ﬂ SCNSors m\py

Article

eTPM: A Trusted Cloud Platform Enclave TPM
Scheme Based on Intel SGX Technology

Haonan Sun !, Rongyu He "%, Yong Zhang %*(, Ruiyun Wang !, Wai Hung Ip 3 and
Kai Leung Yung 3

1 Information Science and Technology Institute, Information Engineering University,

Zhengzhou 450001, China; shn4166@163.com (H.S.); wangry@163.com (R.W.)
2 ATR Key Laboratory of National Defense Technology, Shenzhen University, Shenzhen 518060, China
Department of Industrial and Systems Engineering, the Hong Kong Polytechnic University,
Hong Kong SAR 999077, China; wh.ip@polyu.edu.hk (W.H.L); kl.yung@polyu.edu.hk (K.L.Y.)
Correspondence: he_reongyu@hotmail.com (R.H.); yzhang@szu.edu.cn (Y.Z.)

check for

Received: 17 September 2018; Accepted: 30 October 2018; Published: 6 November 2018 updates

Abstract: Today cloud computing is widely used in various industries. While benefiting from the
services provided by the cloud, users are also faced with some security issues, such as information
leakage and data tampering. Ultilizing trusted computing technology to enhance the security
mechanism, defined as trusted cloud, has become a hot research topic in cloud security. Currently,
virtual TPM (vIPM) is commonly used in a trusted cloud to protect the integrity of the cloud
environment. However, the existing vIPM scheme lacks protections of vIPM itself at a runtime
environment. This paper proposed a novel scheme, which designed a new trusted cloud platform
security component, ‘enclave TPM (eTPM)’ to protect cloud and employed Intel SGX to enhance the
security of eTPM. The eTPM is a software component that emulates TPM functions which build trust
and security in cloud and runs in ‘enclave’, an isolation memory zone introduced by SGX. eTPM
can ensure its security at runtime, and protect the integrity of Virtual Machines (VM) according to
user-specific policies. Finally, a prototype for the eTPM scheme was implemented, and experiment
manifested its effectiveness, security, and availability.

Keywords: trusted cloud; intel sgx; memory protection; eTPM; user-specific

1. Introduction

Cloud computing makes precious computing resources become easily available and at a low
cost, and its prominent characteristic is ‘supplement on-demand’ [1]. The rapid development and
widespread application of cloud computing have brought a high convenience to people, but it also
poses new challenges to data security. While the multi-tenancy technology of cloud makes resources
shared, the tenant data faces serious threats which make users focus on data security issues. Potential
risks, such as malicious programs and untrusted threats underlying cloud environments, have caused
many cloud data leakage incidents [2-4] in recent years. So the cloud security protections [5-8] are
indispensable for the information society.

A trusted computing [9] platform can be used to protect the integrity of the cloud [10]. Building a
virtualization Trusted Platform Module (vTPM) [11] by using Virtualization Technology is an effective
method to deal with security threats posed by multi-tenancy of the cloud [12-14]. Multiple vIPM
instances are created in the cloud platform, at the same time bottom-up trust chains and certificate
chains are built to protect the integrity of cloud platforms and clients.

The vIPM architecture in the XEN [15,16], an open source virtual machine monitor developed
by Cambridge University, is shown in Figure 1. The vIPM manager runs in the privileged domain

Sensors 2018, 18, 3807; d0i:10.3390/s18113807 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0001-7714-6006
https://orcid.org/0000-0003-4290-9098
http://dx.doi.org/10.3390/s18113807
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/11/3807?type=check_update&version=2

Sensors 2018, 18, 3807 2 of 23

Domo0, is responsible for creating and managing vITPM instances at its upper layer, and establishes
user-to-vIPM interactions through the front-end and back-end drive mechanism. This scheme can
ensure the secure storage of non-volatile random access memory (NVRAM), and can also effectively
bind the vIPMs to the virtual machines (VMs).

A
3 54
=] <
= =
|77] b w
R i
b= > £ g g S ring3
= = g g g g
- - _ = =] =)
o =8 =4 =1
& & & a
< < < < v
vTP ag; A
Dom0 VM DomU VM DomU VM .
ring]
Server sid Client-side Client-side
TPM Driv TPM Driver TPM Driver
\ A A {7
] .
Hyporvisor ring0
Y
Y
TPM

Figure 1. Virtual Trusted Platform Module (vIPM) architecture. VM: virtual machine.

Although the virtualized TPM provides trusted computing services to enhance the security of the
cloud, in reality there are still attacks against vIPM that threaten the security of the cloud: (1) Attackers
can abuse vIPM to get sensitive data from users because of the binding relationship between the vIPM
and the VM relies on the plaintext configuration file [11], which can easily be tampered with; (2) vIPM
runs on Dom0, but the isolation mechanism based on Dom0 and hypervisor does not provide a secure
execution environment [17,18]. The sensitive data during the running of the vIPM instance is not
guaranteed, and attackers can steal vIPM runtime memory data through memory leak attack; (3) The
integrity protection provided by the vIPM is relatively simple and cannot meet the various security
requirements of cloud users. Users may need security policies according to their own requirements. It
is not only necessary to verify the integrity of the application in the virtual machine, but also to limit
the bootstrap sequence of the applications (for example, the anti-virus software needs to be started
first). At this stage, vITPM obviously cannot meet this demand.

Intel® Software Guard Extensions (Intel® SGX) [19-24] is an extension of the Intel Instruction Set
Architecture (ISA) to enhance software security. SGX technology is of great significance to the security
of cloud computing. It mainly provides instructions for creating a Trusted Execution Environment
(TEE)—Enclave. This method encapsulates the secure operation of legitimate software in an enclave,
and the CPU protects it against malicious software attacks, even privileged software cannot access the
enclave. Enclave’s security boundary contains only the CPU and itself. In theory, SGX can be widely
used in many ways [25,26]; a significant usage is to prevent the compromised OS from attacking
the software.

In order to solve the problems in security vulnerabilities and functional limitations of the current
vTPM scheme, this paper designed a new trusted cloud platform security component ‘eTPM’ which
emulates TPM and implements user-specific functions of trusted cloud based on Intel SGX technology.
eTPM is a security component running in the enclave with a user-specific feature, strong cryptographic
algorithms, and simulates TPM’s trusted functions. The user-specific feature of eTPM makes users can
add user-specific security functions to eTPMs according to their needs. Binding relationships between
the eTPM instances and the users are verified by the CPU. Intel SGX technology provides runtime

Sensors 2018, 18, 3807 3 0of 23

protection that can prevent malicious users or Virtual Machine Manager (VMM) from attacking the
eTPM instances running in enclaves.

The paper is structured as follows: Section 2 summarized the related work. Section 3 introduced
our SGX-based eTPM scheme for Trusted Cloud Platform. Section 4 presented eTPM security
technologies. Section 5 designed a prototype system experiment and verified its effectiveness, security
and availability. Finally, Section 6 outlined the conclusions and directions for future work.

2. Related Work

In 1971, the concept of trusted computing was firstly proposed at the first International Conference
on Fault-Tolerant Computing. In 1985, the U.S. Department of Defense developed the first “Trusted
Computer System Evaluation Criteria’. In 2003, Trusted Computing Group (TCG) released the new
specification V1.2 of the TPM [27].

Virtualization technology provides resource abstraction, isolation, and supplement on-demand for
cloud platforms. In the cloud architecture, VMs are the basic units of shared resource distribution, and
are also closely related to cloud users. The combination of trusted computing and virtualization
provides a security mechanism for the cloud platform and VMs. Berger [11] proposed a TPM
virtualization method that can map a physical TPM into multiple vIPMs. Stumpf F [28] proposed a
solution for constructing a trusted virtual platform, implements the binding of vIPM to physical TPM,
and the construction of vIPM certificate chain. Yuan [29] proposed a vIPM security improvement
scheme based on the KVM architecture, which encrypts and protects the vIPM non-volatile storage
file by using the simulator ‘Qemu’. This scheme ensures the storage security of NVRAM and solves
the binding problem between the vIPMs and the VMs, however, the configuration files that establish
the binding relationships are not protected, and the data of the vIPM instances are not protected at
runtime. Mainstream virtualization platforms including Xen and KVM all have excellent support
for vTPM, while the current vIPM is mainly based on the TPM1.2 standard, which causes the vIPM
digest algorithm (SHA1) have a low-security strength and difficulty of managing a wide variety of
critical certificates. He et al. [30] proposed a user-specific TPM (abbr. as W'TPM) scheme which makes
virtualized TPM instances more suitable for cloud environments, by providing users with policy
configuration capabilities, but also failed to provide pTPM runtime protection. Fortino G. et al. [31]
designed a trust model and an algorithm to form agent groups by using trust measures in the
Cloud of Things. Messina F et al. [32] proposed a reputation-based model capable to support the
composition of complex Cloud services by taking into account both costs and measures of Quality
of Service (QoS). A Iyengar et al. [33] presented a cloud-based system for health care applications
that offers enhanced security and privacy over existing systems. Baumann et al. [34] defined the
concept of shielded execution and present Haven, the first system to implement shielded execution
of unmodified binaries for a commodity OS based on SGX. Arnautov et al. [35] described SCONE, a
secure container mechanism for Docker that uses the SGX trusted execution support of Intel CPUs to
protect container processes from out-side attacks. Fetzer et al. [36] presented the approach pursued in
the context of SERECA1 project to secure micro service based applications based on SGX technology.
Brenner et al. [37] investigated the integration of trusted execution based on SGX into microservice
applications and presented Vert.x Vault, which provides the benefits of micro service architectures
together with trusted execution to support privacy and data confidentiality for sensitive applications
in the cloud at scale.

