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Abstract: Schools are amongst the most densely occupied indoor areas and at the same time children
and young adults are the most vulnerable group with respect to adverse health effects as a result
of poor environmental conditions. Health, performance and well-being of pupils crucially depend
on indoor environmental quality (IEQ) of which air quality and thermal comfort are central pillars.
This makes the monitoring and control of environmental parameters in classes important. At the
same time most school buildings do neither feature automated, intelligent heating, ventilation, and air
conditioning (HVAC) systems nor suitable IEQ monitoring systems. In this contribution, we therefore
investigate the capabilities of a novel wireless gas sensor network to determine carbon dioxide
concentrations, along with temperature and humidity. The use of a photoacoustic detector enables
the construction of long-term stable, miniaturized, LED-based non-dispersive infrared absorption
spectrometers without the use of a reference channel. The data of the sensor nodes is transmitted via
a Z-Wave protocol to a central gateway, which in turn sends the data to a web-based platform for
online analysis. The results show that it is difficult to maintain adequate IEQ levels in class rooms
even when ventilating frequently and that individual monitoring and control of rooms is necessary
to combine energy savings and good IEQ.

Keywords: miniature photoacoustic non-dispersive infrared absorption spectroscopy (NDIR) sensor;
wireless gas sensor network; indoor environmental quality; thermal comfort; carbon dioxide

1. Introduction

The amount of time people spend indoors exceeds 90% of the total [1–3] and as a consequence
indoor environment quality (IEQ) is a major concern for health and well-being of the general population.
The concept of IEQ entails indoor air quality (IAQ), thermal comfort, as well as light and noise
levels inside buildings [4]. Because of their increased vulnerability children and young adults are
particularly prone to the adverse effects of poor IEQ and especially schools, which usually feature a
high occupant density, are focal point of a multitude of challenges. These include the accumulation of
hazardous gases and particulate matter (PM), health risks via mold formation as well as the spreading
of bacteria [5]. Additionally, thermal comfort is closely linked with the cognitive performance [6] and
hence both educational success and health of pupils in schools critically hinges on IEQ. Past research
has established the negative health effects originating from exposure to nitrogen dioxide (NO2), ozone
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(O3), carbon dioxide (CO2), carbon monoxide (CO), volatile organic compounds (VOCs) and benzene,
toluene, ethylbenzene, xylenes (BTEX) in particular, radon, and PM exposure and consequently
the need to monitor and control their concentrations in schools [7–9], so while there is a need for
large scale deployment of sensor technologies to enable monitoring IEQ with high temporal and
spatial resolution in schools, currently available solutions are scarce and too costly for large area
installations [5]. In particular, to date all wireless gas sensor networks face a trade-off between sensor
node cost and data quality because currently no suitable, low-cost technology for specific, quantitative
chemical analysis is available [10]. Researchers and companies alike therefore have to revert to
technologies that approximate the gaseous pollutants content instead of specifically determining the
quantity of trace gas concentrations. Commercial solutions that may serve as sensor nodes include
individual sensors to monitor IAQ with varying combinations of sensors for gases and particulate
matter. The main obstacle is the current lack in suitable chemical analysis technologies to specifically
and sensitively determine the concentration of gaseous air pollutants at low-cost, and offering long
term stable detection. Past studies therefore often had to rely on logging data with low spatial and
temporal resolution of several minutes [11–14] preventing real-time assessment of IEQ and limiting
large scale deployment of such systems. The underlying gas sensing technologies used are often
low-cost but do not allow for specific detection of trace gases. E.g., the CO2 concentration is oftentimes
inferred from the reading of a metal-oxide based, total volatile organic compound (TVOC) sensor, even
though the correlation between TVOC and CO2 is weak [15]. While Raman-based approaches may
detect many gases simultaneously [16–22], techniques based on absorption spectroscopy are the most
promising candidates for reliable CO2 detection. Using tunable diode laser spectroscopy a high degree
of sensitivity and specific, quantitative detection can be achieved, albeit at high associated costs in
terms of optical and computational infrastructure as well as maintenance [23,24]. Currently, so-called
non-dispersive infrared absorption spectroscopy (NDIR) is the most popular tool for CO2 monitoring
that does not require analytical grade concentration readings [25]. Commercially available sensors
achieve a resolution of ±30 ppm at an optical path length of several cm. Usually thermal emitters are
used as light sources and spectral filters are employed to establish a reference channel that corrects
for fluctuations of the emitted light intensity using the atmospheric window around 3.95 µm and a
measurement channel to probe CO2 absorption bands at 2.6 µm or 4.2 µm [26,27]. The number of
optical components necessary, the thermal emitter and the optical path lengths involved make for a
rather bulky and comparatively expensive design. Recently, we have presented a design that builds on
the original URAS idea [28], i.e., using the photoacoustic effect to gauge the light intensity of those parts
of the light spectrum that are resonant to the CO2 absorption lines. This way LED-based gas sensors
that are one order of magnitude smaller than current state-of-the art NDIR setups but comparable
performance may be build [29,30]. While we have also presented a method to establish a reference
channel to compensate drifts in the LED’s intensity in this setup [29], our laboratory characterization
results suggest the possibility to compensate intensity fluctuations using a temperature calibration.
This would open up the possibility to build the most basic form an NDIR sensor consisting only of a
LED, a waveguide and a detector in a miniaturized form and featuring long-term stable operation.
Other, more sophisticated, photoacoustic-based approaches allow e.g., for calibration-free monitoring
or drift-reduction [31,32] but for all intends and purposes of IEQ monitoring, our simple setup suffices.

