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Abstract: Bluetooth Low-Energy (BLE) beacons-based indoor positioning is a promising method
for indoor positioning, especially in applications of position-based services (PbS). It has low
deployment cost and it is suitable for a wide range of mobile devices. Existing BLE beacon-based
positioning methods can be categorized as range-based methods and fingerprinting-based methods.
For range-based methods, the positions of the beacons should be known before positioning.
For fingerprinting-based methods, a pre-requisite is the reference fingerprinting map (RFM). Many
existing methods focus on how to perform the positioning assuming the beacon positions or RFM
are known. However, in practical applications, determining the beacon positions or RFM in the
indoor environment is normally a difficult task. This paper proposed an efficient and graph
optimization-based way for estimating the beacon positions and the RFM, which combines the
range-based method and the fingerprinting-based method. The method exists without need for
any dedicated surveying instruments. A user equipped with a BLE-enabled mobile device walks in
the region collecting inertial readings and BLE received signal strength indication (RSSI) readings.
The inertial measurements are processed through the pedestrian dead reckoning (PDR) method to
generate the constraints at adjacent poses. In addition, the BLE fingerprints are adopted to generate
constraints between poses (with similar fingerprints) and the RSSIs are adopted to generate distance
constraints between the poses and the beacon positions (according to a pre-defined path-loss model).
The constraints are then adopted to form a cost function with a least square structure. By minimizing
the cost function, the optimal user poses at different times and the beacon positions are estimated.
In addition, the RFM can be generated through the pose estimations. Experiments are carried out,
which validates that the proposed method for estimating the pre-requisites (including beacon positions
and the RFM). These estimated pre-requisites are of sufficient quality for both range-based and
fingerprinting-based positioning.

Keywords: BLE-based indoor positioning; fingerprinting; graph optimization

1. Introduction

Location has become increasingly important for many position-based services (PbS). However,
although the global navigation satellite system (GNSS) can satisfy the needs for most outdoor situations,
indoor positioning still remains a challenge. The abundant sensors embedded in today’s mobile devices
have greatly enhanced their ability to sense the indoor environment, thus providing possibilities for
indoor positioning. Many indoor positioning methods rely on pre-installed infrastructures and
can provide reasonable accuracy, such as UWB ranging anchor-based [1,2], Wi-Fi access points
(APs)-based [3,4], Ultrasound [5,6]-based and so on. Among these methods, Bluetooth low-energy
(BLE) beacons have great potential due to their advantages:

Sensors 2018, 18, 3736; doi:10.3390/s18113736 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s18113736
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 3736 2 of 20

• The positioning process is independent of extra hardware. After the BLE beacons have been
installed, the only equipment needed is a BLE-enabled smart phone, while foot-mounted or
waist-mounted inertial pedestrian positioning [7,8] needs special inertial sensors.

• It is suitable for positioning adopting a wide range of mobile devices, including both Android
devices and IOS devices. While Wi-Fi-based positioning is only suitable for Android devices,
because the API of IOS does not provide the Wi-Fi scanning results.

• The deployment cost for BLE beacons is low. Once the beacons are deployed, it can continuously
work for a long duration (e.g., half a year) using their inner batteries, because the beacon nodes
have low power consumption.

The BLE beacon-based positioning methods consist of mainly two types: range-based and
fingerprinting-based. Range-based methods adopt a pre-defined radio frequency (RF) path-loss
model to estimate the distance between the receivers (users) and the beacons. Assuming at least three
received signal strength indication (RSSI) measurements are available, the user’s position can be solved
by trilateration according to the distances estimated accordingly. The authors in [9] proposed three
different methods for trilateration.

• The least square estimation (LSE) method [9]. By minimize the square sums of the distance errors,
an optimal position can be found.

• The three-border method. By establishing the equations which represent the distance between the
user and the beacons, the user’s position can be found by solving the equations.

• The centroid method. A polygon is firstly defined according to the vertexes defined by the
intersecting points from the distance arcs. Then the centroid is regarded as the user’s position.

In [10], a more sophisticated adaptive propagation model is proposed, which models the
parameters of the path-loss model with a particle filter. In [11], a combination of channel-separate
polynomial regression model is adopted for estimating the distances between the receiver and the
beacons, and the results show better accuracy than a simple propagation model.

The fingerprinting-based method consists of two phases: the offline phase and the online phase.
In the offline phase, the fingerprints (a vector of RSSIs from different beacon nodes collected at a
coordinate point) at different places are collected to create a reference fingerprint map (RFM). In the
online phase, a fingerprint collected at an unknown place is compared with the fingerprints in the
RFM, to solve for the position of the user. The online phase is rather simple and a commonly seen
method for the phase is the k-nearest neighbor (kNN) method. However, as fingerprints needs to be
collected at different places at the offline phase, the workload is huge. Moreover, the positions where
the fingerprints are collected needs to be known, which is challenging. Normally, the positions need to
be measured through dedicated surveying methods. For example, in [11], the fingerprints are collected
manually at many fixed positions, then these fingerprints are interpolated according to a Gaussian
process regression model to generate an RFM.

As mentioned, the range-based BLE beacon positioning methods need to know the positions
of the beacons to start with. Similarly, a pre-requisite for fingerprinting-based methods is the RFM.
Existing methods mainly focus on the positioning methods and assumes the beacon positions and
the RFM is known before positioning. However, in practical applications, determining the beacon
positions or fingerprinting collection positions, especially for the indoor environment with a relatively
large area, is an energy intensive and error prone task.