3. Enclave TPM Scheme

Intel SGX technology can guarantee the trusted execution of Enclave applications based
on hardware CPU protection, and it is explicitly designed for multi-core systems that can be
multi-threaded and can execute multiple enclaves in parallel, which meets cloud computing
requirements. Therefore, with regard to the security vulnerabilities in the current vIPM scheme,
this paper introduces SGX technology, building multiple user-specific software TPM—eTPMs and

Sensors 2018, 18, 3807 4 of 23

loading them into the enclaves for protection. Firstly, simplify functions of TPM, retain the basic
capabilities like measurement, encryption and decryption, sealed storage, and build a more secure and
manageable structure. Secondly, add user-specific security configuration referring to uTPM. Finally,
make eIPM runs in the TEE to ensure its runtime trusted.

3.1. Architecture

3.1.1. Enclave TPM Introduction

eTPM is the core component of the scheme based on SGX. It establishes bottom-up trust chains to
protect the integrity of the cloud platform and provides high-strength key algorithms for VMs. The
user-specific feature of eTPM makes users can add user-specific security functions to eTPMs according
to their needs. And eTPM can protect VM's sensitive data at runtime. For details on the functions and
security mechanisms of eTPM, see Section 4.

3.1.2. Enclave TPM Scheme Architecture

eTPMs are built based on the XEN platform and protected by Intel SGX. It consists of the basic
functions such as measurement, key services, secure storage, and user-specific feature. Figure 2 shows
system architecture, as we can see, the eIPM is loaded on the privileged domain ‘Dom0’ through the
SGX driver of the server, the eTPM and the client VM are bound by the identity seal key. The physical
TPM [38] measures the underlying platform. The integrity of the eTPM instances themselves are
verified by the CPU, and the eTPM instances measure and protect the user VMs. Intel SGX technology
ensures trusted execution of the eTPMs, and users interact with the eTPMs through event channels.

5 = T
p= = pol= =3 o o o)
B2 B << < || < | ring?
o @ o @
Dom0 DomU1 DomUn
T 5 ringl
q . . Betver-side
Server SGX driver PBM drive i
4 1
XEN Virtual Machine Monitor fijfo
CPU (SGX) =

Figure 2. Enclave TPM (eTPM) architecture.

The eTPM system architecture is divided into four levels: (1) The physical hardware layer is
equipped with a hardware TPM and a CPU supporting Intel SGX technology. TPM provides physical
trust root for the underlying platform. And SGX provides memory protection for the upper platform
trusted root ‘eTPM’; (2) In VMM layer (ring0), VMM provides environment isolation and secure
communication channels for upper-layer virtual machines through shared memory and event channels,
and it is responsible for creating, initializing, deleting and managing virtual machines; (3) In the kernel
layer (ring1), the SGX driver module can create enclaves, add or remove enclave pages, and destroy
enclaves; (4) In the application layer (ring3), the eTPM runs in the enclave, an isolation area, and is
dynamically protected by SGX.

3.2. Trust Chains

As shown in Figure 3, this paper proposed a two-level trust chain. The TPM is responsible for
establishing the trust chain of the underlying platform; the eTPM creates the upper-level trust chain.

Sensors 2018, 18, 3807 5 of 23

The two trust chains are connected in the eTPM which is responsible for verifying the measurement
results of the underlying platform. At the same time, a trust relationship between user and eTPM
instance is established through the authentication mechanism. The description of the trust chains are
as follows:

(1) TPM measures the components of the underlying platform and constructs the underlying
platform trust chain step by step according to the order of TPM—CRTM /BIOS—GRUB—XEN
Hypervisor—Dom0.

(2) The eTPM runs above Dom0O and constructs the upper-level trust chain in the order of
eTPM—DomU—App. For the eTPM, the Trusted Computing Base (TCB) only contains the
CPU and the eTPM itself, and the CPU will measure and verify the integrity of the eTPM during
its initialization. The eTPM protected by the SGX may be considered as security at runtime.
The system architecture consists of two roots of trust, TPM and eTPM, which constitutes to the
platform’s underlying trust chain and platform’s upper-level trust chain respectively. In order
to transfer trust from underlying platform to up-level platform, the eTPM internal verification
module verifies the measurement result of the TPM trust chain and feeds back the verification
result only to the VM. This method also avoids the problem of leakage of underlying platform
privacy caused by users’ acquisition of underlying platform measurement data.

(3) Each user can configure and extend eTPM instance and control the VMs according to their security
requirements. And eTPM authentication mechanism which establishes the trust between users
and eTPMs is described in detail in Section 4.4.

| TPM Trust Chain T>||| || Trust transfer >| eTPM Trust Chain T>
Xen ’ '
BIOS (— GRUB [~ . — Dom0 e€IPM1 DomUl App
Hypervisor

1

App

ser

Figure 3. eTPM trust chains.

3.3. User-Specific Feature

The vIPM provides users with integrity protection and key services. However, for cloud users,
vIPM mainly has the following two problems: (1) The integrity of the vIPM itself should be measured
by the TPM. But resources of the physical TPM are limited, and the bootstrap sequence of a large
number of vIPMs in the cloud environment is not static, which makes the TPM unable to meet the
integrity measurement of the vIPMs. vIPM, as the root of trust of user VM client, will lead to the
interruption of the trusted chain if its integrity is not guaranteed; and (2) In the cloud environment,
the security requirements of each user are different (e.g., system component bootstrap sequence
and security policy), but vIPM can only provide basic integrity protection that cannot meet the
personalized needs of cloud users.

For personalized needs of cloud users, eTPM is designed as user-specific. The eTPM is
configurable, as shown in Table 1. The user can configure the eTPM’s personalized protection functions
according to requirements, and can also write other security policy codes to extend the eTPM.

Measurement and verification: The eTPM can measure the integrity of a component and verify
the result, prevent tampered components from starting.

Static protection: The VM OS image is encrypted when the VM is shut down, and it is decrypted
when VM is launched. And sensitive data in the VM can also be processed by using encryption,
decryption, or seal functions.

Sensors 2018, 18, 3807 6 of 23

Dynamic protection: Seal store or instant destruct the temporary data generated during eTPM
trusted execution.

Components bootstrap: Strictly control the bootstrap of components, services, and applications in
the VM. Specify the bootstrap sequence, and prohibit the bootstrap of undefined components.

Personalized requirements: In addition to configuring the above security measures in eTPM, users
can also expand eTPM according to their own needs and SGX programming standards. For instance,
user can check if the configuration of the access control policies has been tampered with and the access
control policies are forced to start. User can also limit the bootstrap sequence of the applications (for
example, the anti-virus software needs to be started first).

Table 1. eTPM user-specific protection functions.

Functions Configuration Description
Measurement and verification Standard configuration Measure and verify the integrity of components
Static protection Standard configuration Encrypt storage OS image, data
Dynamic protection Standard configuration Temporary data security processing
Components bootstrap User self-configuration Component bootstrap order limit
Personalized requirement s User-specific Such as access control policies

4. Enclave TPM

The eTPM is a core component of this architecture. Multiple cryptography related modules of
the eTPM are built by using the SGX trusted cryptography library ‘SGX_tservice’ provided by Intel.
The eTPM is divided into two parts, a trusted part handling sensitive data and an untrusted part
interacting with the cloud user. SGX-based hardware isolation mechanism protects the trusted part of
the eTPM at its running time. In this section, we describe the eTPM in detail.

4.1. Enclave TPM Functions

The TPM is a chip embedded in the main board, with independent executable units, and is a core
component of trusted computing. In practical applications, the TPM can be used in real hardware
or can be simulated by software, such as TPM_emulater, vTPM. The eTPM designed in this paper is
functionally similar to vIPM that provides functions such as key generation, integrity measurement,
and sealed storage. The eTPM functions are shown in Figure 4, it simulates TPM in software and uses
more secure cryptographic algorithms.

Control
module
l ‘

Key Generation Random number Non-volatile Random Access
Module generator module memory Memory

Figure 4. eTPM functional structure.

