data transmission. To clarify the
pre-merge mechanism, we illustrate the data transmission after using the pre-merge mechanism in
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Figure 5. By comparing Figures 4 and 5, we can observe that the pre-merge mechanism significantly
contributes to the reduction of data transmission.
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3.3. Distributed Parallel Dictionary Construction

According to LRASR, the background dictionary is constructed by composing the partial
dictionary of each cluster obtained by the K-means algorithm. For each cluster, P pixels (whose RX
scores are lower than those of the other pixels in the same cluster) are selected to generate the partial
dictionary. In other words, the dictionary construction requires all the pixels of each cluster. However,
the proposed distributed parallel K-means algorithm generates the K clusters without recording those
pixels of each cluster. The reason is that, if we want to record pixels of each cluster, we need to write
these pixels and their corresponding clusters’ IDs to RDD in every iteration. This procedure tries
to write data into memory first, and then to disks (if there is not sufficient memory). As a result,
this writing procedure consumes much memory and is time-consuming if insufficient memory exists,
since writing data to disks is inefficient. To address this issue, we use a parallel pixel clustering operator
implemented as the Map method (i.e., the pixel clustering phase in distributed parallel dictionary
construction shown in Figure 3) which attributes all pixels to the K clusters. Afterwards, the partial
dictionary construction is implemented as the Reduce method. As aforementioned, since the processing
operator on each cluster (including the calculation of the cluster’s mean value and covariance matrix,
the calculation of each pixel’s RX detector in the cluster, the selection of P pixels from the cluster
and the construction of Di) is independent from other clusters, we propose a repartition policy to
employ K nodes to execute the processing operators of all the clusters in parallel. This procedure is
quite different from the general one using the Driver only. Obviously, this repartition policy is able to
improve DPA’s efficiency.
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3.4. Distributed Parallel ADMM

As mentioned before, there are no independent computation operators in ADMM. Accordingly,
we construct a distributed parallel ADMM, in which ADMM is conducted on each partition to
generate a partial anomaly matrix, and a complete E can be obtained by composing all those partial
matrices. As shown in Figure 3, these two procedures are implemented as the Map and the Reduce
methods, respectively.

3.5. Comparison and Analysis

Compared with LRASR using three serial methods (i.e., the K-means algorithm, the dictionary
construction method and ADMM), our proposed DPA employs three distributed parallel ones
including the distributed parallel K-means algorithm, the distributed parallel dictionary construction
method and the distributed parallel ADMM. Obviously, the advantage of our proposed DPA is that
independent computation operators can be executed in parallel and HSIs’ data can also be processed
in parallel.

We now analyze both the algorithms’ complexities. As our proposed DPA is derived from LRASR,
we first calculate the complexity of LRASR and that of DPA can be obtained accordingly. Obviously,
the complexity of the K-means algorithm is O(WKT1), in which W is the total number of pixels,
K denotes the number of centers and T1 represents the total number of loops. The complexity of the
dictionary construction method is O(WP2) where P is the number of pixels selected from each cluster,
whereas that of the ADMM is O(PKT2W2) where T2 is the total number of loops. Let m be the number of
nodes/data partitions. Accordingly, each node processes W

m pixels. We can thus obtain the complexities
of the distributed parallel K-means algorithm, the distributed parallel dictionary construction method
and the distributed parallel ADMM are O(WKT1

m ), O(WP2

m ) and O( PKT2W2

m2 ), respectively. In other
words, the complexities of our proposed distributed parallel methods are 1

m , 1
m and 1

m2 of those of
the serial ones used by LRASR, respectively. Consequently, our proposed DPA is able to accelerate
LRASR, remarkably.

4. Experimental Results

To verify the proposed DPA’s accuracy and efficiency, we perform four experiments on three
Spark clusters (denoted as Spark1, Spark2 and Spark3) and six HSIs (called HSI1-HSI6). In the first two
experiments (denoted as Experiment 1 and Experiment 2), HSI1 and HSI2 are processed by LRASR and
our proposed DPA on Spark1, respectively. In the third experiment (regarded as Experiment 3), HSI1
is processed by LRASR and DPA on Spark2, separately. We design the experiments in this way to show
DPA’s accuracy and efficiency when it is employed to process different HSIs on different platforms.
Furthermore, in order to verify the DPA’s capability for processing big HSIs, we conduct the fourth
experiment (denoted as Experiment 4), in which four HSIs (called HSI3-HSI6) with data sizes of 1 GB,
2 GB, 4 GB and 8 GB are generated by jointing HSI1 and used, respectively. HSI3-HSI6 are processed
by DPA on Spark3, respectively. Details about the four experiments are summarized in Table 1.

Table 1. Details about the four experiments.

