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Abstract: The authors recently developed a two-dimensional (2D) holographic electromagnetic
induction imaging (HEI) for biomedical imaging applications. However, this method was unable
to detect small inclusions accurately. For example, only one of two inclusions can be detected in
the reconstructed image if the two inclusions were located at the same XY plane but in different
Z-directions. This paper provides a theoretical framework of three-dimensional (3D) HEI to accurately
and effectively detect inclusions embedded in a biological object. A numerical system, including
a realistic head phantom, a 16-element excitation sensor array, a 16-element receiving sensor array,
and image processing model has been developed to evaluate the effectiveness of the proposed
method for detecting small stroke. The achieved 3D HEI images have been compared with 2D HEI
images. Simulation results show that the 3D HEI method can accurately and effectively identify small
inclusions even when two inclusions are located at the same XY plane but in different Z-directions.
This preliminary study shows that the proposed method has the potential to develop a useful imaging
tool for the diagnosis of neurological diseases and injuries in the future.

Keywords: electromagnetic induction imaging; magnetic induction tomography; sensor array; brain
stroke; dielectric properties

1. Introduction

Medical imaging plays an essential role in the diagnosis of malignant tumors. Early diagnosis
of the malignant tumor could significantly improve the treatment outcome and prognosis [1]. X-ray,
ultrasound, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission
tomography (PET) are the commonly used biomedical imaging tools in hospitals. However, these
techniques have some limitations. X-ray produces harmful radiation to the human body [2], and it is
difficult for early abnormal tissue detection due to the relatively small contrast between the healthy
tissue and the abnormal tissue at X-ray frequencies. PET is an excellent choice for imaging soft tissues,
but it suffers from poor image resolution and relatively high-cost [3]. CT and MRI are well-established
methods for identifying structural alterations of the biological tissue, such as brain tissue. However,
they are unsuitable for continuously monitoring brain disease because of the relatively high-cost
and time-consuming [4,5]. CT also produces harmful ionizing radiations to the human body. It is
urgently needed to develop a new imaging method for biomedical imaging and diagnostic applications
especially for early diagnosis of critical diseases, such as lung cancer, brain diseases.

Electromagnetic imaging (EMI) has been proposed as a potential technique to overcome
the limitations of existing biomedical imaging tools, which has received increasing attention for
applications in biomedical imaging and diagnostics. In the past three decades, several research groups
have investigated EMI for imaging the electromagnetic properties (EPs, conductivity, permittivity, and
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permeability) of biological tissues using low-frequency (<10MHz) electromagnetic (EM) spectrum [6–9].
EMI has been applied to detect several diseases, including gastric emptying [10], lung ventilation [11],
breast cancer [12], prostate cancer [13], pulmonary perfusion [14], and acute cerebral stroke [15].
EMI has been extensively studied for monitoring neurological diseases and injuries, including
hemorrhagic stroke [16], ischemic stroke [17], and brain edema [18]. The applicability of EMI
for monitoring brain diseases relies on the significant change in the EPs of brain tissues when a
stroke occurs.

Electrical impedance tomography (EIT) is a noninvasive imaging tool which employs an array
of electrodes on the surface of the biological object and maps the internal conductivity distribution
changes of the object based on physiological and pathological activities [19,20]. However, the EIT
technique requires expensive computational cost, may cause skin affections because of the use of the
skin touch electrodes, and low spatial resolution. In 1993, Al-Zeibak et al. first reported the magnetic
induction tomography (MIT) for biomedical applications [21]. An MIT system usually employs an
excitation coil to induce eddy currents in the biological tissue and uses a detection coil to measure
scattering field from the object to reconstruct a 2D image by using filtered back-projection. Compared
to EIT, MIT is a contactless method which does not fill galvanic coupling in the space between the
MIT device and the object. Therefore, the ill-defined electrode-skin interface is avoided. MIT is a
more sensitive technique as it can monitor all three EPs parameters, and it is particularly attractive
for identifying brain diseases (e.g., brain edema) because of the induced magnetic field via coils
can penetrate through the skull much more easily than the injected currents via electrodes in the
EIT system [22–28]. However, the MIT technique also has some drawbacks include limited image
resolution, produce artifacts and the leak of clinical suitable measurement instruments. Recently,
the authors developed a holographic electromagnetic induction (HEI) imaging for dielectric object
imaging [29,30]. However, this method is unable to produce 3D images and unable to detect small
lesions embedded in a 3D object accurately.