Unlike the mentioned methods, the proposed method in the paper provides an efficient way
for estimating the pre-requisites for BLE-based positioning. The proposed method can estimate both
the beacon positions and the RFM using graph-based optimization. The priority advantage of the
proposed method is that it is free of any dedicated surveying process for the beacon positions and
RFM. A user equipped with a BLE-enabled mobile device walks in the region. As shown in Figure 1,
through the embedded sensors, the mobile device can collect inertial measurements and RSSI from
BLE beacons. The method can fuse three types of information: the pedestrian dead reckoning (PDR)
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information, the fingerprint information, and the range information. More specifically, the inertial
measurements are processed through the PDR method to generate the constraints at adjacent poses.
In addition, the BLE fingerprints are adopted to generate constraints between poses (with similar
fingerprints). The RSSIs are adopted to generate distance constraints between the poses and the beacon
positions (according to a pre-defined path-loss model). The constraints are then adopted to form a
cost function with a least square structure. By minimizing the cost function, the optimal user poses at
different times and the beacon positions are estimated. In addition, the RFM can be generated through
the pose estimations.
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Figure 1. The overall data processing flow of the proposed method.

A few related works are given in Section 2 including the features of the BLE RSSI, PDR method and
graph-based optimization. Section 3 is the method for forming the cost function and the optimization
method. Experiments are carried out in Section 4 to validate the proposed method. The last section is
the conclusion (Section 5).

2. Related Work

2.1. The BLE RSSI Features

BLE beacons operate in the same 2.4 GHz band as the Wi-Fi transceivers. Normally, in positioning,
the beacons are in advertising mode, broadcasting short and flexible messages at flexible update
rates [12,13]. Apple’s iBeacons are one type of such BLE beacons (supported by Android devices
too), which also broadcast messages using the BLE standard [14]. The messages contain the ID of
the beacons, so that the receiver can distinguish difference beacons. Different from the Wi-Fi APs,
which broadcast messages at 20 MHz wide band, the BLE has 40 channels with width 2 MHz. Only
three channels are adopted for broadcasting and each broadcasting is repeated for on the three channels.
Due to the advertising scheme of the BLE beacons, the RSSI from these beacons have these features:

• The RSSI can change very dramatically with even a very small spatial change. As each of
the broadcasting channels are narrow banded, the BLE signals have fast fading nature. Also,
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the indoor environment is very complex with many surfaces (e.g., walls, floors and so on), where
the BLE signals can reflect. This can further cause multipath fades and add instability for the RSSI.
In an experiment performed in [15], the noise and fading effect can even domain the RSSI with
longer distance to the beacons.

• The RSSI can be reported for multiple times or not reported at all during a single scan. As the
advertisement is repeated on three channels and if a scan is longer than a broadcasting interval,
multiple reporting on the same beacon can be seen. Also, if the RSSI from all the three channels is
below the environment noise due to fading effect, no reporting of the beacon is available for the
scan. This can cause inconsistency for adjacent scans in time.

The mentioned features can cause huge noises in both RSSI (first feature) and beacon availability
(second feature). To minimize the unfavorable effects, some smoothing processes should be added
for the RSSI. In this paper, we adopt the median value of nearby RSSI (within a time window size of
1 s) as the current RSSI. This has been validated by an experiment in [13], which found out that 10 Hz
beaconing and 1 s batch processing of median or mean values produced the best results.

2.2. Pedestrian Dead Reckoning

The PDR algorithm can update the pedestrian’s positions adopting the inertial measurements.
Normally, the position update rate relies on the step rate of the pedestrian, i.e., the positions are
updated each time a new step is taken by the pedestrian (in Equation (1)). (x, y) are the positions,
the subscripts are the step indexes, L is the stride length estimation and θ is the orientation estimation.

xk = xk−1 + Lkcos(θk)

yk = yk−1 + Lksin(θk)
(1)

The details of the PDR algorithm differ with the body part where the inertial measurement unit
(IMU) is mounted. If the IMU is mounted on the foot, the zero-velocity update (ZVU) method is
adopted. In this method, a filtering process (assuming zero velocity) is added to the normal inertial
calculation when the foot of the pedestrian touches the ground (zero-velocity phase) [16,17]. If the IMU
is waist-mounted or hand held, no obvious zero-velocity phase can be found. Only the orientation is
estimated through inertial calculation, while the stride occurrences and stride length are estimated
through heuristic models [18]. In our implementation, as the inertial sensors in the mobile device
is hand held, the second processing method of PDR is adopted. However, as the PDR algorithm
relies heavily on heuristic assumptions, the accuracy is not satisfactory. Moreover, the insufficient
accuracy of the gyroscopes can deteriorate orientation estimation. Even with magnetometer readings,
the orientation estimation cannot be improved much, due to the many magnetic disturbances in the
indoor environment [19]. Here, the PDR algorithm can only provide a rough constraint between
pose estimation at adjacent time (here the PDR constraints denotes the stride length and orientation
difference estimation between steps, which will be explained in the next section). Other types of
constraints are needed to achieve pose estimations with reasonable accuracies.

2.3. Graph-Based Optimization

Graph-based optimization is currently widely adopted in robotics for solving the simultaneously
localization and mapping (SLAM) problem [20]. It aims to estimate the poses of the robotics while
generating a map of the environments (e.g., landmark maps, occupancy grid maps, feature maps and
so on). The SLAM procedures consist of front-end tracking and back-end optimization.