Experiments HSIs Platforms

Experiment 1 HSI1 Spark1
Experiment 2 HSI2 Spark1
Experiment 3 HSI1 Spark2
Experiment 4 HSI3-HSI6 Spark3

Spark1 is a computing cluster which consists of 1 Master node and 8 Slave nodes. The Master is a
virtual machine equipped with 4 cores (2G HZ) and 15 GB RAM. The Slaves are deployed on 4-blade
IBM Blade Center HX5. Every Slave is configured with 6 cores (1.67G HZ) and 15 GB RAM. The Master
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and all the Slaves are installed with Ubuntu 16.04, Hadoop-2.7.3, Spark-2.1.1, Java 1.8 and Scala 2.11.6.
As Spark considers each core in Slaves as a node, the total number of nodes is 48. In other words, the
maximal level of parallelism of Spark1 is 48. Spark 2 includes 1 Master and 3 Slaves with identical
configuration: 24 cores (2.3G HZ) and 64G of RAM. The Master and all the Slaves are installed with
CentOS 6.6, Hadoop-2.7.3, Spark-2.1.1, Java 1.8 and Scala 2.11.7. The total number of nodes in Spark2
is 72, i.e., the maximal level of parallelism of Spark2 is 72. Spark3 is a very powerful cluster which
consists of 1 Master and 6 Slaves. The Master and all the Slaves are virtual machines, each of which is
equipped with 24 cores (2.5G HZ) and 242G RAM. The Master and all the Slaves are installed with
Ubuntu 16.04, Hadoop-2.7.3, Spark-2.1.1, Java 1.8 and Scala 2.11.6. Accordingly, the total number of
nodes in Spark3 is 144, i.e., the maximal level of parallelism of Spark3 is 144.

Both HSI1 and HSI2 were used in [30]. HSI1 was collected by the hyperspectral data collection
experiment (HYDICE) obtained from an aircraft platform. HSI1 covers an urban area (i.e., Fort Hood,
TX, USA), comprising a vegetation area, a construction area, and several roads including some vehicles.
A spectral resolution of 10 nm and a spatial resolution of 1 m are contained in this image. Multiple
bands including the low-SNR and water vapor absorption bands (i.e., 1–4, 76, 87, 101–111, 136–153, and
198–210) are removed and 162 bands remain as a result. The entire image illustrated in Figure 6a has a
size of 307× 307 pixels, from which an area in the upper rightmost containing 80× 100 pixels is selected
for our experiments, since the ground truth shows that there are several anomalous targets (i.e., cars
and roofs embedded in the different backgrounds) in this chosen area. A false color representation and
the ground-truth map are given in Figure 6b,c, respectively.

(a) (b) (c)

Figure 6. The first Hyperspectral Image (HSI1). (a) The false color image of the entire image; (b) The false
color image of the chosen area for detection; (c) The ground-truth map of the chosen area [30].

HSI2 was collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) over
San Diego, CA, USA, comprising 224 bands in wavelengths ranging from 370 to 2510 nm. Some
bands including low-SNR, water absorption and bad bands (i.e., 1–6, 33–35, 94–97, 107–113, 153–166,
and 221–224) are removed. Consequently, 186 bands are left and used in our experiments. The entire
image shown in Figure 7a has a size of 400× 400, from which the up-left area including 100× 100 pixels
is selected to perform experiments. In this chosen area, there are buildings with different roofs, parking
aprons with different materials, an airport runway, and a small quantity of vegetation. The airplanes
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are the anomalies to be detected. The false color image and the ground-truth map are illustrated in
Figure 7b,c, respectively.

(a) (b) (c)

Figure 7. The second Hyperspectral Image (HSI2). (a) The false color image of the entire image;
(b) The false color image of the chosen area for detection; (c) The ground-truth map of the chosen
area [30].

For the evaluation of accuracies and efficiencies of compared algorithms, AUCs (Area Under
Curve) and consumed times of involved algorithms are recorded [49,50]. Larger AUCs indicate higher
accuracies. In Experiments 1–3, LRASR is run on a single machine (i.e., the Driver node of each
experiment corresponding Spark platform) since it is a serial algorithm, whereas DPA is run under
different levels of parallelism evaluated by different numbers of nodes. The consumed times and
AUCs of all the three experiments are recorded and shown in Table 2, in which consumed times are
evaluated in seconds. On one hand, from Table 2, we can see that in Experiment 1, AUC of LRASR is
0.9181, whereas those of DPA with the numbers of nodes 2, 4, 8, 16 and 32 are 0.9202, 0.9184, 0.9131,
0.9195 and 0.9203, respectively. Meanwhile, we find that in Experiment 2, LRASR yields an AUC with
the value of 0.9595, whereas DPA generates AUCs with the values of 0.9596, 0.9601, 0.9609, 0.9616 and
0.9607 when the numbers of nodes are 2, 4, 8, 16 and 32, respectively. Finally, in Experiment 3, LRASR
obtains an AUC 0.9184, while DPA achieves AUCs 0.9218, 0.9141, 0.9188, 0.9116 and 0.9184 when the
numbers of nodes are 2, 4, 8, 16 and 32, respectively. Please note that these AUCs in Experiment 3 are
slightly different from those in Experiment 1. The reason is that the initial K centers are randomly
selected from pixels in the K-means algorithm (see Line 1 in Algorithm 1). These results indicate that
DPA achieves similarly good AUCs as LRASR, regardless of the level of parallelism.