This paper presents the development of a 3D HEI method and investigates the feasibility and
capability of the proposed method for detecting small inclusions embedded in a 3D dielectric object.
A numerical system, including a realistic 3D head phantom and data processing model, has been
developed to validate the effectiveness of the method for imaging infarcts that mimic a stroke
embedded in the head phantom. This paper presents the theoretical model, together with simulation
experiments and simulation results.

The present work is organized as follows: Section 2 presents the principle of 3D HEI imaging
concept. Section 3 describes a numerical system for validation of the method. Section 4 presents
simulation results. Finally, Section 5 concludes this paper.

2. Basic Principle

2.1. Concept of the 3D HEI System

Figure 1 shows a conceptual scheme of the 3D HEI system. The system consists of a cylindrical
tank, a biological object, a radio frequency (RF) generator to produce EM signals, 16 excitation sensors
to induce a magnetic field into the object, 16 receiving sensors to measure the scattering field from the
object, a host computer with HEI program. All excitation sensors are equally arranged in a circle plane,
and all receiving sensors are equally arranged in a circle plane. The excitation sensor array is located
at the bottom of the tank, and the receiving sensor array plane is mounted on the wall of the tank and
is designed moveable in the Z-direction. The biological object is located at the center of a cylinder
(x = 0 mm, y = 0 mm, z = 0 mm). A matching medium is filled in the imaging chamber, which allows
for an optimal sensor matching and ensures EM signals are propagating through the object and the
scattering field can be more accurately recorded. For simplicity, a single frequency is selected as the
working frequency according to previous studies [26,29].
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We first place the receiving sensor array at one of the H vertical locations, the RF generator
produces EM signals to excitation sensors, let one of the excitation sensors creates a magnetic field
which leads to an electric field that drives an eddy current in the object, and every receiving sensor
measures the backscattered signals from the object. This process is repeated until all excitation sensors
have created a magnetic field. A 2D HEI image is obtained over the cross-section of the 3D object
on the XY plane using 2D HEI method [29]. Then, we reposition the receiving array plane at a new
vertical location and repeat the image data collection process until all vertical locations have been
scanned. Vertical scans in the Z-direction can provide a stack of 2D images. A 3D object image can be
reconstructed by combining a stack of 2D images.
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Figure 1. Schematic of the 3D HEI system.

2.2. Forward Model

This section presents the forward model that has been applied in the simulation experiments. The
time-harmonic vector wave expression for the electric field can be solved by:

∇× (µ−1
r ∇×

→
E)− k2

0εr
→
E = −jωµ0

→
Js (1)

where ∇ is the divergence operator, the relative permeability µr = µ/µ0, the complex relative
permittivity εr = ε

ε0
+ jσ

ε0ω = ε′ + jε′′ , µ0 and ε0 are the permeability and permittivity of free space,

respectively. σ is the electrical conductivity, ω = 2π f , and k0 = ω
√

µ0ε0,
→
E denotes the electric filed,

→
E =

→
E inc +

→
E scat with

→
E inc and

→
E scat are the transmitted and received electric field in the sensor,

j =
√
−1, and

→
Js is the excitation current density in the excitation coil.

The magnetic field strength is computed using the results of the electric field
→
E in Equation (1):

→
H = j(ωµ0µr)

−1·(∇×
→
E) (2)

where
→
H =

→
Hinc +

→
Hscat,

→
Hinc and

→
Hscat are the transmitted field and received magnetic field in the

coil, respectively.