There are some important functional modules specially designed to support the scheme: (1) The
verification module is responsible for verifying and reporting the integrity measurement results. An
important use of this module is to transfer trust from underlying platform to up-level platform and
avoid the problem of leakage of underlying platform privacy, as described in Section 3.2; (2) The policy
configuration module is used to configure user-specific security policies that users can enhance the
protection of VMs according to their own needs. During eTPM development, users can configure or
write specific policies. And eTPM can additionally protect VMs based on specific policies; (3) The
execution engine mainly runs the program code and completes operations such as eTPM initialization
and measurement; and (4) The I/O channel is mainly responsible for the exchange of commands and

Sensors 2018, 18, 3807 7 of 23

messages between the eTPM and the VM. It also establishes the interaction between the eTPM trusted
part and untrusted part. Regarding cryptographic modules, the more secure cryptographic algorithms
like SHA256, RSA3072, ECC256, and AES are used to provide high-intensity cryptographic services
for VMs. And other modules offer functions similar to TPM to protect cloud platform.

4.2. Enclave TPM Memory Isolation Mechanism

eTPM is a software component based on Intel SGX technology and is protected by the CPU
directly. It can be securely executed in the Enclave without being attacked by a malicious OS or
hypervisor (VMM). When the processor accesses data in the Enclave, it will switch to a new CPU
mode called enclave mode automatically. As shown in Figure 5, the enclave mode enforces additional
hardware checks for each memory access. Enclave Page Cache (EPC) is an encryption memory area
which can prevent data placed in it from being attacked (e.g., memory sniffing). The memory contents
in the EPC are encrypted by the memory encryption engine (MEE) and will be decrypted only when
entering the CPU package.

Memory

Enclave

S5GX
Cru

Encrypted data

Figure 5. Inte] SGX memory isolation mechanism.

Using the memory isolation mechanism provided by SGX, an enclave is firstly created in Dom0
through the SGX driver before creating an eTPM, and then the eTPM library will be loaded into this
isolation area. The eTPM instance code and data are stored in the EPC, so that the sensitive information
in the eTPM instance can be isolated from the ordinary memory space. SGX physical memory isolation
and memory access control mechanisms can ensure that other software, including privileged software,
cannot access this isolation area. Intel SGX is designed specifically for multi-core systems that enclaves
can be multi-threaded, which enables parallel execution of multiple eTPMs, it meets cloud computing
requirements of running multiple VMs at the same time. The data of vIPM instance stored in the
memory is in the form of plaintext which is easily being attacked. While the physical memory isolation
mechanism of the eTPM can effectively protect sensitive data from memory leak attacks, thereby the
confidentiality of memory data at eTPM runtime can be protected.

4.3. Enclave TPM Interaction Interface Designs

In the interaction interface of SGX enclave and external applications, there two types of function
calls are defined: (1) ECALL: ‘Enclave Call’ a call made from outside application to within the enclave;
and (2) OCALL: ‘Out Call’ a call made from within the enclave to the outside application. Because the
enclave has no system I/O function and does not provide system function interfaces, developers need
to use the OCALL functions to jump to the system space if they want to use the system functions.

4.3.1. Enclave TPM Internal Interaction Interfaces

As shown in Figure 6, the eTPM consists of two parts, an internal trusted library ‘eTPM(Trusted)’
and an external application ‘eTPM(Untrusted)’. The trusted library runs inside the enclave and is

Sensors 2018, 18, 3807 8 of 23

composed of sensitive code, sensitive data, key-related contents, etc. ECALL is called when an external
application requires a trusted execution of the eTPM. And when an I/0 and logic processing function
is required in the enclave, OCALL is called to enter the system space to interact with the VM and
transfer parameters.

Untrusted Component
eTPM(Untrusted)

Figure 6. eTPM internal interaction interfaces.
4.3.2. Enclave TPM Main Function Call

The important interaction interfaces design between the internal trusted library and the external
application of the eTPM are shown in Table 2. These interfaces are mainly related to key-related
operations, calculation result outputs, and instruction transmissions.

Table 2. The main function call.

Function Name Interaction Interface Cryptographic Library Interface Description

sgx_rijndacl128GCM_encrypt/ Performs a 128 bit key size Rijndael

ecall_encrypt/ecall_decrypt ECALL sex_rijndacl128GCM_decrypt AdES—GCM encryptlen/
ecryption operation
eacll_generater and ECALL sgx_read_rand Generates atll‘qa ndom number inside
e enclave.
Performs a standard SHA256 hash
ecall_hash ECALL sgx_sha256_msg of the input data buffer.
ecall_sealdata/ecall_unsealdata ECALL sgx_seal_data/sgx_unseal_data Use AES_G.CM to seal /unseal the
input data
. . Generates a private/public key
ecall_ecckeypair ECALL sgx_ecc256_create_key_pair pair on the ECC curve.
Calculates/ Verify the digital
. . . . signature for a given data set based
ecall_rsasign/ecall_rsaverify ECALL sgx_rsa3072_sign/sgx_rsa3072_verify on the RSA 3072 private/
public key.
ecall_aesctrencyrpt/ecall_aesctrdecrypt ECALL sgx_aes_ctr_encrypt/sgx_aes_ctr_decrypt Performing 128-bit Rijndael

AES-CTR encryption/decryption

Create a cryptographic report that
ecall_report ECALL sgx_create_report describes the contents of the
calling enclave.

Generates a 128-bit secret key

ecall_generatekey ECALL sgx_get_key using the input information.
ocall_output OCALL / Output the execution result
ocall_instructions OCALL / Transfer instructions

4.4. Enclave TPM’s Integrity

As the root of trust upper-level trust chain of the cloud platform, the integrity of eTPM itself is
very important. eTPM signature is a self-signed certificate of the eTPM user, namely SIGSTRUCT.
SIGSTRUCT includes eTPM measurement, VM user public key, security version number (SVN),
product ID, and so on. And these security attributes of SIGSTRUCT ensure the eTPM itself can be
trusted in many aspects. The eTPM measurement attribute is related to the integrity of the eTPM itself.

When the eTPM is placed in the EPC, the CPU measures the eTPM to generate a 256-bit hash, and
stores it in the MRENCLAVE register. The CPU compares the value of MRENCLAVE with the eTPM
measurement (reference value) in SIGSTRUCT, if the result is matched, we can conclude that the e TPM
is correctly loaded into the EPC and can be trusted. The CPU allows eTPM initialization only after the
integrity verification satisfies expectations. Measurement and verification of the eTPM by CPU can
ensure the integrity of the eTPM itself.

Sensors 2018, 18, 3807 9 of 23

In addition to integrity verification of the eTPM provided by the CPU, we also designed a remote
attestation mechanism for the eTPM, as shown in Figure 7. This platform is specifically established
the Quoting Enclave (QE) for remote attestation. QE is responsible for generating quotes and signing
quotes, and Intel provides Intel® Enhanced Privacy ID (Intel® EPID) for signing enclave quotes.
Remote attestation process is as follows:

(1) User request: The user sends the request and random number ‘nonce’ to eTPM(Untrusted).

(2) Initialize the eTPM: The eTPM(Untrusted) creates and initializes the eTPM(Trusted). During the
initialization process, the CPU verifies the integrity and identity of the eTPM itself.

(3) Attestation: The session key k0’ is agreed in advance between the user and the eTPM. And ‘e AIK’
is eIPM’s signing key. eTPM(Untrusted) executes an ECALL instruction to enter eTPM(Trusted)
and then forwards request and a random number encrypted by k0 to eTPM(Trusted). Then
the remote attestation report issued by eTPM(Trusted), are forwarded to the platform signing
component QE by the eTPM(Untrusted). QE authenticates the report, converts the report
to ‘quote’, and signs the ‘quote” with EPID, then sends it back to eTPM(Trusted) through
eTPM(Untrusted). Then eTPM(Trusted) signs the quote signed by EPID and random number
‘nonce’ with eAIK, and encrypts them and eAIK certificate together with k0, and then sends them
to the user through eTPM(Untrusted). The user can verify the eTPM after receiving the ‘quote’,
eAIK certificate and ‘nonce’.

‘ eTPM(Untrusted) ‘ ’ eTPM(Trusted) ‘ ‘ Quoting Enclave

|
Request+k0(nonce) L

""""" -, Create Enclave(eTPM)

ECALL+request+k0(nonce) N
T
i
i report

I
|
! Signedepid[quote] !
I
|
|

report

‘ ’. Signedepid[quote]

|
KO(Signedeak[Signedepia[quote],nonce],Certeark

=]

KO(Signedumx[Signedz-p..dquote],noncel,Certmx)‘ |' i
T |
1 |
1 1

SR [S ——

Figure 7. eTPM remote attestation.

4.5. Enclave TPM Binding Relationships

4.5.1. Identity Binding

SIGSTRUCT, which is cryptographically signed by the eTPM user, includes some important
contents such as eTPM measurement, VM user public key, SVN, and product ID. This signature
ensures that the eTPM itself is trusted and establishes the binding relationship between the eTPM and
the VM user from multiple aspects. The main attributes of SIGSTRUCT are described below.

Enclave measurement: A 256-bit hash that identifies the eTPM’s code, initial data, and their
expected sequence and location.

The user’s public key: After the successful initialization of the enclave, the CPU will record the
hash of the eTPM user’s public key in the MRSIGNER register. The contents of MRSIGNER will be
used as the eTPM user’s identity.