• In the front-end tracking procedure, sensors on the robots are adopted to find constraints between
the poses at different times. For example, features in adjacent image frames are adopted to find
position and attitude constraints between poses (visual odometry) [21]. These constraints can
generate a sequence of initial poses at different times (trajectory). However, this trajectory has
accumulative error. If other types of sensor measurements (other than odometry observations)
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are available, more constraints can be formed, and the trajectory can be estimated more accurately
using the back-end optimization.

• The back-end optimization procedure is generally establishing a cost function and then minimize
it. The previously mentioned odometry observations and all other available observations are
adopted to generate constraints between pose variables. Each constraint denotes a term in the cost
function, which represents the errors between the sensor observation and the observation derived
from pose variables. The cost function has a least square form which is in essence representing
how the observations match the estimation. By finding the best match (minimizing the cost
function), the optimal poses (trajectory) and maps can be found. The establishment of constraints
and optimization process in our case is explained in detail in the next section.

As shown in Figure 2, in our implementation, the front-end tracking procedure corresponds
to generate initial and less accurate poses through the results of PDR algorithm. The back-end
optimization procedure corresponds to finding the optimal poses and beacon positions from the cost
function using three types of constraints: PDR constraints, constraints through fingerprints matching
and distance constraints derived from the path-loss model. Noting that the initial poses correspond to
the poses estimated solely from the PDR algorithm, and is adopted as initial values for the back-end
optimization procedure. The front-end PDR algorithm is already well studied in a wide range of
publications and considered trivial. We focus on adopting the constraints to build the back-end
optimization procedure.
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Figure 2. The graph SLAM procedures and its implementation in our method.

3. Method

The problem of user poses and beacon position estimation in our method is transformed to a
least square optimization problem. In this section, a general least square optimization framework
for user pose estimation is given at first. Then the framework is elaborated by adding least square
terms according to the mentioned constraints to the cost function. After optimization using the
Levenberg-Marquardt algorithm [22], the optimal user poses and beacon positions can be found.

3.1. Fundamentals of the Least Square Optimization Framework

The model for general pose estimation is formed at first. Assuming the noises are Gaussian,
the maximum likelihood estimation of the poses is equivalent to optimize the formed cost function.
Some fundamentals for the optimization process are given here.
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3.1.1. Formation of Least Squares

In a general pedestrian positioning problem, the poses of the pedestrian and the
observations satisfy:

qt = f (qt−1, st) + wt

ot = g(qt, (.)) + vt
(2)

Here, the pose at time t is denoted by qt and it is a three-element vector [xt, yt, θt]. The observation
at time t is denoted by ot. st is the from the PDR algorithm, which denotes the pose change between the
t− 1th pose and the tth pose. Here it is a two-element vector [Lt, δθt] which is stride length estimation
and heading change estimation respectively according to the PDR formation in Equation (1) (also
denoted as odometry observation). wt and vt are Gaussian noise and is assumed to be independent
at different times. The f (.) and g(.) are functions correspond to the pose propagation model and the
observation model, respectively. In the propagation model, the pose at the next step qt is dependent
on the previous pose qt−1 and the pose change st derived from the PDR algorithm. In the observation
model, the current observation ot is dependent on the current pose qt and other variables (represented
as (.) in Equation (2)). Noting that in real implementation, (.) can denotes another pose or other new
variables need to be estimated. For generalization reasons, (.) is adopted instead.

In the formation, as the noises are assumed to be Gaussian, the maximum likelihood estimation
of the poses is equivalent to finding the optimal poses which minimize the cost function with a least
square form in Equation (3). The detailed proof of the equivalence can be found in [20].

F(q) = ∑
t

et, f W−1
t eT

t, f + ∑
t

et,gV−1
t eT

t,g (3)

where
et, f = qt − f (qt−1, st)

et,g = ot − g(qt, (.))
(4)

The error et, f denotes the difference between the actual pose and the pose derived from the
previous pose and the odometry observation from the PDR algorithm. The et,g denotes the actual
observation and the derived observation. The matrix W and V denote the noise variance of w
and v respectively. We present the details of noise variances in the respective error terms later.
From Equation (3), we can see that it can represent how the observations (including odometry
observations) is consistent with the pose estimations. By minimizing F(q), the optimal pose estimations
can be found which can best satisfy the observations.

A factor graph can be adopted to better represent the cost function and relationships of the
variables in it. In Figure 3, the circles denote the variables to be estimated (here the poses qt). A square
denotes a constraint existing between the variables they connect. Each square can correspond to a
square term in Equation (3). Here are two types of constraints (squares). st denotes the PDR derived
odometry constraints between adjacent pose variables, which correspond to the term et, f W−1

t eT
t, f in

Equation (3). ot denotes the observation constraints between a pose variable and another variable (.),
which correspond to the term et,gV−1

t eT
t,g in Equation (3). (.) can be a pose variable or other type of

variables need to be estimated. For BLE beacon-based graph in our method, (.) denotes other pose
variables and the beacon position variables, which will be explained later. The factor graph can give
a good visual representation of the cost functions and the variables need to be estimated. Therefore,
the term graph optimization is adopted to represent the minimization process of the cost function.
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qt�1 qt qt+1

(.) (.) (.)

st st+1

ot�1 ot ot+1

Figure 3. The factor graph representation of the cost function in Equation (3).