2.3. Backward Model

We assume a target point P embedded in a 3D object (see Figure 2). The sensor array is placed at
one vertical location, the scattering signals from the object can be measured by any sensor located on
the sensor array plane as [30]:
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→
Hscat(

→
r0) =

−j
4πωµ0

∫
V

[(
→
Jm·∇)×∇+ k2

0
→
Jm + jωµ0

→
Js∇]G(

→
r ,
→
r0)dV (3)

where
→
r0 is the position vector from the origin to the point source,

→
r is the position vector from the

detector to point source, G denotes Green’s function. The induced electric current density and magnetic
current density can be computed by:

→
Js = jωε0(εr − 1)

→
E ;
→
Jm = jωµ0(µr − 1)

→
H; (4)

Equation (3) can be simplified as:

→
Hscat(

→
r0) =

k2
0

4π

∫
V

[(a
→
H + b(

→
H·r̂)r̂)]G(

→
r ,
→
r0)dV (5)

where r̂ is the unit vector from the origin to the point source, a = µrεr − j(µr−1)
k0R (1− j

k0R ), b =

(µr − 1)(−1 + 3j
k0R + 3

(k0R)2 ), R denotes the distance between the source and field point, a and b are

proportional to 1/R2(i.e., k0R� 1). Hence k2
0a ∼= −(µr − 1)/R2 and k2

0b ∼= 3(µr − 1)/R2.
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The scattering signals from the region of interest with the negligible magnetic materials (µr = 1)
and with the non-negligible magnetic materials (µr 6= 1) can be rewritten as:

→
Hscat(

→
r0) =

−jωµ0

4π

∫
V

(σ + jωε0ε′r − σbg)
→
HG(

→
r ,
→
r0)dV f or (µr = 1) (6a)

→
Hscat(

→
r0) ∼=

1
4π

∫
V

µr − 1
R2

[
−
→
H + 3(

→
H·r̂)r̂) ]G(

→
r ,
→
r0)dV f or (µr 6= 1) (6b)

The tissue conductivities are relatively small at low-frequency RF spectrum, such as 10 MHz.
In this case, the Born approximation can be applied in the above equation when performing predictive
forward modeling of a given object and coil configuration [31]. The induced field inside the object can
be modeled approximately as the incident field that exists at the same location without place the object
in the imaging region.
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2.4. Image Processing

Let us place the receiving sensor array at one of H vertical locations. The scattering signals from
the target point P can be measured by each receiving sensor (see Figure 2). The visibility data of the
scattering signals measured by a pair of receiving sensors can be calculated as [32]:

→
Vvi(

→
ri ,
→
rj ) = 〈

→
Hscat(

→
ri )·
→
H
∗
scat(

→
rj )〉 (7)

where
→
Hscat(

→
ri ) denotes the measured scattering field by receiving sensor located at

→
ri ,
→
H
∗
scat(

→
rj ) is the

conjugate complex of measured scattering magnetic field by receiving sensor located at
→
rj , <> denotes

the time average. For a N-element receiving sensor array, the total visibility data is
→
Vsi =

N
∑
i

→
Vvi(

→
ri ,
→
rj ),

i 6= j, N ≥ 3, at a selected vertical height (the distance between the object and the receiving sensor
array). This visibility data contains phase and amplitude information.

Define the object density as [33]:

I(
→
s ) =

(
jωµ0

4π

)2∣∣∣σ(s) + jωε0εr − σbg

∣∣∣2→H(
→
s )·

→
H∗(

→
s ) (8)

where σbg is the conductivity of the medium.
The visibility formula over the object can be rewritten as:

→
Vvi(

→
ri ,
→
rj ) = (

jωµ0

4π
)

2 y

V

∣∣∣σ(s) + jωε0εr − σbg

∣∣∣2→H(
→
s )·

→
H∗(

→
s )

e−jk0(
→
ri−
→
rj )·ŝ

s2 dV (9)

Equation (11) can be simplified by combining Equations (8) and (9).