On the other hand, in Experiment 1, we can see that LRASR consumes 3987 s, while DPA with the
numbers of nodes 2, 4, 8, 16 and 32 consumes 1788 s, 955 s, 451 s, 233 s and 116 s. In Experiment 2,
LRASR consumes 4957 s, whereas the consumed times of DPA are 2613 s, 1223 s, 586 s, 290 s and 149 s
when the numbers of nodes are 2, 4, 8, 16 and 32, respectively. In Experiment 3, the times consumed
by LRASR is 3657, while those consumed by DPA are 1699, 842, 418, 232 and 111, corresponding to
the numbers of nodes 2, 4, 8, 16 and 32, respectively. These results indicate that our proposed DPA
accelerates LRASR considerably in the premise of achieving similarly high accuracies. The reason is
that, in our proposed DPA, independent computation operators are executed in parallel and all those
data are also be processed in parallel.
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Table 2. AUCs and Consumed Times(s) obtained by LRASR and DPA with different numbers of nodes
in Experiments 1–3.

Number of Nodes Times (EX1) AUC (EX1) Times (EX2) AUC (EX2) Times (EX3) AUC (EX3)

LRASR 3987 0.9181 4957 0.9595 3657 0.9184
DPA with 2 Nodes 1788 0.9202 2613 0.9596 1699 0.9218
DPA with 4 Nodes 955 0.9184 1223 0.9601 842 0.9141
DPA with 8 Nodes 451 0.9193 586 0.9609 418 0.9188

DPA with 16 Nodes 233 0.9195 290 0.9616 232 0.9116
DPA with 32 Nodes 116 0.9203 149 0.9607 111 0.9184

Based on those aforementioned consumed times, we can further calculate the speedups.
The consumed times of LRASR is selected as the baseline. The result is illustrated in Figure 8. We can
see that the speedups of DPA in Experiment 1 are 2.23, 4.17, 8.84, 17.11 and 34.37 when the numbers
of nodes are 2, 4, 8, 16 and 32, respectively. This result indicates that the speedup of DPA increases
linearly with the number of nodes. This conclusion illustrates the good scalability of the proposed DPA
with the number of nodes. Meanwhile, the speedups of DPA are 2.23, 4.17, 8.84, 17.11 and 34.37 when
the numbers of nodes are 2, 4, 8, 16 and 32, respectively. This result denotes that the speedups are larger
than the numbers of nodes used for parallel computing, respectively. The reason is that, according to
Section 3.5, the complexity of the serial ADMM is O(PKT2W2), whereas that of the distributed parallel
ADMM is O( PKT2W2

m2 ). In other words, the times consumed by the distributed parallel ADMM are
1

m2 of those consumed by the serial ADMM. Conclusively, the distributed parallel ADMM is able to
achieve a remarkably high speedup.
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Figure 8. Speedups of DPA with different numbers of nodes in Experiments 1–3.

For Experiment 2, it can be seen that the speedups of DPA are 1.9, 4.05, 8.46, 17.1 and 33.23 with
the numbers of nodes 2, 4, 8, 16 and 32, respectively. Except the first speedup 1.9 is a little lower
than its corresponding number of nodes 2, the others are larger than their corresponding numbers
of nodes. The reason is the same as in Experiment 1. Meanwhile, we can get similar observations,
i.e., the speedup of DPA increases linearly with the number of nodes and the distributed parallel
ADMM obtains a good speedup. Furthermore, we can conclude that the proposed DPA achieves both
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good accuracies and speedups when processing different HSIs. For Experiment 3, we can see that
the speedups of DPA are 2.15, 4.34, 8.75, 16.47 and 32.94 with the numbers of nodes 2, 4, 8, 16 and 32,
respectively. By comparing this result with that of Experiment 1, we can obtain similar conclusions.
In other words, both high accuracies and speedups can be achieved by the proposed DPA running on
different platforms.