SVN: The eTPM user assigns a SVN to the eTPM. The SVN reflects the level of the eTPM security
attributes. After the user adds security policies to the eTPM and improves its security level, the SVN
should be increased monotonously.

Product ID: The user assigns a product ID to his eITPM to distinguish the user’s other
enclave programs.

Sensors 2018, 18, 3807 10 of 23

As shown in Figure 8, during the development phase, the eTPM user provides the SVN, product
ID, and signature key pair for generating the SIGSTRUCT. The CPU uses the public key of the signing
key pair to derive the eTPM user identity and then uses the private key to sign the eTPM.

Measurement
SVN
eTPM Owner’s
Public Key
eTPM signature
ProductID
roduc Generate (SIGSTRUCT) Include SVN
Signing Ky ProductID
Pair

Figure 8. eTPM signature.

The eTPM performs integrity and identity authentication during its bootstrap: (1) The CPU firstly
measures and verifies the integrity of the eTPM placed in the EPC as described in Section 4.4. Then
eTPM initialization is allowed; (2) After the eTPM is initialized, the CPU records the hash of the e TPM
user’s public key in the MRSIGNER register as the eTPM user’s identity; (3) And the CPU records
the SVN assigned by eTPM user which indicates the eTPM security level; and (4) Similarly, the CPU
records the Product ID.

The VM is in an encrypted state before it is launched and can only be decrypted by the
corresponding eTPM. The VM is encrypted by the eTPM when shutting down. Bootstrap process of
VM as follows: (1) The user logs in the cloud platform and requests to launch the eTPM; (2) After the
eTPM completes the identity and integrity check, it is allowed to be initialized and launched; and
(3) The corresponding VM image need be decrypted, measured and verified by eTPM before eTPM
launches the VM.

This architecture establishes identity binding relationships between eTPM, users, and guest VMs
through eTPM user key pairs, SIGSTRUCT, and VM bootstrap control mechanism. And the identity
binding relationship is guaranteed by CPU: The eTPM can be initialized only when the integrity and
identity are verified by CPU.

4.5.2. Data Binding

Enclave has two sealing policies: (1) Seal to the current enclave. The seal key is bound to the
current version of the enclave measurement (MENCLAVE). Only enclaves with the same MRENCLAVE
measurement value can unseal the sealed data; and (2) Seal to the enclave author. When the Enclave
is initialized, the CPU stores the author’s identity in the MRSIGNER register, and then binds the
MRSIGNER value and product ID to the seal key. Only when the enclave matches the MRSIGNER
register value and has the same product ID, can unseal the sealed data.

The first kind of sealing policy makes the sealed data valid only for the current undisturbed
enclave; The second sealing policy binds the sealed data with the identity of the enclave author
(corresponds to eTPM user), so that the user can update the eTPM and the sealed data is still valid. At
the same time, the sealed key between each VM cannot be mixed.

eTPM use the method ‘sealing to the enclave author” has the following two benefits: (1) eTPM
instance and user sensitive data are tightly bound because sealed data can only be unsealed in the
eTPM with the correct identity, that helps prevent attackers (malicious users) from stealing users’
confidential information by misusing the eTPM instances; and (2) Sensitive data are bound to the
user’s identity rather than eTPM measurement value. This is more suitable for our user-specific eTPM,
for the reason that the sealed data can still be unsealed after user updates eTPM.

Sensors 2018, 18, 3807 11 of 23

4.6. Enclave TPM Key Management

4.6.1. Key Derivation

The eTPM platform designed in this paper requires three attributes for key derivation: SVNs,
Device Keys, and Owner Epoch. The device key is a 128-bit number bound to the processor, represents
the environment of the hardware platform; Owner Epoch is the key that Intel assigns to the owner of
the platform, giving the owner ability to add key entropy values. As shown in Figure 9, the derivation
of the eTPM key is jointly determined by the VM user, the device, and the platform service provider.
And this mechanism enables the platform owner (cloud service provider) to change all the keys in the
system through owner epoch. In particular, when the platform is migrated or transferred, the purpose
of denying others access to sealed data can be achieved by changing/restoring the owner epoch.

SGX Device Owner
SVNs Keys Epoch

» Key Derivation

Seal Key,Report Key,etc.

Figure 9. Key derivation.
4.6.2. Cryptographic Algorithm

The eTPM supports cryptographic algorithms such as SHA256, AES (rijndael128), ECC256, and
RSA3072. Compared with vIPM’s major algorithms like SHA-1, eTPM’s key algorithm has higher
security. In addition, the user-specific eTPM allows users to add more cryptographic algorithms.

4.7. Enclave TPM Trusted Execution

The workflow of eTPM is shown in Figure 10. The eTPM user requests to load the corresponding
eTPM instance, then the eTPM user and eTPM instance authenticate each other after the eTPM instance
is initialized; If the authentication is passed, the eITPM decrypts, measures, and launches the VM image;
After the VM is launched, a session between the VM and the eTPM is established, then VM can use the
eTPM to perform key-related or user-specific trusted executions; When the user needs to shut down
the VM, a request is sent to the eTPM, and then the eTPM encrypts and stores the user VM image.

The process can be divided into four phases: (1) Bootstrap of eTPM; (2) Bootstrap of VM; (3) eTPM
trusted execution; and (4) VM and eTPM shutdown phase. The formal description of the process is
as follows:

(1) Bootstrap of eTPM:

Messagel — User — Receiver : Request, { [nonce0] ;1 } ko

Message2 Receiver — eTPM(Untrusted) : Request, {[nonce0] ;1 } ko

Message3 ~ eTPM(Untrusted) — eTPM(Trusted) : {[nonce0],;-1}ko

Messaged eTPM(Trusted) — eTPM(Untrusted) : report

Message5 — eTPM(Untrusted) — QE : report

Message6 QE — eTPM(Untrusted) : [quote]pp;p1

Message7 eTPM(Untrusted) — User : {[[quote]gp;p-1,nonce0], 411, Certearx } ko

The user requests the cloud server’s ‘Receiver module’ to launch the specified eTPM, and this
module forwards the remote authentication request, the random number signed by user’s identity
key ‘uk’ and encrypted by session key ‘k0’ to the eTPM. After the eTPM(Untrusted) is launched by

Sensors 2018, 18, 3807 12 of 23

the Receiver module, the eTPM(Trusted) starts to be initialized, and the CPU will verify the integrity
and identity of the eTPM itself during initialization. Then The eTPM(Untrusted) sends an ECALL
instruction to enter eTPM(Trusted) and forwards the encrypted and signed nonce to eTPM(Trusted).
After the identity of the user verification by eTPM(Trusted) is passed, perform the eTPM remote
attestation at Section 4.4.

.] uotin
User ‘ VM Receiver ‘ eTPM(Untrusted) } eTPM(Trusted) ?nda\'f
: Request(Specify the eTEM)+k0(Signed.s[nonce0]) | H 1 '
kO=session, key sques Signe 0y | ! !

| es:) T :] Request+k0(Signedu[noncel]) - Create Enclave(eT I’N:l] i
i i ECALL+k0(Signed.[noncey |
H H verify H
i ‘ | OCALL b idlentity i
1 ' report ! report
1 | ! Signedepia[quote] | J
| K0(Signed.ax[Signed.pia[quote],noncel], Certear) | | H

() N ki(request) | H H
! ! i T 1 kO{request) '
; ; 3 ' j , decryptvmimg |
| i i ; i
i i | i i
: : i : measure vim.amg]
| 1 | |
i i i
| | » verify vm.img !
| i] OCALL e |
: ; Iboot vm.img + ki(noncel) []' boot vm.img + k)(nonce] |
i i 7 i i
H [1k0(success+noncel) i 1
E : i ‘ kO(succes+noncel) |) 3
| | : : result | | verify result |
i i i [L+ T i
! ' ! waiting... . ! !
| | |' | | |
| ‘Request+k0(parameter) H | |
! ! [1 ECALL+k0(parameter) | | |
i i T i
| | | . trusted !
| ; ' OCALL - execution !
! | /O ‘]- Request [/O | |
| | ’. Request+k((parameter) : \)
| ! 1 kO(parameter) ! !
i i i -‘ trusted i
i | b kO(result) execution i
| | | kD(result)) 1
| T I |
i i i
i 1 ‘*.hm down shut down vm :
| i) J‘ ECALL#encrypt(vm) | | .
1 i -
i i kO(result) TL . encrypt vm.img
| I | —
A 1 kD(result) : L Déstroy Enclave(TPM)

Figure 10. eTPM work flow.
(2) Bootstrap of VM:

Messagel User — eTPM(Untrusted) : { Request } ko

Message2 eTPM(Untrusted) — eTPM(Trusted) : {Request} g,
Message3 ~ eTPM(Trusted) — eTPM(Untrusted) : {noncel} g,
Messaged eTPM(Untrusted) — VM : {noncel}y,

Message5 VM — eTPM(Untrusted) : {success, noncel}

Message6 eTPM(Untrusted) — eTPM(Trusted) : {success, noncel}
Message7 ~ eTPM(Trusted) — eTPM(Untrusted) : result

eTPM starts to launch the VM after receiving the request. The eTPM(Trusted) decrypts, measures
and verifies VM image. After the verification is passed, the OCALL instruction is issued to
notify the eTPM(Untrusted) to launch the user VM image, and forward ‘kO(noncel)’ to the VM
through eTPM(Untrusted). After the VM starts up, the message ‘kO(success+nonncel)’ is sent to
eTPM(Untrusted), then the message is forwarded to eTPM(Trusted) as a parameter of OCALL. After
the eTPM(Trusted) verifies the message of the launched VM, it completes the VM bootstrap and returns
the bootstrap result to the eTPM(Untrusted). Then eTPM(Untrusted) turns to the listening state.