→
Vvi(

→
Dij) =

y

V

I(
→
s )

e−j2π
→
Dij ·ŝ

s2 dV (10)

where
→
Dij is the baseline vector,

→
Dij = (

→
rj −

→
ri )/λb with λb denotes the wavelength of background

medium, ŝ = sinθcosφx̂ + sinθsinφŷ + cosθẑ, dV = s2sinθdθdφds. Change cartesian coordinates to
spherical coordinates and define variables p = sinθcosφ, q = sinθsinφ, n = cosθ =

√
1− p2 − q2.

Then, the element dV can be represented as:

dV = s2dpdqds/n (11)

Substituting (11) into (10), visibility function becomes:

→
Vvi(

→
Dij) =

y

V

I(
→
s )

e−j2π
→
Dij ·ŝ

n
dpdqds (12)

where
→
Dij can be represented by uij = (

→
xj −

→
xi)/λb, vij = (

→
yj −

→
yi)/λb, wij = (

→
zj −

→
zi)/λb. If the

coil array is positioned at a target vertical location, the visibility function can be expressed by the
following equation:

→
Vvi(uij, vij, wij) =

∫
p

∫
q

∫
n

I(s, p, q)√
1− p2 − q2

e(−j2πΦij)dpdqds (13)

where Φij = uij p + vijq + wijn.
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As all receiving sensors located on a planar plane (wij = 0), the line integral can be obtained:

Ĩ(p, q) =
∫
s

I(s, p, q)√
1− p2 − q2

ds (14)

The visibility function changes to:

→
Vvi(uij, vij) =

x
Ĩ(p, q)e−j2π(uij p+vijq)dpdq (15)

A 2D object image can be reconstructed by taking an inverse Fourier transform of Equation (15):

Ĩ(p, q) =
x →

Vvi(uij, vij)e
j2π(uij p+vijq)dudv (16)

Equations (6), (7) and (16) can be applied to generate a 2D object image. The receiving sensor
array plane is then placed at a new position in the Z-direction, and the 2D data collection process
is repeated until the whole object has been scanned. Therefore, a 3D object image can be created by
combining a stack of 2D HEI images.

As shown in Figure 2b, the depth information can be expressed by:

Dn = sncos(θn) (17)

where θn is the radiation or detection angle of the sensor. Then:

dD =
dz

cos(θn)
=

dz√
1− p2 − q2

(18)

A 3D object image can be reconstructed by combining all 2D images that obtained when the
sensor array repositioned at different vertical locations:

I(
→

Vvi = zn, p, q) =
dĨ(p, q)·

√
1− p2 − q2

dz
(19)

The above equation can be represented as:

dĨ
dz

=
Ĩzn + Ĩzn−1

zn + zn−1
(20)

A 3D image can be reconstructed by combining Equations (19) and (20).

2.5. Metric

The peak signal-to-noise ratio (PSNR) can be applied to serve as objective criteria:

PSNR = 10log10(255/
√

MSE) (21)

where MSE (mean squared error) measures the quality of an estimator, MSE = 1
n

n
∑

i=1
(Yi − Ŷi)

2, Y is the

vector of observed values of the variable being predicted, and Ŷ is a vector of n predictions generated
from a sample of n data points on all variables. MSE is always non-negative, and MSE closer to zero
demonstrates better performance.

The signal-to-noise ratio (SNR) measures the sensitivity.

SNR = µsig/σbg (22)

where µsig and σbg are the average signal value and the standard deviation of the background, respectively.
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The structural similarity index (SSIM) measures the image similarity:

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(23)

where µx and µy are the average of the original image x and reconstructed image y, respectively. σ2
x

and σ2
y are the variance of x and y, σxy is the covariance of x and y. The two variables c1 = (0.01L)2

and c2 = (0.03L)2 to stabilize the division with the weak denominator, L is the dynamic range of
pixel-values. Where −1 ≤ SSIM ≤ 1, and SSIM = 1 can be obtained when x = y.