3.1.2. Levenberg-Marquardt Based Graph Optimization

The general square optimization (g2o) framework is proposed in [20] and is adopted in our
method. Here we give a simple review of how the graph optimization problem is solved. We re-write
the cost function in a more general form as:

F(x) = ∑
k∈C

ek(.)Ωkek(.)
T︸ ︷︷ ︸

Fk

(5)

where

• x is the set of many variables to be estimated, and it is x = (xT
1 , . . . , xT

n )
T ;

• C is the set for possible k, if we assume there are n variables in the factor graph, then it can be
written as k = (1, . . . , n);

• Ωk denotes the information matrix for the kth constraints (or square error terms). Here the
information matrix corresponds to the inverse of the noise variance in Equation (3);

• ek(.) represents the errors from constraints. As the error is dependent on one or more variables,
it can be written as:

ek(.) = ek(xk) = ek(x) (6)

Then we adopt the Levenberg-Marquardt algorithm for finding the variable values which
minimize the cost function iteratively. Assuming that in the previous iteration, the variable values can
be written as x̆. Here we consider the initial values of the variables is the value for the first iteration.
Then we use the following steps for finding the variable values for the next iteration:

1. Expand the ek(x) using first-order Taylor expansion at the variable value x̆ (value for the
previous iteration):

ek(x̆k + ∆) = ek(x̆ + ∆) ' ek + Jk∆ (7)

where the Jk is the Jacobian matrix for the error function ek(xk) at the value x̆. ek is the value for
the error function ek(xk) at x̆. ∆ is a minor increment for the variable x. Then we substitute the
single error function (Equation (7)) to Fk in Equation (5) and we can get:

Fk(x̆ + ∆)

= ek(x̆ + ∆)TΩkek(x̆ + ∆)

' (ek + Jk∆)TΩk(ek + Jk∆)

= ekΩkeT
k︸ ︷︷ ︸

ck

+2 ekΩkJk︸ ︷︷ ︸
bk

∆ + ∆T JT
k ΩkJk︸ ︷︷ ︸

Hk

∆

= ck + 2bk∆ + ∆THk∆

(8)
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Then the overall error function (Equation (5)) with a minor increment can be written as:

F(x̆ + ∆) = ∑
k∈C

Fk(x̆ + ∆)

' ∑
k∈C

(ck + 2bk∆ + ∆THk∆)

= c + 2b∆ + ∆TH∆

(9)

where
c = ∑ ck
b = ∑ bk
H = ∑ Hk

(10)

2. Calculate the derivation of Equation (9) over the minor increment ∆ and makes it equal to zero
(get the minimized error). We can get

H∆ = −b (11)

Here H is the information matrix of the system. By solving the linear system in Equation (11),
an increment can be acquired as ∆∗, then we update the variable value for the current iteration:

x̆ = x̆ + ∆∗ (12)

The Gauss-Newton algorithm solves for the increment in Equation (11). For the
Levenberg-Marquardt algorithm, a damping factor is added to Equation (11) to control the increment
step size (more robust than the Gauss-Newton algorithm in general) and we can get

(H + λI)∆ = −b (13)

According to the algorithm, if F(x̆ + ∆) < F(x̆), we decrease the damping factor λ, otherwise we
increase it to control the step size. The detailed strategy for choosing the suitable λ is described
in [22]. Here we just give a simple principle.

3. Continue step 1 and step 2 until the increment norm ‖∆‖ is less than a pre-defined threshold.
Then the current iteration of variable value x̆ is considered optimal for the variables.

The dimension of H grows with the dimension of the variables x. However, the sparsity nature of
the matrix H can be adopted to efficiently solve the linear system in Equation (13).

3.2. BLE Beacon-Based Graph Optimization

The graph optimization method for a general least square cost function is described in the previous
subsection. Here we focus on forming the cost function for BLE beacon implementation using the
constraints from PDR, beacon-based range constraints and fingerprint-based constraints.

3.2.1. Cost function for BLE Beacon Implementation

Again, a factor graph is adopted to represent the cost function in Figure 4. Noting that the variable
(.) in Figure 3 is specified here. There are three types of constraints here.

• The PDR constraints. Similar to Figure 3, the PDR constraints are between adjacent poses in time.
• The beacon position constraints. New variables representing beacon positions are added to the

factor graph in Figure 4. For example, the distance dk,t−1 between the pose variable qt−1 and the
kth beacon position variable pk is derived from the RSSI according to the path-loss model.

• The fingerprints matching constraints. These types of constraints are between two pose variables
whose collected fingerprints are with vicinity. For example, Figure 4 shows that the fingerprint
collected at q1 and qt are with vicinity.

Based on the factor graph, we elaborate the square error terms of the cost function based on the
different types of constraints.
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qt�1 qt qt+1st st+1

dk,t�1 dq,t+1

q2s1

fingerprint

pqpk

q1

Figure 4. An illustration of the factor graph in BLE beacon implementation in our method.