To show the advantage of our proposed DPA on memory consumption, the memory consumption
of LRASR and DPA with different number of nodes in Experiment 1 is illustrated in Figure 9, in which
the mean amounts of memory consumed by the three methods (i.e., the K-means algorithm, the
dictionary construction method and the ADMM) of LRASR and DPA on all involved nodes are recorded.
Please note that the three methods of LRASR are serial ones, whereas those of DPA are distributed
parallel ones. Figure 9 indicates that the mean amounts of consumed memory of DPA’s methods
are lower than those of LRASR’s methods, without respect of the DPA’s parallelism, respectively.
Meanwhile, we can also see that the mean amounts of consumed memory of DPA’s methods are
reduced while the number of nodes increases. These conclusions imply that our proposed DPA could
process big HSIs, especially when DPA is executed in high parallelism.
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Figure 9. Memory consumption (MB) of LRASR and DPA with different number of nodes in Experiment 1.

To verify the capability of the proposed DPA to process big HSIs with massive amounts of data,
we perform Experiment 4, in which the level of parallelism is fixed to a large value 120. The results
are shown in Figure 10, which shows that the consumed times are 3603, 8284, 17,367 and 44,421 s
for HSI3–HSI6, respectively. The experimental results indicate that, by means of distributed parallel
computing, the proposed DPA is able to efficiently process the big HSIs, which cannot be processed by
LRASR running on a single computing machine with limited resources.

To show more insights, we compare the results of LRASR and our proposed DPA running on
one node. In other words, DPA is running serially and denoted as SDPA, accordingly. Both of the
two compared algorithms are executed using HSI1 on the Driver node of Spark1. The experimental
results show that SDPA achieves an AUC 0.9197 and consumes 4320 s. On one hand, compared with
the LRASR’s AUC 0.9181, SDPA’s AUC is similarly high. On the other hand, by comparison with the
LRASR’s consumed times 3987 s, it can be seen that SDPA requires more computation times. The reason
is that SDPA is actually a parallel-designed algorithm in terms of the MapReduce model. Accordingly,
although it is serially executed on a single node, there will also be much intermediate data generated
and written to the shared memory by map methods, and afterwards, these intermediate data will be
loaded by the reduce method from the shared memory. These overheads, including data generation
and data written/loaded to/from shared memory, reduce the efficiency. However, DPA achieves good
speedups when it is executed in parallel on multiple nodes. Consequently, we can conclude that Spark
is appropriate to process parallel-designed algorithm in parallel rather than in serial.
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Figure 10. Speedups of DPA processing big HSIs with different data sizes.

Furthermore, we re-implement DPA and execute the obtained algorithm (denoted as HDPA) on
Hadoop that is similar as Spark, i.e., both of them are able to execute MapReduce-based applications.
The main difference between them is that Spark supports in-memory computation while Hadoop
does not. In this experiment, HSI1 is used and Hadoop is deployed on the same cluster as Spark1.
The HDPA’s results (including AUCs and consumed times) are given in Table 3. By comparing these
results with those of DPA in Experiment 1 (seen in Table 2), we can observe that both HDPA and DPA
achieve similarly good AUCs, whereas DPA outperforms HDPA in terms of consumed times for all
the cases with different number of nodes. This conclusion indicates that Spark is more effective than
Hadoop due to its in-memory computation capability.

Table 3. AUCs and Consumed Times(s) obtained by HDPA with different numbers of nodes.

Metrics 2 Nodes 4 Nodes 8 Nodes 16 Nodes 32 Nodes

AUC 0.9216 0.9166 0.9187 0.9141 0.9155
Times 4320 2524 2272 1706 1706

5. Conclusions and Future Work

With the ever growing size and dimensionality of HSIs, it is a challenge to perform anomaly
detection in big hyperspectral images on a single computing machine. This paper introduces
a novel DPA algorithm to accelerate an LRASR method for hyperspectral anomaly detection
on cloud computing architectures. The newly developed algorithm presents several important
contributions. First, independent computation operators are explored and executed in parallel
on Apache Spark, which is a promising distributed computing platform to process massive data
in parallel. In addition, the hyperspectral data are reconstituted in an appropriate format for
efficient DPA processing. Meanwhile, a new pre-merge mechanism has been developed for further
reducing data transmission, and a new repartitioning policy was used to improve DPA’s efficiency.
We evaluated the accuracy and efficiency of our newly developed DPA by means of multiple
experiments. The experimental results demonstrated that DPA not only obtained similarly high
accuracies as LRASR, but also achieved considerably higher speedups. Moreover, DPA was also
verified to be scalable with the number of nodes and capable of processing big HSIs with massive
amounts of data. These conclusions indicate that the Spark is very appropriate for processing
HSIs’ applications that are both computation-intensive and data-intensive (e.g., LRASR). As massive
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amounts of intermediate data would be generated and transferred among nodes, we need to design
some optimized strategies (e.g., our proposed pre-merge mechanism in the distributed parallel K-means
algorithm) to reduce data transmission. In future work, we will develop cloud implementation of
other HSI processing algorithms, including techniques for classification and unmixing.
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