Sensors 2018, 18, 3807 13 of 23

(3) eTPM trusted execution:

Messagel VM — eTPM(Untrusted) : Request, { parameter }
Message2 eTPM(Untrusted) — eTPM(Trusted) : { parameter}
Message3 ~ eTPM(Trusted) — eTPM(Untrusted) : {result},
Messaged eTPM(Unrusted) — VM : {result}y,

The eTPM(Untrusted) waits for user instructions after the VM is launched. When eTPM is needed,
the user sends the request and parameter ‘kO(parameter)’ to eTPM(Untrusted). The eTPM(Untrusted)
calls correlation function of the eTPM(Trusted) through ECALL for trusted executions. Part of the
trusted executions is shown in Table 3.

(4) VM and eTPM shutdown phase:

Messagel VM — eTPM(Untrusted) : shutdown

Message2 eTPM(Untrusted) — eTPM(Trusted) : encrypt
Message3 ~ eTPM(Trusted) — eTPM(Untrusted) : {result}y,
Message4 eTPM(Untrusted) — User : {result}y,

When the user is ready to shut down the VM, it sends a shutdown request to the eTPM(Untrusted).
The eTPM(Untrusted) shuts down the VM and sends an ECALL to encrypt VM image. Then
the eTPM(Trusted) encrypts the VM image and returns the ECALL result ‘kO(result)’. And the
eTPM(Untrusted) executes the command to destroy eTPM(Trusted) and returns ‘kO(result)’ to the user.
The user can confirm the shutdown process by verifying the result.

Table 3. Trusted execution.

Trusted Execution Description
Verify the integrity of the Get the TPM’s measurement values for the underlying
underlying platform platform and verify them in the eTPM, to connect trust chains.
Measure and verify data Measure and verify user’s data within eTPM

Seal/unseal user’s sensitive data or keys so that the data or

Seal/unseal data keys can only be unsealed in the user’s eTPM.

Use the key algorithm provided by eTPM to encrypt/decrypt

Encrypt/decrypt data user’s data so that data can be securely stored on the hard disk.

Users can expand eTPM according to their own needs, add

User-specific trusted execution . ;
specific functions.

5. Experiments and Analysis

This paper described the development of a prototype system for the eTPM scheme based on Intel
SGX technology. The system platform configuration is as follows: Intel(R) Core(TM) i7 CPU; TPM
v1.2; Intel Linux SGX driver and SDK v2.11; XEN para-virtualized platform v4.4; DomO kernel version:
Linux 4.5.2; DomU kernel version: Linux 3.9.1. At present, Intel’s latest SGX patch package supports
the virtualization of SGX on KVM and XEN platforms. It also supports running the enclave in VMs.
However, this article considered the following reasons to choose to run the enclave on the privileged
domain: (1) If virtualized SGX technology is used in VMs, the VM image cannot be measured before
the system starts; and (2) At present, SGX technology only supports up to 128 MB memory. If this
technology is used in each VM, it may cause the problem of overload.

Experiments in this chapter are to verify the effectiveness, security, and availability of the eTPM
system. (1) The effectiveness of eTPM was verified through simulation experiments on eTPM workflow;
(2) The security of eTPM was analysed through formal proof of remote attestation protocol, memory
protection experiment and sealed data protection experiment; (3) The availability of eTPM was

Sensors 2018, 18, 3807 14 of 23

analysed by comparing performance with other trusted cloud schemes. And the experimental results
and conclusions are based on the assumption that SGX is secure.

5.1. Enclave TPM Effectiveness

The experiment in this section verified the effectiveness of the eTPM through the simulation of
the workflow shown in Figure 10. The experiment based on the assumption that the user and the
eTPM completed the mutual authentication already. The experiment in this section completed the
trusted bootstrap of the user’s VM by the eTPM, applied a personalized security policy, and requested
the eTPM to process sensitive data, as shown in Figure 11.

root@pc: /home/fshn/eTPM

[decrypt input_file to output_file (by path)]
INIT ENCLAVE DECRYPTION...
: DECRYPT RESULT: SGX_SUCCESS
eTPM1 DECRYPT] Decryption file (inputtest/nodel.img) created!
eTPM1 DECRYPT] Final decryption time: ©.000226 seconds.

[
NCLAVE[ETPMl] hash sha256 RESULT: SGX_SUCCESS
ha256:: FF9858CAF4BD62C4F36C4EEF56C519AE4EECF9C6D3B61E378FOC457173ECAST6
easured the file
NCLAVE[eTPM1]: Verify integrity RESULT: SUCCESS
aunch the virtual machine (nodel.img) :x1 create -c nodel.cfg
aunch the virtual machine (nodel.img) :SUCCESS

aiting for instructions
User-Specific function
ENCLAVE[eTPMl] measure and and verify the file interfaces
ENCLAVE[eTPM1]: hash sha256 RESULT: SGX_SUCCESS
sha256:: D3A56A7C1A9109A8B6B1C351FE40333D715C6D8D36866BFSEFB12F3CBC1BO641
measured the file
ENCLAVE[eTPM1]: Verify integrity RESULT: SUCCESS
[eTPM1 DECRYPT] Dncryption file (outputtest/test.txt) created!
eTPM1 DECRYPT] Final decryption time: 0.000218 seconds.

aiting for instructions
= =[encrypt input_file to output_file (by path)]==
NCLAVE[eTPM1]: INIT ENCLAVE ENCRYPTION.

NCLAVE[eTPM1]: RAND RESULT: SGX_SUCCESS

NCLAVE[eTPM1]: ENCRYPT RESULT: SGX_SUCCESS
[eTPM1 ENCRYPT] Encryption file (outputtest/1.txt.en) created!

eTPM1 ENCRYPT] Final encryption time: 0.0800257 seconds.

keypair general/seal/unseal(static:save sealed sk)]
_generate keypair RESULT: SGX_SUCCESS

[ecall_generate_keypair] Public Key: F33F63872B6BFBOESB1CE4A862F1F187C2118744FOBIEC3061FO88E4D2CTBCT3
[ecall_generate_keypair] Private Key: 0CCO9C78D49404F1A4E31B579DOEOET83DEE78BBOF4613CFOEOF771B2D38438C
return pk:F33F63872B6BFBOESB1CE4A862F1F187C2118744FOB9EC3061FO88E4D2C7BC73
call_generate_keypair Success
[ecall_seal_keypair] Public Key: F33F63872B6BFBOESB1CE4A862F1F187C2118744FOB9EC3061FO88E4D2CTBCT3
[ecall_seal_keypair] Private Key: 0CCO9C78D49404F1A4E31B579DOEOET83DEE78BBOF4613CFOEOF771B2D38438C
NCLAVE[eTPM1]: ecall_seal_keypair() RESULT: SGX_SUCCESS
pcall_fs_write
keypair.sealed : 624 Bytes
call_seal_keypair Success
call_fs_read: get sealddate:keypair.sealed
NCLAVE[eTPMl] ecall_unseal_keypair RESULT: SGX_SUCCESS
nsealed Priavte Key: ©CCO9CT8D49404F1A4E31B579DOEOE783DEE78BBOF4613CFOEOF771B2D38438C
call unseal keypair Success

Figure 11. eTPM1 work flow experiment.

The experimental process is described as follows:

(1) The eTPM firstly decrypts the image of the VM ‘nodel’.

Sensors 2018, 18, 3807 15 of 23

(2) The eTPM1 measures the image of nodel and that the measured values match the reference
values. Then nodel is launched and a random number ‘noncel” encrypted by the session key ‘K0’
is sent to nodel.

(3) After nodel is launched, a session with the eTPM1 is established and then a message that
indicates VM launched successfully is sent to eTPM1 by nodel. When eTPM1 receives this
feedback message, it changes into the state of ‘waiting for instructions’.

The nodel user has defined the personalized security policy for eTPM1 before: The file of nodel
can be decrypted only if the network configuration file of nodel has not been tampered. When eTPM1
receives the request for decrypting the file, it firstly checks the network configuration file of nodel.
After the verification is passed, eTPM1 decrypts the file.

(4) eTPM1 encrypts the file according to the request of encrypting a file.
(5) eTPMI generates, seals, and unseals a key pair according to the request.

This experiment implements some of the processes in Figure 10 that completes the trusted
bootstrap of the user’s VM by eTPM, applies a personalized security policy, and requests the
eTPM to process sensitive data. Experimental results demonstrate the effectiveness of eTPM from
functional implementation.