3.2.2. Error Terms for PDR-Based Constraints

As mentioned before, the pose variable qt here has three components [xt, yt, θt]T , which are the
coordinate positions and the heading. From the PDR algorithm, the pose changes can be “observed”
and can be written as

spdr
t =

[
Lpdr

t

∆θ
pdr
t

]
(14)

where Lpdr
t and ∆θ

pdr
t are the “observed” stride length and heading change, respectively. As mentioned

before, the error term for PDR-based constraints is dependent on adjacent pose variables qt−1, qt and
the “observed” stride length Lpdr

t and heading change ∆θ
pdr
t (components of spdr

t ). We write it as

epdr(qt−1, qt, spdr
t ) =

[√
(xq

t − xq
t−1)

2 + (yq
t − yq

t−1)
2

θ
q
t − θ

q
t−1

]
−

[
Lpdr

t

∆θ
pdr
t

]
(15)

where the xq
t , xq

t−1 and θ
q
t are the components taken from the pose variable qt. Then the sum of the

square error terms derived from PDR constraints can be written as

Fpdr(.) = ∑
t

epdr(qt−1, qt, spdr
t )TΩpdrepdr(qt−1, qt, spdr

t ) (16)

where the error term epdr(qt−1, qt, spdr
t ) is from Equation (15). The matrix Ωpdr can be considered as a

weighting matrix for the square error term. Normally, if the “observation” from the PDR results is
accurate, the weighing matrix should be larger and thus making the square error term more significant
in the overall cost function. In graph optimization, the weighting matrix is the inverse matrix of the
noise variance. This also holds true for other types of error terms. The weighting matrix Ωpdr is a
2× 2 matrix and here it is:

Ωpdr =

[
1/0.5 0

0 1/0.1

]
(17)

here we consider the noise variance of the step length is 0.5 m2 and the noise variance of heading is
0.1 rad2 for each step in PDR.

To start the optimization, the initial values of the pose variable is considered the estimated poses
from the PDR algorithm. If only one type of constraints (PDR-based constraints) exist in the cost
function, the optimal poses should be the initial poses. In such a situation, the cost function is zero.

3.2.3. Error Terms for Beacon Position Constraints

As mentioned before, the RSSI readings from BLE beacons have fast fading nature. Therefore,
in our implementation, a pre-processing procedure is added to smooth the RSSI. Here the median
value of the RSSI from a beacon within a time window (with duration 1 s) is taken as the current RSSI.
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To estimate the distance from a beacon, a path-loss model is needed. Here we adopt the path-loss
model in [23],

RSSI = −(10n log10 d + A) (18)

where parameter A is the absolute RSSI value represented by dBm at 1 m away from the beacon; n is a
parameter related to the signal propagation environment and d is the distance from the beacon. In our
implementation, we use the method proposed in [9] to estimate the parameters.

The path-loss model with pre-defined parameter in our implementation is

RSSI = −(10× 2.5 log10 d + 30) (19)

An issue worth noting is that the model will be inaccurate when readings are higher than 0 dBm.
However, we have checked our measurements and we have found out that none of RSSI readings
are higher than 0 dBm. In our implementation, the BLE beacons adopted have the largest emitting
power of 4 dBm and it is set to 4 dBm here. The reason maybe that, in the experiments, the beacons are
installed on the walls and the person does not go too near to the walls.

Here we only use the RSSI if it is larger than −100 dBm. A simple experiment is performed to
explain the reasons. In an indoor corridor, the user holding the receiver starts from a place far away
from the beacon, walks near the beacon, and then leaves. The RSSI readings are shown in Figure 5.
We can see that the RSSI readings at lowest are a bit lower than −100 dBm (in this case, it is −105 dBm).
This corresponds to the situation that the user is far away from the beacon, and the signal is buried
in noise. In our implementation, we consider −100 dBm as the sensitivity of the receiver and RSSI
readings smaller than −100 dBm (though seldomly seen) are discarded.

0 5 10 15 20 25 30
samples

-110

-100

-90

-80

-70

-60

-50

-40

RS
SI
(d
Bm

)

Figure 5. The RSSI readings when a user holding the receiver (phone) starts from a place far away
from the beacon, walks near the beacon, and then leaves.

Assuming a RSSI reading for the kth beacon is available at the tth step. From the path-loss model,
a distance dk,t can be derived from Equation (19). Then the error term derived from range-based
constraint should be dependent on the pose variable qt, the beacon position variable pk and the
derived distance dk,t. It can be written as

erange(qt, pk, dk,t) =
√
(xq

t − xp
k )

2 + (yq
t − yp

k )
2 − dk,t (20)

where xq
t and yq

t are taken from the components in the pose variable qt; xp
t and yp

t are taken from the
beacon position variable pk. Then the sum of square error terms derived from path-loss model and
RSSI readings can be written as

Frange(.) = ∑ erange(qt, pk, dk,t)
2Ωrange (21)
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where the sum is over all available ranges derived from RSSI readings. Again, Ωrange is the weight
of the range-based square errors. Ωrange is a scaler 1/5 and we consider the noise variance in range
estimation is 5 m2.

Another importance thing worth noting is that the initial values for the beacon position variables
is needed to start the optimization. Here we consider no heuristic information about the beacons are
available including the number of beacons and their positions. To start the optimization with initial
guess of the beacon positions, we assume the initial beacon positions are at the poses from the PDR
results when the beacons’ RSSI are available for the first time.

3.2.4. Error Terms for Fingerprint Matching Constraints

For fingerprinting-based positioning using BLE beacon, an RFM should be established in the
offline phase. The RFM consists of many fingerprints collected at different known positions. In our
implementation, the user walks in the area collecting fingerprints. The optimal poses can provide the
position estimations in the RFM.