In this contribution, we therefore present results achieved by this basic setup that has been
integrated into a wireless sensor network and enables the deployment of sensor nodes capable of
monitoring thermal comfort as well as determining the CO2 concentrations specifically and within
the required concentration range from 400–5000 ppm. Using our photoacoustic NDIR setup we show
that long term stable operation of a LED-based CO2 sensor without reference channel is feasible
by utilizing a suitable temperature compensation scheme. This opens up the possibility to produce
low-power consuming, easy to manufacture CO2 gas sensors that do not feature cross-sensitivities
towards humidity. Based on the data we investigate the effect of different ventilation methods on
the air quality, discuss the implications on building-wide CO2 levels, and assess the thermal comfort.
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Because of the small size of the sensors nodes, their wireless internet connectivity and low-cost,
the system architecture may easily be adapted to different scenarios and employed on a large scale.
In particular, the approach enables in-situ monitoring with high spatial and temporal resolution inside
a building and to combine the data to allow for a building performance evaluation and active control
of IEQ.

2. Materials and Methods

Because of its outstanding importance for indoor air quality we demonstrate a gas sensor approach
for CO2 employing a concept that may easily be adapted for further gases including NO2, CO, O3,
and CO [33,34]. Evidence suggests correlations between absenteeism [11], bacterial infestation [35,36],
and performance [37] with the CO2 levels indoors and it also allows for determining the ventilation
rate. This makes the CO2 concentration the single most important chemical parameter to assess indoor
air quality. In order to enable large scale deployment of the system at low cost and small overall size,
we make use of a novel, miniature photoacoustic-based, nondispersive infrared (NDIR) setup, based on
the original URAS design [28], which makes it possible to construct miniature CO2 sensors with high
sensitivity and without cross-sensitivities towards humidity [30]. The CO2 sensor module features a
mid-infrared LED from Hamamatsu (Hamamatsu City, Japan) as light source emitting light around
4.2 µm, an aluminum waveguide realizing an optical path of 30 mm and guiding the LED radiation
to a hermetically sealed, CO2 filled cell containing a SPU0409HD5H-QB MEMS microphone from
Knowles (Itasca, IL, USA). To excite a sound wave inside the detector, the LED is intensity modulated
at 500 Hz using a rectangular current shape with 80 mA amplitude and 50% duty cycle. Since the
sound wave amplitude is directly proportional to the light intensity [38], we use its magnitude to infer
the CO2 concentration. To do this the microphone signal is first converted into a digital signal using
an analog-to-digital converter (ADC) from Analog Devices (Norwood, MA, USA) with 12-bit and
digital I2C interface protocol operating at 2.5k samples read out rate. The sound wave amplitude is
determined using the Goertzel algorithm [39] implemented on the PSoC microcontroller. Using an
apparatus to simulate real-world conditions in the lab [40], we have performed a calibration of the
CO2 sensor reading in dry synthetic air at 1 bar pressure. We have also checked for cross-sensitivities
towards humidity as well as established the correlation between ambient temperature and sensor
signal [30]. To perform temperature calibration with large temperature variations we have used a
climatic chamber filled with pure dry synthetic air in the temperature range from 15 ◦C to 50 ◦C.
The latter calibration is then used to correct for the influence of temperature variations during field