3. Numerical Experiments

A numerical system, including a realistic head model, a 16-element coil array, and imaging process
model, was developed to evaluate the effectiveness, sensitivity, and accuracy of the proposed method
for imaging infarcts that mimic a stroke embedded in the realistic head model. All simulations were
conducted using MATLAB 2018a (The MathWorks, Inc. Natick, MA, USA) on a Dell Precision 5820
workstation which has an Intel Xeon W-2145 CPU with an internal clock frequency of 3.7 GHz and
256 GB of memory.

3.1. Simulation Setup

Figure 3 illustrates the top view of the numerical system setup. The system consisted of 16
excitation coils and 16 receiving coils mounted on the wall of a cylindrical tank (80 mm in radius,
100 mm in height). All excitation coils were equally arranged in a circle, which positioned under the
cylindrical tank. All receiving coils were equally arranged in a circular array, and this array plane was
designed moveable in the Z-direction. A 3D head phantom was placed at the center of the cylindrical
tank (x = 0 mm, y = 0 mm, z = 0 mm). A high dielectric medium (εr = 88, σ = 0.48 S/m, similar to
distilled water) was filled in the imaging chamber (cylindrical tank), and a single frequency of 10 MHz
was selected as working frequency based on previous studies [26,29]. To collect 3D image data, the
head model was placed at z = 0 mm, the sensor array place was moved from axial z = −50 mm to
z = 50 mm in steps of 1 mm. For each vertical location, a 2D image data set was recorded to produce a
2D image. This data collection process was repeated until the entire head model has been scanned
in Z-direction and a total number of 3,840,000 3D image data was collected. A 3D object image was
reconstructed by combining a stack of 2D images.
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Figure 3. Head model and receiver array configuration.

3.2. RF Coil

For simplicity, the single circle loop coil (radius of 25 mm) was simulated as excitation sensor
and receiver [29]. The magnetic field induced by each excitation coil can be computed by using
Biot-Savart law:
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→
H =

µ0 I
4πrc2

∮
dL =

µ0 I
4πrc2 2πrc =

µ0 I
2rc

(24)

where I is the current in excitation coil, rc denotes the radius of the loop coil, and L denotes the length
of the coil. The current in the coil was 1 A.

3.3. Head Model

An ellipsoidal shaped head model (long radius 60 mm, short radius 55 mm, thickness radius
40 mm) was developed to provide the validity of the proposed method. The head model consisted of a
skin layer (3 mm thick), fat (5 mm thick), skull (7 mm thick), cerebro-spinal fluid (CSF, 3 mm thick),
grey matter, white matter, and dura. Sphere-shaped inclusion was inserted into the head phantom to
simulate infarcts that mimic a stroke. The brain lesion was assumed to consist of 100% blood. In this
study, two inclusions (different sizes and positions) have been investigated. We used the published
EPs values of the tissues to develop the head model [34]. Table 1 shows EPs of tissues at a frequency
of 10 MHz. To save the computational time, the head model contained 80× 80× 50 voxels which
correspond to a region of 160× 160× 100 mm3. The EPs of tissues have been assigned for each voxel
to develop head phantom. The Gaussian function was applied to demonstrate the head model and
brain lesion model.

Table 1. EPs of tissues at 10 MHz [34].