In fingerprinting-based BLE positioning method, the distances between fingerprints can indicate
the correlations for the positions. If two fingerprints are similar (with small distance), then the positions
where the fingerprints are collected should be also with small distance (high correlation). We also use
the mentioned feature for generating constraints through fingerprint matching. For such purposes,
the distance metric is defined firstly according to [24],

d(RSSIj, RSSIk) =

√
∑N

i=1(RSSI(i)j − RSSI(i)k )2

N
(22)

where the subscripts denote two different RSSI readings; RSSI(i)j is the ith component in the vector
RSSIj; N is the number of the beacons. Two RSSI vectors may have readings from different beacons.
In this case, we add default readings to the RSSI vector such that both vectors have readings from the
same beacon set. Here the beacon set denotes the union set of the two original beacon sets. An example
is shown in Figure 6, where the original RSSIj and RSSIk have three and two components, respectively.
After completion, they both become a 4-component vector with readings from the same beacons.
The added default RSSI reading is set to −120 dBm in our implementation.

Before completion

After completion

RSSIk RSSIj

RSSI1
k RSSI2

k RSSI3
k RSSI1

j RSSI4
j

RSSI1
k RSSI2

k RSSI3
k RSSI1

j RSSI4
j-120dBm -120dBm -120dBm

Figure 6. An example for the RSSI completion process before calculation of the RSSI distance.

Assuming the two RSSI readings RSSIj and RSSIk correspond to the pose variables qj and
qk respectively. The distance drssi(j, k) between the RSSI readings can be calculated according to
Equation (22). If the RSSI distance is less than a threshold drssi,thres indicating high correlation on the
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corresponding positions, the error term of fingerprint matching-based constraint exists. The error
term is

erssi(qj, qk, RSSIj, RSSIk) =


0, dpos(j, k) < dpos,min

eubound, dpos(j, k) > dpos,max

eubound
dpos(k, q)− dpos,min

dpos,max − dpos,min
, otherwise

(23)

where

• dpos(j, k) is the position distance calculated from the pose variables qj and qk.
• dpos,min and dpos,max are the two position distance thresholds. If the position distance is less

than dpos,min, then the error should be 0, because we allow some position differences for high
correlation poses. If the position distance is larger than dpos,max, the error is considered to reach
an upper bound eubound.

• If the position distance is between the two position thresholds, the error grows linearly with the
position distance dpos(k, q).

The thresholds for fingerprint-based constraints in our implementation are in Table 1. Noting that
the choice of these thresholds is similar to the implementation in [25], where the RSSI are from Wi-Fi
APs. This set of parameters also works fine in our implementation. We will perform an exhaustive
search for the optimal parameters in the future.

Table 1. The thresholds adopted for fingerprint-based constraints in our implementation.

Thresholds Value

drssi,thres 8 dBm
dpos,min 5 m
dpos,max 20 m
eubound 1

Then the sum of square error terms derived from fingerprint matching can be written as

Ff inger(.) = ∑ erssi(qj, qk, RSSIj, RSSIk)
2Ω f inger (24)

where the sum is over any two pose indexes whose fingerprint matches. Again, Ω f inger is the weight to
control the error significance. Ω f inger is again a scaler 1/10 and we consider the noise in fingerprinting
matching is 10 m2.

Then the overall cost function is the sum of the three types of constraints.

F(.) = Fpdr(.) + Frange(.) + Ff inger(.) (25)

4. Experiment

4.1. Settings

In our experiments, we adopt the Google nexus 6p smart phone to collect the data. A custom
Android application is designed for such purposes. In this application, the inertial data, including the
acceleration, angular rate and the magnetometer readings are collected at a rate of 50 Hz. During the
BLE scanning, the scan mode for the system is set to scan with low latency for continuous and fast
scanning of the BLE beacons. In the Android system, this is done by setting the ScanSettings class to a
constant as SCAN_MODE_LOW_LATENCY. The inertial data are processed in real time to estimate
the coarse position changes for the person holding the phone in the hand adopting the PDR algorithm.
The position changes along with the BLE scanning results (including the beacons’ names, mac addresses
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and RSSI values) are stored on the phone for offline processing. The BLE beacons adopted in our
implementation are the Smart Beacons from the Bright Beacon company [26]. In our implementation,
we set the broadcasting interval of the beacons to 300 ms and the emitting power to 4 dBm.

4.2. Accuracy for Positioning the Beacons

As shown in Figure 7, 48 BLE beacons are installed in an office site on the walls or on the surfaces
of furniture. The beacons are installed approximate evenly covering the area. The size of the area is
approximately 90 m × 37 m. Although there are 48 beacons installed, we manually take out half of
the beacons (24 beacons) to see how the different number of beacons affect the performance of the
proposed approach (in Figure 7). We refer to the different number of beacons as dense beacons and
sparse beacons in the remaining of the paper. In this setting, the mean number of beacons over the
minimum signal threshold for the dense beacon situation is about 6 and for the sparse case the number
is about 3. The beacon positions are measured adopting a total station with sufficient accuracy and
is regarded as ground truth positions. However, the ground truth positions of the beacons are only
adopted for calculating the positioning errors of the beacons. During the optimization, we assume that
the positions of the beacons are unknown and is estimated from the optimization process. We have
labeled the beacons with different numbers and made a table of the numbers and the corresponding
mac address of the beacons. In this way, we can identify the different beacons. A person holding
the smart phone walked in the site for about 30 min with a total walking distance of about 1.6 km.
The collected data is adopted for generating the aforementioned cost function. By minimizing the
cost function, the beacon positions can be estimated. With the ground truth of the beacon positions,
the position estimation errors can be acquired.