5.2. Enclave TPM Security

This section proves the security of the protocol through SVO logic formalization, and verifies
memory security and storage data security through memory access experiments and sealed data
access experiments.

SGX does have vulnerabilities in practice. The existing problems are mainly concentrated on: (1)
putting malicious code into the enclave to cause data leakage in the memory protection area; (2) SGX
technology suffers from side channel attacks. But for the following reasons we assume that SGX is
securely in the system: (1) The initialization of the eTPM is verified by the CPU. Therefore, we believe
that eTPM is trustworthy and there is no such thing as malicious code entering the enclave; (2) The
cloud infrastructure is the responsibility of the service provider. We believe that the physical facilities
of the data center are highly secure and can avoid the behaviour of physical attacks.

5.2.1. Protocol Security

The eTPM workflow includes remote attestation and trusted executions related to keys and
sensitive data. Taking remote attestation as an example, a short formal proof and analysis of remote
attestation protocol based on SVO logic [39,40], a kind of BAN-like logic, was given. The core protocols
in remote proof are as follows:

Messagel — User — eTPM : {{nonce} . 1}xo

Message2 eTPM — QE : report

Message3 ~ QE — eTPM : [quote]ppip-1

Messaged eTPM — User : {[[quote]pp;p-1, nonce), oix-1, Certearx f ko

The protocol should achieve the following objectives: User can verify the identity of the message
sender and can verify the freshness of the message to prevent replay attacks during the communication.
The SVO logic is used to prove and analyse the eTPM remote attestation mechanism. And the result
shows that the method can achieve the desired objective and prevent replay attack.

The symbols and meanings commonly used in SVO logic are shown in Table 4.

Sensors 2018, 18, 3807 16 of 23

Table 4. SVO logical symbols.

Symbol =] |~ < = > # D) =

meaning believes says said received equals sees/has fresh() implies controls

The symbols used in this paper are explained as follows:

K~!: The decryption key corresponding to the key K.

{xF} «: Message X encrypted into a ciphertext by key K. P is the sender (usually omitted).

[X]g-1: Message X signed by K1, i.e., [X]g-1 = X, {H(X)}x-1. H() is the hash function.

PK(P,K): K is the public key of the principal P, and K~! is the corresponding private key.

PK,(P,K): K is the public encryption key of principal P.

SV(X,K,Y): The key K can be used to verify that X is the signature of Y.

P& Q: Kis a good shared key between P and Q.

SVO logic divides the language into message language Mr and formula language Fr on setI'. I is
the set of atomic terms, consisting of a set of constant symbols that do not intersect each other.

Definition 1. Mr is the smallest language satisfying:

(1) Xisamessage, If X € T.
(2) F(Xy,---,Xg)isamessage, if Xq,--- , Xy are messages. F is any n-dimensional function.

(3) @isamessage if ¢ is a formula.

Definition 2. Fr is the smallest language satisfying:

(1) ¢ isaformula, if ¢ isa primitive proposition.

(2) —¢and ¢ NP are formulae(Includes other propositions connected by — and M), if ¢ and are formulae.
(3) P|= ¢ and P|= ¢ are formulae, if P is a principal and ¢ is a formula.

(4) PX,P <X, Pl~X, P|= X and #(X) are formulae, if P is a principal and X is a message.

5) P& Q, PK(P,K) and PK are formulae, if P is a principal and K is a key.

SVO logic has two basic inference rules:
Modus Ponens (MP): From ¢ and ¢ D ¢ infer ¢;
Necessitation (Nec): From ¢ infer P|= ¢. (The meaning of is explained in Definition 3).

Definition 3. If () is a set of initialization assumptions for a protocol, and T is a set of formulae, then a proof of
QI in SVO logic means that there is a formulae sequence Fy, Fy, - - - , F,, of limited length such that T is a subset
of {F1,F,--- ,Eu}, and for Vi € {1,2,...,n}, F; satisfies one of the following three conditions:

(1) E is an instantiation of an axiom;
(2) F is an assumption;
(3) E; can be derived from some of the preceding formulae by using MP or Nec rules.

If @I has a proof in the SVO logic, then the conclusion ¢T is established. If () = ¢, we can simply
write ¢I' as I'. According to the rationality of the SVO logic, there is: if the proposition in I' is all true,
then the proposition in I' is all true.

The axioms and conclusion used are listed below:

(1) Believing:

A0 (Pl=¢APl=y) = (PI= (/D))

Sensors 2018, 18, 3807 17 of 23

Al Pl=¢AP=(¢D¢)DP|=y
(2) Receiving:

A7 P<(Xy,--,Xn) DP X
A8 (P<{X}yAPKHDOPaX
A9 P<«[X|gDP<X

(3) Seeing:

Al0 P<XDPX
(4) Freshness:

A18 #(X;) D#(F(Xy, -+, Xn))

Conclusion 1. Using the Al axiom and MP rules, the following common conclusion can be obtained:
Al + MP (P|= 9@ AP|=(9p D ¢)) DP|=1.

We assume that the user can verify the eTPM signature (signature of eAIK), the eAIK’s certificate
‘CerteAIK’ and the platform signature (signature of the EPID). eITPM and QE use Secure Channel
for messaging within the platform. And there is a good session key KO between the user’s eTPM.
Assumption set as follows, where principal U stands for the user, principal E stands for eTPM, and
principal P stands for platform:

Pl U|= PK,(E,eAIK)

P2 U|= PK,(P,EPID)

P3 U|= UeAIK

P4 U|= UKO

P5 U|=UEPID

(UeAIK A (U|= PKy(E,eAIK)) A U[[quote]gp;p-1, noncel], 1)
D SV/([[quote]pp;p-1,noncel, 5 x-1,eAIK, ([quote] pp;p-1, nonce))
P7 (UEPID A (U|= PKy(P,EPID)) A Ulquote]gp;p-1) D SV ([quote]gp;p-1, EPID, quote)
P8 U|= #(nonce)

P9 U < {[[quote|gp;p-1,nonce], o1, Certearx} o

P10 D|=U < {[[quote]gp;p-1,noncel], o 1, Certearx o

P6

Formal proof and analysis as follows:
Available from assumptions P10, P4 and Axiom AQ:

U|= U < {[[quote]gp;p-1,nonce], 411, Certeark } 1o N UKO. (1)

Instantiate the axiom A8 and available from Nec rule:

U|= (U < {[[quote]gp;p-1,n0once], 41x-1,Certearx fxo A UKO).

2
D U < ([[quote]gprp-1,m0nce] , o x-1,Certeark).
Available from Equations (1) and (2) and conclusion Al + MP:
U|= U < ([[quote]gpip-1,nonce] , 4 1x-1, Certear)- (3)

Instantiate the axiom A7 and available from Nec rule:

U|= U < ([[quote]gpip-1,nonce] 4151, Certearx) D U < [[quote] ppip-1,noncel , 4 -1 4)

Sensors 2018, 18, 3807 18 of 23

Available from Equations (3) and (4) and conclusion Al + MP:
U|= U < [[quote]gpp-1,nonce] , 4 x-1- ()
Instantiate the axiom A9, A10 and available from Nec rule:
U|= U < [[quote]gpip-1,n0nce] , -1 DO U < [[quote]ppp-1, nonce]. (6)

U|= U < [[quote]gpip-1,nonce] , , -1 D U[[quote] gpp-1,noncel , 4 1. (7)

Available from Equations (5) and (7) and conclusion Al + MP:
U|= Ul[quote]pp;p-1, nonce] , 4 x-1- (8)
Available from assumptions P3, P1, Equation (8) and axiom AO:
U|= (UeAIK A (U|= PKy(E, eAIK)) A U[[quote] gpip-1, noncel, 4 x—1)- ©)
Instantiate the assumption P9 and available from Nec rule:

U|= (UeAIK A (U|= PKy(E, eAIK)) A U[[quote] gpp-1, noncel, 4 jx-1)-

D SV([[quote] EpiD-1,10nce], 4 1x-1,AIK, ([quote] gp;p-1,nonce)). (10)
Available from Equations (9) and (10) and conclusion Al + MP:
U|= SV ([[quote]ppip-1,nonce], 41, eAIK, ([quote] g pyp -1, nonce)). (11)
Instantiate the axiom A18 and available from Nec rule:
U|= #(nonce) D #([[|quote]gp;p-1,nonce], 4 x-1)- (12)
Available from assumption P8, Equation (12) and conclusion Al + MP:
U|= #([[quote] ppip-1, nonce], 4 x—1)- (13)
The following result is easily obtained in the same way:
U|= SV ([quote]zp;p-1, EPID, quote). (14)

For the principal U, the following results are obtained according to the Equations (11), (13) and (14).
The results show that: User believes that the remote attestation report is signed by the corresponding
eTPM and platform, and believes the report is fresh:

U|= SV ([[quote]gp;p-1,nonce], 4 -1, AIK, ([quote] pp;y 1, nonce)),

U|= #([[quotelgpp1, nonce] g -1),
U|= SV ([quote]zp;p-1, EPID, quote).
By using SVO logic to briefly prove the remote attestation protocol, we can conclude that: User

can verify identity of the message sender and can verify the freshness of the message to prevent replay
attacks during the remote attestation.