tests. To determine ambient temperature and humidity a fully calibrated SHT21 IC sensor with low
power consumption from Sensirion (Staefa, Switzerland) is connected to the microcontroller using the
I2C bus. The PSoC also acts as central tool to control data transmission via a Z-Wave module, sensing
data on temperature, humidity, and CO2 concentration is send every 30 s.

The sensor node design is depicted in Figure 1 and includes wireless connectivity to make it
possible to monitor the pollutant exposure of children on a micro-scale, which is needed for next
generation studies of the health effects of school children [41]. At the same time the data from the
whole network may be fused to offer a comprehensive picture on a building-wide level. Each node is
equipped with a Z-Wave module to enable transfer of the data to an internet application by means of an
internet gateway. In undisturbed environments the physical range of the transmission is about 100 m.
Based on the online data platform “EnControl” from Sensing and Control Systems S.L. (Barcelona,
Spain) we have created a tool to determine the thermal comfort, ventilation rate, and production rate
of CO2 during classes. Moreover, data on thermal comfort may be used and integrated into the heating
systems in order to minimize energy expenditure during winter. Using this system we investigate the
result of various ventilation methods in a school as well as infer on the development of CO2 levels in
the building as a The system has been deployed at “Gymnasium Remchingen”, a secondary school
in rural Germany close to the city of Karlsruhe and the location of all sensor network components is
depicted in Figure 2. The building is in operation since 2004 and currently about 470 pupils are educated
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in 21 classes. The building features a high level of thermal insulation and interior walls made of reinforced
concrete but without active ventilation control, such that ventilation is controlled manually via opening the
windows and/or class room doors. For investigating the influence of ventilation on indoor environmental
quality a total of 5 rooms has been monitored each equipped with one sensor node. Because of the materials
deployed in the school building the Z-Wave physical range is reduced to about 20 m, which is why a total
of 3 repeaters modules has been installed for reliable signal transmission. Three of the rooms are standard
class rooms and two are dedicated to physics classes.
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Figure 1. The concept of the individual sensor nodes is based on the use of micromachined
sensor technology and internet connectivity in order establish a wireless network for online,
in-situ indoor environmental monitoring. The CO2 concentration is determined by listening to its
concentration via the photoacoustic effect. Both temperature and humidity are determined using
state-of-the-art microtechnology.
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Figure 2. Overview of the system installation at the school. Each sensor node is installed at about
1 m height above ground. To ensure reliable data transfer three signal repeaters have been installed.
Area and volume of all rooms are annotated in the schematic map and the position of each sensor node
is indicated above.
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Each sensor module sent the current CO2-level, humidity as well as temperature to the
cloud-based “EnControl” platform every 30 s. Outdoor conditions are monitored via two weather
stations in close proximity to the school (<200 m distance) whose data is available online through
the Weather Underground web portal www.wunderground.com (The Weather Company, an IBM
Business). These weather stations are based on NETATMO products (www.netatmo.com).