90m

37
m

(a)

90m

37
m

(b)

Figure 7. The positions of BLE beacons installed in the site (on the walls or on the furniture surfaces)
(a) Densely deployed BLE beacons (b) Sparsely deployed beacons. In our implementation, we just
ignore some of the RSSI readings to simulate the situation of sparsely deployed beacons
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Figures 8 and 9 show the histograms of the errors for adopting the two types of error terms
combination: PDR constraint terms + beacon position constraint terms and PDR constraint terms + beacon
position constraint terms + fingerprint matching constraint terms. We can see that the incorporation of
fingerprint matching error terms can improve the accuracy for positioning the beacons. Tables 2 and 3
show some of the error statistics of the two combinations. For the proposed method (3 types of error terms
combination), the mean positioning error of the beacons is only about 1.27 m in the dense beacon situation
and 2.26 m for the sparse beacon situation. We show later that this level of beacon errors, especially for
the dense beacon situation is not significant in deteriorating the performance of beacon-based positioning.
However, for certain, this approach can estimate the beacon positions which is exempt from the heavy
working load for carefully measure the beacon positions. In this experiment, it took 3 persons using
nearly the whole day to measure the ground truth positions of the 48 beacons. Noting that here some
large errors for beacon position estimations still exist. This may be due to the fact that the large noises in
PDR results and the large noise in RSSI readings while the user is walking.

(a) (b)

Figure 8. The histogram of beacon positions errors for dense beacons situation (a) Cost function with PDR
constraint error terms and beacon position constraint error terms (b) Cost function with PDR constraint
error terms, beacon position constraint error terms and fingerprint matching constraint error terms.

(a) (b)

Figure 9. The histogram of beacon positions errors for sparse beacons situation (a) Cost function with PDR
constraint error terms and beacon position constraint error terms (b) Cost function with PDR constraint
error terms, beacon position constraint error terms and fingerprint matching constraint error terms.
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Table 2. Some of the statistics of the beacon position errors for dense beacons situation.

Cost Function Error Terms Mean Error (m) Median Error (m) Maximum Error (m)

PDR + beacon position 1.45 1.42 3.94
PDR + beacon position + fingerprint matching 1.27 1.28 3.07

Table 3. Some of the statistics of the beacon position errors for sparse beacons situation.

Cost Function Error Terms Mean Error (m) Median Error (m) Maximum Error (m)

PDR + beacon position 2.68 2.65 6.39
PDR + beacon position + fingerprint matching 2.26 2.31 4.28

4.3. Accuracy for Beacon Based Positioning

As mentioned before, there are two types of beacon-based positioning method: range-based and
fingerprinting-based. For range-based method, the positions of the beacons need to be known for
positioning. For fingerprinting-based method, an RFM should be known for positioning. The proposed
method in this paper gives an efficient way to estimate the beacon positions and to establish an RFM.
To verify that the quality of the estimation for the beacon positions and the RFM is sufficient to support
beacon-based positioning, another experiment is carried out. The person walked into the site again
collecting BLE scanning RSSI readings. These RSSI readings are regarded as test data for showing
the accuracy of beacon-based positioning. Here as the beacon-based positioning normally has many
outliers, we adopt a simple extended Kalman filter (EKF)-based positioning method to fuse the beacon
positioning results and the position update data from PDR. Noting that all the results including the
results presented in Sections 4.3.1 and 4.3.2 are results from the EKF. The adoption of the EKF for
fusing PDR results and beacon positioning results is trivial and can be found in publications such
as [11]. Therefore, how the EKF is implemented is not described in detail in the manuscript.

For measuring the ground truth of the persons, we have put some stickers to the ground and labeled
the stickers with numbers on it to distinguish them. The stickers can be regarded as landmarks and the
positions of landmarks are also measured through a total station prior to the positioning experiments.
During the positioning experiments, the person can record the time and the landmark label during
walking. This is done through pressing buttons on the APP designed for collecting data. In this way,
the ground truth positions of the person when he/she walks to the landmarks are known. The positioning
errors can then be determined through the differences between the estimated positions and the ground
truth positions. In fact, we have set 50 landmarks roughly even distributed in the area. Since the positions
of the landmarks should not affect the final results much, we did not show the positions of the landmarks.

4.3.1. Accuracy for Range-Based Positioning

Here a classical type of range-based positioning is selected to test the positioning performance:
the LSE method. By minimizing the square sums of the distance errors to the beacon positions,
an optimal position can be found. Noting that here, the beacon positions should be known before
positioning. Figure 10 shows the cumulative distribution functions (CDFs) of the positioning errors
using ground truth beacon positions and estimated beacon positions (from the results in Section 4.2).
Table 4 shows some of the error statistics of the two situations. It is not surprising that the positioning
performance using the ground truth beacon positions is better than using the estimated beacon
positions. However, the performance drop-down is not very significant with the mean error increase
from 2.66 m to 3.25 m in the dense beacon situation and from 4.03 m to 4.69 m in the sparse
beacon situation.
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Table 4. Error statistics of range-based positioning using ground truth beacon positions and estimated
beacon positions.

Beacon Positions Mean Error (m) 50% Error(m) 70% Error (m)

ground truth positions (dense) 2.66 2.11 3.95
estimated positions (dense) 3.25 2.92 3.18

ground truth positions (sparse) 4.03 4.02 5.09
estimated positions (sparse) 4.69 4.66 5.90
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Using estimated beacon positions (dense)
Using ground truth beacon positions (dense)
Using estimated beacon positions (sparse)
Using ground truth beacon positions (sparse)

Figure 10. The CDFs of positioning errors using the ground truth beacons positions and the estimated
beacon positions.