Structure Thickness (mm) σ (S/m) Relative Permittivity

Matching medium 20 0.48 88
Skin 3 0.1973 361.66
Fat 5 0.029 13.767

Skull 7 0.0828 53.8
CSF 3 2 109

Grey matter 6 0.292 320
White matter 7 0.159 176

Dura 5 0.544 194.93
Blood 3/5 1.097 280

4. Results

Several simulations have been performed to test the detectability of inclusions embedded in the
multilayer head model using the proposed method. The first simulation performance was carried out
with the conductivity set to zero and the relative permittivity set to unity (εr = 1) for all tissues, thus
simulating the host medium. Figure 4a,b display the real part (relative permittivity) and imagery part
(conductivity) of the model under test, and its 3D reconstructed images are shown in Figure 4c,d.
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The second simulation experiment was conducted with the conductivity and relative permittivity
values set to the correct information (see Table 1), with no brain lesion present. Figure 5a,b show the real
part (relative permittivity) and imagery part (conductivity) of the head model with no brain lesion and
its 3D reconstructed images are demonstrated in Figure 5c,d. Results show that the internal structures
of the head model can be clearly identified in the imagery part of the 3D reconstructed image. However,
not all internal structures of the head model can be observed in the real part of the 3D reconstructed
image. The computational time was 303.98 seconds for the first two simulation experiments.

The third experiment was carried out with the head model contains two lesions present in the
imaging chamber. As shown in Figure 6a,b, the head model under test contains two lesions where
brain lesion A (5 mm in radius, squared in black) located at (0 mm, 0 mm, 8 mm) and brain lesion B
(5 mm in radius, squared in black) located at (0 mm, 0 mm, −8 mm). The real part and imaginary
part of the 3D reconstructed images are shown in Figure 6c,d. Results show that two inclusions can
be clearly identified in the imagery part of the 3D reconstructed image with the correct size, shape,
and location information. However, no inclusion can be observed in the real part of the reconstructed
image. The total computational time for this simulation experiment was 297.232 s.Sensors 2018, 18, x FOR PEER REVIEW  9 of 15 
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The fourth experiment was carried out with the head model contains two different size lesions
present in the imaging chamber. As shown in Figure 7a,b, the head model under test contains two
lesions, brain lesion A (3 mm in radius, squared in black) located at (0 mm, 0 mm, 0 mm) and brain
lesion B (5 mm in radius, squared in black) located at (0 mm, 0 mm, −8 mm). The real part and
imaginary part of the 3D reconstructed images are shown in Figure 7c,d. Results show that two
inclusions can be clearly identified in the imaginary part of the 3D reconstructed image with the correct
size, shape, and location information. However, no inclusion can be observed in the real part of the
reconstructed image. The total computational time for this simulation experiment was 297.232 s.

We have compared the proposed method with the developed 2D HEI method. To collect 2D
image data, we have placed the sensor array plane and the head model at z = −50 mm and z = 0 mm,
respectively. Figure 7e,f present the real part and imagery part of the 2D reconstructed images (XY
plane) of the head model, respectively. However, only one of two inclusions can be observed in the
imagery part of the 2D reconstrued image. The total computational time to produce the 2D images
was 157 s.
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The fifth simulation was conducted using the head model contains two inclusions (5 mm in
radius, squared in black) located at (10 mm, 10 mm, 6 mm) and (0 mm, 0 mm, −6 mm). Figure 8a,b
show the permittivity and conductivity values of the head model. Figure 8c,d display the real part
and imaginary part of 3D reconstructed images, respectively. Figure 8e,f present the real part and
imaginary part of the 2D reconstructed images, respectively. Results show that two inclusions can be
observed in the imaginary part of the 3D reconstrued image with the correct size, shape, and location
information. However, only one of two inclusions can be observed in the imagery part of the 2D
reconstrued image.
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Color bars in the original images plot the permittivity and conductivity values of the model
under test, while color bars in the constructed images demonstrate the backscattered energy density
distributions in the reconstructed images. Not all internal structures of the brain tissues can be
identified in the reconstructed images especially the real part (permittivity) of the reconstructed
images. The conductivity reconstructions (imaginary part) have higher quality than the permittivity
reconstructions (real part), this finding agrees with the previously published research outcomes [35,36].
A total number of (16× 16× 15 = 3840) 2D image data, and (16× 16× 15× 100 = 384, 000) 3D image
data were measured to produce a 2D image and a 3D image using the proposed method. Thus, more
helpful information can be obtained in the reconstructed 3D images compared to the 2D images. Table 2
shows simulation errors. It can be seen that with the proposed method it is much easier to identify
larger size inclusions. Compared to previous published 2D image results [29], the proposed method
could detect two inclusions which were located at the same XY plane but in different YZ planes.