In order to assess the air quality in the five class rooms we use the CO2 concentration as tracer
gas. We use these values to calculate the ventilation rates (VR) as well as the background levels in
each room. Among the diverse methods to calculate the air change rate (ACR) we have chosen the
decay method according to VDI 4300 (2001) [42], which has been proved to be a feasible and effective
way to determine the air change rates in scenarios like the ones explored in this work [43]. The CO2

concentration upon venting using outdoor air should converge to the global background concentration,
which we assume to be 400 ppm. However, because ventilation may also be done against the air inside
the school building we use the guidelines from Laussmann & Helm [43] and use the equation they
derived for the temporal evolution of the CO2 concentration to determine the effective background
concentration Ca and the air change rate λ using a fit function of the form:

C(t) = (C0 − Ca)·e−λ·t + Ca, (1)

where C0 is the initial concentration upon start of the ventilation at t = 0 s. A nonlinear regression
is applied to the measured raw data acquired in order to determine the background concentration.
Based on the calculated air change rate λ we calculate the ventilation rate VR in L/s according to:

VR = λ·V· 1
3.6

, (2)

where V is the room volume in m3. The generation rate VCO2 of CO2 inside rooms by occupants during
class is calculated according to the model by Persily and de Jonge [44]:

VCO2 = RQ·BMR·M·(T/P)·0.000211, (3)

which takes into account the respiratory quotient (RQ = 0.85 set as value here), the basal metabolic
rate BMR in MJ

day , the metabolic equivalent M, temperature T in K and Pressure P in kPa. With a
known occupancy of each class the value of VCO2 may be used to determine the physical activity of
pupils, or vice versa. Apart from the CO2 concentration the thermal comfort is an important factor
influencing the performance at school. Oftentimes, the temperature is used as the only parameter to
assess the thermal comfort. However, humidity levels also significantly affect the thermal comfort.
Although there are indications that children might experience thermal comfort differently than
adults [45] we use the established ASHRAE Standard 55 to define thermal comfort [46] for people
wearing winter clothing. Further large-scale measurement in various schools would be necessary to
establish a reliable and more precise thermal comfort model for school children. For now we refer
on ASHRAE 55, where good thermal comfort is achieved when temperatures are between 20 ◦C and
23 ◦C, and at the same time the relative humidity values are between 40 and 60% as described in [46].
Temperatures lower than 18 ◦C or higher than 25 ◦C as well as humidity levels below 20% or above
70% trigger a poor thermal comfort rating according to [47]. Intermediate values of temperature and
humidity indicate mediocre but acceptable thermal comfort ratings. It should be taken into account
that the thermal comfort evaluation has been made for the specific climatic locations in central Europe.
In this case for the winter season and with a presumption of a typical winter indoor clothing level
factor is set to 1.1 clo. This comfort function is easily adaptable to different climatic zones, clothing
level and seasons of the year. In order to assign an overall indoor environmental quality score we
include the CO2 concentration. We use the classification from [48] to evaluate the CO2 concentration
levels: Levels below 1000 ppm indicate good air quality, values between 1000 and 2000 ppm medium
quality, and values exceeding 2000 ppm poor air quality. Hence good indoor environmental quality

www.wunderground.com
www.netatmo.com
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requires both the thermal comfort as well as the air quality to be good and we assign three levels of
IEQ to each room and at every time, which is indicated with green, yellow, and red shading in the
graphs in line with previous research results [49,50].