Sensors 2018, 18, 3807 19 of 23

5.2.2. Memory Security

The eTPM stores and processes sensitive data in its isolated area, so that attackers cannot steal data
in the eTPM through memory sniffing. In this section and Section 5.2.3, we defined three roles, namely
user A: the eTPM1 user, user B: the VMM privileged administrator, and user C: eTPM2 user. The
experiments simulate these three roles to access the sensitive data in the current eTPM memory space
respectively, and the experimental results prove that the eTPM has capabilities of runtime protection.

Figure 12 shows an experiment in which user A and user B attempt to access data of current
eTPM1 respectively. As shown in Figure 13,) A non-sensitive data stored outside the memory
isolation area, and user A outputs its content and address. (2) User B can read this data by accessing the
memory address. (3 The eTPM1 sensitive data are stored in the isolated memory area, user A outputs
the address and content of the data through the OCALL interface. (@ User B attempts to access the
data in eTPM1 through the address, as a result, the data cannot be read. This experiment proves that
the eTPM runtime sensitive data is only accessible to current eTPM users. Even if the VMM privileged
administrator cannot access sensitive data, it proved that the eTPM can protect the data at runtime.

@ ™5 root@pc: /home/shn/eTPM

(gdb) break 350

Breakpoint 1 at 0x4033cf: file eTPM1App.cpp, line 358.

(gdb) r -a

Starting program: /home/shn/eTPM/eTPM1 -a

[Thread debugging using libthread_db enabled]

Using host libthread db library "/1ib/x86_64-1linux-gnu/libthread_db.so.1".

ENCLAVE[eTPM1]: INIT ENCLAVE ENCRYPTION...

==[accesstest entest.txt (sinale file)]
testdata outside the eTPM1:
testdata address:@x6lef9e
testdata:abcdefg

ENCLAVE[eTPM estdata in the eTPM1
testdata add Tfffffffdile

Breakpoint 1, access (eid=2, path=0x404ae8 "entest.txt") at eTPM1App.cpp, line 350.
350 ocall print uint(plain,file size);

(gdb) x/sb 0x61ef90

0x61ef90: "abcdefa\n\210{a\367\377\177"

(gdb) x/sb ex7fffffffdiie y
ex?fffifffdllo: ks

Figure 12. Memory data test.

rook@pc: fhome/shnfeTPM

[keypair unseal(static:sealed sk)]
: 624 Bytes
ocall fs read: get sealddate:keypair.sealed
ENCLAVE[eTPM2]: ecall unseal keypalr RESULT: SGX_ERROR
Unsealed Priavte Key:
ecall unseal keypair ERROR

Waiting for instructions :|j

Figure 13. Storage data test.

5.2.3. Data Security

The eTPM can also encrypt or seal its data, it is impossible for attackers to steal static data at
rest. The following experiment shows that an attacker cannot obtain sensitive data from users by
abusing eTPM.

Figure 13 is an experiment that user C trying to read the sealed key pair of user A through his
eTPM. As shown in Figure 13, the user C uses eTPM2 to unseal the key pair sealed by the eTPM]1,
and as a result, the operation cannot be performed and the content of the key pair cannot be read

Sensors 2018, 18, 3807 20 of 23

efficiently. This experiment proves that there is a binding relationship between the eTPM and the
data, the malicious user cannot abuse the eTPMs to steal data which is securely stored by eTPMs of
other users.

In this section, the security of the protocol is analysed through formal proof, and the memory
security and data security are analysed through experiments. The formal proof demonstrates that user
can verify eTPM identity during remote attestation, etc., and the protocols can resist replay attacks
during interaction. And experiments above proved that eTPM can resist memory sniffing attacks and
can prevent stored files from being attacked.

5.3. Enclave TPM Availability

The experiment in this section verifies the availability of the eTPM by comparing the booting
time of the VMs in the eTPM scheme and the vIPM scheme [11] on Xen, and we use booting time
of the VMs without protection as the benchmark. We conduct this experiment 20 times and record
the average booting time as shown in Figure 14. The result of experimental shows that the booting
time of the VMs with protection schemes has increased obviously compared with the benchmark
because of the security mechanisms, while increased booting time of the VMs in eTPM scheme is only
8.7 s compared with the vIPM scheme which does not exceed 10%. This experiment proves that the
increased performance overhead of the eTPM scheme is within an acceptable range.

Without protection .

Booting Time(seconds)

B Without protection
vIPM g
225 OvTPM
HeTPM
0 20 40 60 80 100 120

Figure 14. Booting time of VMs.

Experiments in this chapter are to verify the effectiveness, security, and availability of the eTPM
system. The results show that: (1) The effectiveness of eTPM is verified from the perspective of
performing functions. And eTPM can effectively implement its workflow. (2) The security of the
protocol is analysed through formal proof, and the memory security and data security are analysed
through experiments. The formal proof demonstrates that user can verify eTPM identity during remote
attestation, etc., and the protocols can resist replay attacks during interaction. And experiments proved
that eTPM can resist memory sniffing attacks and can prevent stored files from being attacked. (3) The
availability of the eTPM is verified by comparing the booting time of the VMs in the eTPM scheme
and the vIPM scheme on xen. And the increased performance overhead of the eTPM scheme is within
an acceptable range.

6. Conclusions and Future Work

Recently, attacks such as memory sniffing and data tampering have caused a large number of
security incidents in the cloud environment. Existing trusted cloud vIPM scheme lacks memory
protection and some other vital security protection problems that cannot against such attacks. To
resolve the problems, we proposed a novel trusted cloud platform security component ‘eTPM’,

Sensors 2018, 18, 3807 21 of 23

and designed a trusted cloud platform scheme based on eTPM. Here key issues in the design and
implementation process of eTPM are studied in detail, including its architecture, trust chain, and
user-specific capabilities.

Our proposed eTPM scheme focuses on the runtime trusted, key algorithm security, and
user-specific feature, besides, the binding relationship between eTPM and VM is protected by hardware.
We have elaborated the detail design of the architecture and finally, a prototype system is implemented
on the xen; various tests were carried out, and the experiment manifests its effectiveness, security,
and availability.

Author Contributions: Software development & experiments, H.S. and R.W.; Literature review, Writing-original
draft, H.S.; Project Supervision, R.H. and Y.Z.; Data analysis, Writing—review & editing and further developments,
HS., RH,YZ,RW,WHI, and K.L.Y.

Funding: This work was supported by the National Science Foundation of China (No. 61572517), the Science and
Technology Plan Projects of Shenzhen (No. JCY]20170302145623566). The work was also partially supported by
the grants from the Department of Industrial and Systems Engineering, the Hong Kong Polytechnic University,
China (H-ZG3K).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Mell, P; Grance, T. The NIST Definition of Cloud Computing; National Institute of Standards and Technology:
Gaithersburg, MD, USA, 2011.

2. Chen, Y, Paxson, V.; Katz, R.H. What’s New about Cloud Computing Security; University of California, Berkeley
Report No. UCB/EECS-2010-5 August; University of California: Oakland, CA, USA, 2010; Volume 20,
p- 2010-5.

3. Ristenpart, T.; Tromer, E.; Shacham, H.; Savage, S. Hey, you, get off of my cloud: Exploring information
leakage in third-party compute clouds. In Proceedings of the 16th ACM Conference on Computer and
Communications Security, Chicago, IL, USA, 9-13 November 2009; pp. 199-212.

4. Jiang,].; Han, G.; Shu, L.; Chan, S.; Wang, K. A trust model based on cloud theory in underwater acoustic
sensor networks. IEEE Trans. Ind. Inform. 2017, 13, 342-350. [CrossRef]

5. Kaufman, L.M. Data security in the world of cloud computing. IEEE Secur. Priv. 2009, 7, 61-64. [CrossRef]

6. Khalil, LM.; Khreishah, A.; Azeem, M. Cloud computing security: A survey. Computers 2014, 3, 1-35.
[CrossRef]

7. Liu, Y;; Sun, Y; Ryoo, J.; Rizvi, S.; Vasilakos, A.V. A survey of security and privacy challenges in cloud
computing: Solutions and future directions. J. Comput. Sci. Eng. 2015, 9, 119-133. [CrossRef]

8. Coppolino, L.; D’antonio, S.; Mazzeo, G.; Romano, L. Cloud security: Emerging threats and current solutions.
Comput. Electr. Eng. 2017, 59, 126-140. [CrossRef]

9. Martin, A. The Ten-Page Introduction to Trusted Computing; Computing Laboratory, Oxford University: Oxford,
UK, 2008; p. 49.

10. Achemlal, M.; Gharout, S.; Gaber, C. Trusted platform module as an enabler for security in cloud computing.
In Proceedings of the IEEE 2011 Conference on Network and Information Systems Security (SAR-SSI),
La Rochelle, France, 18-21 May 2011; pp. 1-6.