4.3.2. Accuracy for Fingerprinting-Based Positioning

Our method can provide an RFM adopting the estimated positions of the person and the collected
BLE RSSI readings. The RFM can be adopted for fingerprinting-based positioning. The positions of
the collected fingerprints are firstly estimated adopting the proposed method. Then we partition the
area to small grids with the size of 0.5 m × 0.5 m. The RSSI fingerprints at the centers of the grids are
predicted through a simple Gaussian regression process adopting nearby fingerprints. These predicted
fingerprints are then adopted to form the RFM in our implementation. Here the weighted kNN method
is chosen for beacon-based positioning (in our case k = 3). The CDFs of positioning errors is shown in
Figure 11. The mean error of fingerprinting-based positioning here is about 2.78 m for dense beacon
situation and about 4.11 m for sparse beacon situation, which are considered sufficient for many indoor
positioning applications. Noting that here the positioning performance is slightly better than the LSE
method. This is consistent with the results in [11].
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Figure 11. The CDF of positioning errors using the estimated RFM.

4.3.3. Accuracy Comparisons for Fingerprinting Based Positioning and Range-Based Positioning

Fingerprinting-based positioning normally outperforms range-based positioning. This is also
true in our experiments. The fingerprinting-based results and range-based results should be compared
under the same condition. In fact, the fingerprinting-based results using the estimated Reference
Fingerprint Map (RFM) should be compared to the range-based results using estimated beacon
positions. We directly take the CDFs from our experiments and compare them in Figure 12a,b. It can be
seen that the performance of fingerprinting-based positioning is better than range-based positioning
under both dense and sparse beacon situations. Table 5 gives the mean error comparisons. We can
see that the mean error of fingerprinting-based is 0.47 m less than range-based under dense beacon
situation and 0.58 m less under sparse beacon situation. Noting that these results are directly taken from
Sections 4.3.1 and 4.3.2, and is presented differently here. The results have shown that the differences
are not huge. This may due to the reason that range-based and fingerprint-based methods suffer
or deteriorate differently on the inaccuracies of estimated beacons positions and RFM, respectively.
This leads to another interesting topic which can be studied in the future.
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(a) Dense beacon situation
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Figure 12. CDF comparison for range-based errors and fingerprinting-based errors under dense and
sparse beacon situations using estimated beacon positions and RFM.
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Table 5. Mean error comparisons for range-based positioning and fingerprinting-based positioning
using estimated beacon positions and RFM.

Dense Beacon Situation (m) Sparse Beacon Situation (m)

range-based 3.25 4.69
fingerprinting-based 2.78 4.11

4.3.4. Accuracy Comparisons of the Proposed Method and Another Method

The proposed method provide an efficient way for estimating the beacon positions and the RFM
without dedicated and time costly surveying process at the price of loss of positioning accuracy. However,
considering the time and energy saved from dedicated surveying (it took three persons a whole day to
measure the beacon positions using a total station in our situation), the method is meaningful.

A comparison to the method in [11] is presented here. The results comparisons are shown in
Table 6. Noting that the accuracy of our method indeed is worse than that reported in [11]. However, for
range-based case, our method is exempt of dedicated measuring of beacon positions, while in [11] the
beacons are carefully measured with a range finder. For fingerprinting-based case, our method adopts
an estimated RFM, while in [11] the RFM is constructed by exhaustive surveying 150 points in the site.

Table 6. Mean positioning error comparisons of our method and the method reported in [11].

Dense Beacon Situation (m) Sparse Beacon Situation (m)

range-based (our method) 3.25 4.69
range-based (method in [11]) 2.57 3.93

fingerprinting-based (our method) 2.78 4.11
fingerprinting-based (method in [11]) 1.67 2.83

5. Conclusions

Most BLE beacon-based indoor positioning methods need some pre-requisites prior to positioning.
For range-based methods, the beacons’ positions are needed. For fingerprinting-based methods,
the RFM are needed. Surveying the beacon positions or the RFM is normally an energy intensive
task. This paper proposes an easy way to estimate the pre-requisites for BLE beacon-based indoor
positioning using graph optimization. On the hardware perspective, only the BLE beacons and a
BLE-enabled mobile device is needed. The mean errors of the beacon positions are 1.27 m in dense
beacon situation and 2.26 m in sparse beacon situation. Using the estimated pre-requisites, the BLE
beacon positioning performance is considered enough for many indoor positioning applications,
although it is worse than methods adopting accurate beacon positions and RFM.

In the future, we plan a deeper and more complete research into the proposed method on a wide
range of affecting factors, including the number of beacons needed, the effect of walking persons in
the environment, the effect of more sophisticated path-loss model, the upper bound error, and so on.
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Abbreviations

The following abbreviations are used in this manuscript:

BLE Bluetooth low-energy
PbS position-based service
RFM reference fingerprinting map
RSSI received signal strength indication
PDR pedestrian dead reckoning
GNSS global navigation satellite system
APs access points
RF radio frequency
LSE least square estimation
kNN k-nearest neighbor
IMUs inertial measurement units
ZVU zero-velocity update
RM radio map
SLAM simultaneous localization and mapping
EKF extended Kalman filter
CDFs cumulative distribution functions
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