Table 2. Simulation errors.

Model

Head Contains Two
Inclusions (5 mm in

Radius) Located at (0 mm,
0 mm, 8 mm) and (0 mm,

0 mm, −8 mm)

Head Contains Two
Inclusions (3 mm, 5 mm in
Radius) Located at (0 mm,
0 mm, 0 mm) and (0 mm,

0 mm, −8 mm).

Head Contains Two
Inclusions (5 mm in radius)
Located at (10 mm, 10 mm,
6 mm) and (0 mm, 0 mm,

−6 mm)

PSNR (dB) 49.9943 36.6764 49.9943
SNR (dB) 5.6384 2.0651 5.6382

MSE of real part 0.9657 0.9657 0.9657
MSE of Imagery part 0.4896 0.0876 0.0498

SSIM of real part 0.0455 0.4896 0.04986
SSIM of Imagery part 0.0455 0.0455 0.0455

5. Conclusions

This paper reported the theoretical framework of 3D HEI for internal structure imaging of small
inclusions embedded in biological tissue. A numerical system, including a realistic 3D head model,
a 16-element excitation sensor array, and a moveable 16-element receiving sensor array as well as
image processing model, has been developed to test the detectability of lesion using the proposed
method. Several simulation experiments have been conducted to evaluate the effectiveness, accuracy,
and sensitivity of the proposed framework for detecting brain lesions embedded in the head model.
A comparison study between the 2D HEI and 3D HEI has been conducted through various simulation
experiments. The results showed that the 3D HEI could produce 3D brain images and detect inclusions
with the correct size, shape, and location information. The two inclusions could be successfully
observed in the reconstructed 3D images even when they were located at the same XY plane but in
different YZ planes.
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The HEI image quality highly depends on the visibility data that compares the scattering signals
measured by any pair of receivers. For 16 excitation sensors and a 16-element receiver array that
placed at 100 different vertical locations, a total number of [16× 16× (16− 1)× 100 = 384, 000] data
can be recorded to produce a 3D image using the proposed method, while only a total number of
(16× 16 = 256) data can be measured to produce a 2D image using the conventional MIT method.
Thus, the proposed method has the potential to produce a higher resolution image compared to the
conventional EM techniques. Previous experimental studies [37] have shown that the 2D image quality
also depends on the sensor array configuration and the sensor number. However, whether this claim
is suitable for the practical 3D HEI system is one of the target future works.

Head is a very complex organ with functions and mechanisms have not been fully discovered.
EMI technique exploits structural data of different levels, such as EPs of brain tissues, will help one
to understand the internal structure of brain tissues, which offers the potential for detecting and
monitoring brain disease. However, only ideal models (noise free) were involved in this study; this
may affect the effectiveness of the proposed method. The image quality could be degraded due to
the noise acquired from the practical measurement instrument. Furthermore, the proposed method
requires further validation in more realistic experiment scenarios. From an experimental point-of-view,
develop an EM device to collect complete EM data for biomedical applications remains both highly
desirable and extremely challenging.

The obtained theoretical results showed that the proposed framework has the potential to become
a useful tool for realizing complex situations and optimizing the whole system before the device
is tested in practice. Future work should evaluate more realistic experimental data gathered from
physical models, biological tissues, animals, and human subjects, to ensure that the proposed method is
robust to more realistic scenarios. The development of a sensitive sensor for practical implementation
of the proposed method is another target future research direction.
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