11. Berger, S.; Goldman, K.A.; Perez, R.; Sailer, R.; Doorn, L. Vtpm: Virtualizing the Trusted Platform
Module. In Proceedings of the 15th Conference on Usenix Security Symposium, Vancouver, BC, Canada,
31 July—4 August 2006; pp. 305-320.

12. Yan, Q;Han,],; Li, Y,; Deng, R.H.; Li, T. A software-based root-of-trust primitive on multicore platforms. In
Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security, Hong
Kong, China, 22-24 March 2011; pp. 334-343.

13. Riad, K. Multi-authority trust access control for cloud storage. In Proceedings of the IEEE 2016 4th
International Conference on Cloud Computing and Intelligence Systems (CCIS), Beijing, China, 17-19 August
2016; pp. 429-433.

14. Garfinkel, T.; Pfaff, B.; Chow, J.; Rosenblum, M.; Boneh, D. Terra: A virtual machine-based platform for
trusted computing. In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles,
Bolton Landing, NY, USA, 19-22 October 2003; pp. 193-206.

http://dx.doi.org/10.1109/TII.2015.2510226
http://dx.doi.org/10.1109/MSP.2009.87
http://dx.doi.org/10.3390/computers3010001
http://dx.doi.org/10.5626/JCSE.2015.9.3.119
http://dx.doi.org/10.1016/j.compeleceng.2016.03.004

Sensors 2018, 18, 3807 22 of 23

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Takemura, C.; Crawford, L.S. The Book of Xen; No Starch Press: San Francisco, CA, USA, 2009.

Xue, H.; Qing, S.; Zhang, H. XEN virtual machine technology and its security analysis. Wuhan Univ. |. Nat. Sci.
2007, 12, 159-162. [CrossRef]

Garfinkel, T.; Rosenblum, M.; Dan, B. Flexible OS support and applications for trusted computing. In
Proceedings of the Conference on Hot Topics in Operating Systems, Lihue, HI, USA, 18-21 May 2003; p. 25.
Wojtczuk, R.; Rutkowska, J.; Tereshkin, A. Xen Owning Trilogy; Invisible Things Lab: Las Vegas, NV, USA, 2008.
Anati, I.; Gueron, S.; Johnson, S.; Scarlata, V. Innovative technology for CPU based attestation and sealing. In
Proceedings of the 2nd International Workshop on Hardware and Architectural Support for Security and
Privacy, Tel-Aviv, Israel, 23-24 June 2013; ACM: New York, NY, USA, 2013.

McKeen, F.; Alexandrovich, I.; Berenzon, A.; Rozas, C.V.; Shafi, H.; Shanbhogue, V.; Savagaonkar, U.R.
Innovative instructions and software model for isolated execution. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security and Privacy, Tel-Aviv, Israel, 23-24 June
2013; p. 10.

Hoekstra, M.; Lal, R.; Pappachan, P.; Phegade, V.; Del Cuvillo, J. Using innovative instructions to create
trustworthy software solutions. In Proceedings of the 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy, Tel-Aviv, Israel, 23-24 June 2013; p. 11.

Intel Inc. Intel Software Guard Extensions. Available online: https://software.Intel.com/en-us/SGX
(accessed on 21 August 2018).

Intel Inc. Intel Software Guard Extensions Reference. Available online: https:/ /software.Intel.com/sites/
default/files/332680-002.pdf (accessed on 21 August 2018).

Schuster, F.; Costa, M.; Fournet, C.; Gkantsidis, C.; Peinado, M.; Mainar-Ruiz, G.; Russinovich, M. VC3:
Trustworthy data analytics in the cloud using SGX. In Proceedings of the 2015 IEEE Symposium on Security
and Privacy (SP), San Jose, CA, USA, 17-21 May 2015; pp. 38-54.

Chang, R;; Jiang, L.; Chen, W.; Xie, Y.; Lu, Z. A trust enclave-based architecture for ensuring run-time security
in embedded terminals. Tsinghua Sci. Technol. 2017, 22, 447-457. [CrossRef]

Yan, F; Yu, Z.; Zhang, L.; Zhao, B. Vtse: A solution of sgx-based vtpm secure enhancement. Adv. Eng. Sci.
2017, 49, 133-139.

Trusted Computing Group: Trusted Platform Module (tpm) Specifications. Technical Report. 2006. Available
online: https:/ /www.trustedcomputinggroup.org/specs/TPM (accessed on 23 August 2018).

Stumpf, E; Benz, M.; Hermanowski, M.; Eckert, C. An approach to a trustworthy system architecture using
virtualization. In Proceedings of the International Conference on Autonomic and Trusted Computing, Hong
Kong, China, 11-13 July 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 191-202.

Shi, Y.; Zhao, B.; Yu, Z.; Zhang, H. A security-improved scheme for virtual TPM based on KVM. Wuhan Univ.
J. Nat. Sci. 2015, 20, 505-511. [CrossRef]

Rongyu, H.; Shaojie, W.; Lu, J. A User-specific Trusted Virtual Environment for Cloud Computing.
Inf. Technol.]. 2013, 12, 1905-1913. [CrossRef]

Fortino, G.; Fotia, L.; Messina, F; Rosaci, D.; Sarn, G.M. Forming Groups in the Cloud of Things Using Trust
Measures. In Proceedings of the International Symposium on Intelligent and Distributed Computing, Bilbao,
Spain, 15-17 October 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 298-308.

Messina, E; Pappalardo, G.; Comi, A.; Fotia, L.; Sarn, G.M.L.; Rosaci, D. Combining reputation and QoS
measures to improve cloud service composition. Int. J. Grid Util. Comput. 2017, 8, 142. [CrossRef]

Iyengar, A.; Kundu, A.; Sharma, U.; Zhang, P. A Trusted Healthcare Data Analytics Cloud Platform. In
Proceedings of the IEEE International Conference on Distributed Computing Systems, Vienna, Austria,
2-5 July 2018; pp. 1238-1249.

Baumann, A.; Peinado, M.; Hunt, G. Shielding Applications from an Untrusted Cloud with Haven.
ACM Trans. Comput. Syst. 2014, 33, 1-26. [CrossRef]

Arnautov, S.; Trach, B.; Gregor, F.; Knauth, T.; Martin, A.; Priebe, C.; Lind, J.; Muthukumaran, D.; O’keeffe, D.;
Stillwell, M. SCONE: Secure Linux Containers with Intel SGX. In Proceedings of the OSDI, Savannah, GA,
USA, 2-4 November 2016; pp. 689-703.

Fetzer, C.; Mazzeo, G.; Oliver,].; Romano, L.; Verburg, M. Integrating Reactive Cloud Applications in
SERECA. In Proceedings of the 12th International Conference on Availability, Reliability and Security,
Reggio Calabria, Italy, 29 August 29-1 September 2017; pp. 1-8.

http://dx.doi.org/10.1007/s11859-006-0277-9
https://software.Intel.com/en-us/SGX
https://software.Intel.com/sites/default/files/332680-002.pdf
https://software.Intel.com/sites/default/files/332680-002.pdf
http://dx.doi.org/10.23919/TST.2017.8030534
https://www.trustedcomputinggroup.org/specs/TPM
http://dx.doi.org/10.1007/s11859-015-1126-5
http://dx.doi.org/10.3923/itj.2013.1905.1913
http://dx.doi.org/10.1504/IJGUC.2017.085915
http://dx.doi.org/10.1145/2799647

Sensors 2018, 18, 3807 23 of 23

37. Brenner, S.; Hundt, T.; Mazzeo, G.; Kapitza, R. Secure Cloud Micro Services Using Intel SGX. In Proceedings
of the IFIP International Conference on Distributed Applications and Interoperable Systems, Neuchatel,
Switzerland, 19-22 June 2017; pp. 177-191.

38. Arthur, W.; Challener, D. A Practical Guide to TPM 2.0: Using the Trusted Platform Module in the New Age of
Security; Apress: Lanham, MD, USA, 2015.

39. Syverson, P.F; Oorschot, P.C.V. On Unifying Some Cryptographic Protocol Logics. In Proceedings of the
IEEE Symposium on Security and Privacy, Oakland, CA, USA, 16-18 May 1994; p. 14.

40. Syverson, P. A Unified Cryptographic Protocol Logic; NRL Chaos Report; NRL: Washington, DC, USA, 1996.

@ © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Enclave TPM Scheme
	Architecture
	Enclave TPM Introduction
	Enclave TPM Scheme Architecture

	Trust Chains
	User-Specific Feature

	Enclave TPM
	Enclave TPM Functions
	Enclave TPM Memory Isolation Mechanism
	Enclave TPM Interaction Interface Designs
	Enclave TPM Internal Interaction Interfaces
	Enclave TPM Main Function Call

	Enclave TPM’s Integrity
	Enclave TPM Binding Relationships
	Identity Binding
	Data Binding

	Enclave TPM Key Management
	Key Derivation
	Cryptographic Algorithm

	Enclave TPM Trusted Execution

	Experiments and Analysis
	Enclave TPM Effectiveness
	Enclave TPM Security
	Protocol Security
	Memory Security
	Data Security

	Enclave TPM Availability

	Conclusions and Future Work
	References