3. Results and Discussion

The raw data of the temperature calibration and the gas sensitive characterization of the CO2

module are shown in Figure 3. The photoacoustic amplitude excited by the LED in the absence of CO2

decreases with increasing temperature, mainly because the optical output the MID-IR decreases [29].
Increasing the temperature of the CO2 sensor module from 17 ◦C to 47 ◦C leads to a decrease in emitted
power of approximately 32%. A parabolic regression for the sensor signal S of the form:

S(T) = ∑2
i = 0 αiTi, (4)

with T the temperature in ◦C and αi the regression parameters is applied to describe the dependence
of the detector signal on the temperature. This function is achieved under normal operating conditions
and takes into account self-heating of the LED at a duty cycle of 50% and the stated driving current of
80 mA. Changes in duty cycle or driving current would alter this function since this would impact on
the LED emission. The inset of Figure 3a shows the results obtained with optimized values obtained
via a Levenberg Marquart fit for which the αi values read α0 = (1.07354 ± 0.01024), α1 = (−31.1 ±
7.5083) × 10−4 ◦C−1, and α2 = (−8.36047 × 10−5 ± 1.25458) × 10−5 ◦C−2, respectively.
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Figure 3. (a) Temperature calibration using a climatic chamber to enable corrections for changes in
ambient temperature during operation of the sensor module. The blue curve shows the corrected signal.
(b) Using a certified gas mixture the dependence of the sensor response on different CO2 concentrations
has been established.

After implementing this temperature correction a CO2 calibration is performed by determining the
sensor response for different CO2 concentrations. Figure 3b shows the transient response of the gas sensor
upon exposure of 9 different concentrations of CO2 in the range from 300–700 ppm in steps of 50 ppm.
The inset shows the corresponding calibration curve that takes into account concentration values up to
5000 ppm. Using a cubic regression curve for the response R = S(cCO2 = 0 ppm)/S(cCO2) of the form:

R
(
cCO2

)
= ∑3

i = 0 βi cCO2
i, (5)

with cCO2 the CO2 concentration in ppm and βi the regression parameters yields: β0 = 0.99742 ± 0.00197;
β1 = (−81.8975 ± 4.4699) × 10−6 ppm−1; β2 = (9.50238 ± 1.92614) × 10−9 ppm−2; β3 = (−6.38218
± 2.26994) × 10−13 ppm−3. Characterization of the sensor type presented in previous work has
showed no cross-sensitivities to humidity [30] and a detection range between 0–7000 ppm CO2 at 1 bar
pressure [51] with operating temperatures between 15 ◦C and 50 ◦C (c.f. Figure 3). The operating
principle prevents cross-sensitivities to gases that to not have absorption features that overlap with
those of CO2. The lifespan of this type of sensor is determined by the lifetime of the LED light
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source, which we estimate to be at least 2 years, based on experimental data obtained previously [29].
The signal-to-noise ratio will worsen proportionally to the diminishing LED optical output [30] and
hence the precision of the CO2 sensing module is affected accordingly. To counter this type of long-term
effects a self-calibration routine may be implemented in the network by using prolonged periods
without use of the school building, i.e., holidays, to automatically re-set the 400 ppm reading.

After calibration all CO2 sensor modules and establishing the system at Remchingen school
basic functions of the system such as ventilation rate and CO2 generation rate determination have
been checked. Exemplary results for room R2.21 are shown in Figure 4 to highlight the procedure to
determine λ and Ca as well as the total CO2 generation rate.
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Figure 4. (a) CO2 decay curves measured at different times in the same classroom and the nonlinear
regression curves used to estimate the background concentration (Ca). The fit results are stated in the table
in the inset. The inset on the right shows a logarithmic representation of the CO2 concentration values after
subtraction of the background value Ca to highlight the exponential decay behavior. (b) With closed class
room doors the ventilation rate may be neglected as compared to the generation rate, which is why linear
models apply. It also allows for determining the level of physical activity via the generation rate of CO2

during class. Knowing the volume of the room and the number of people inside allows for estimating the
activity level, which may vary according to the specific activity performed in class.

The five rooms have been continuously monitored from 19 February 2018 until 10 April 2018.
In Figure 5 we show the evolution of the thermal comfort during an exemplary day at the school in a
class room with north orientation.
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Figure 5. (a) Representation of the thermal comfort, taking into account temperature and relative
humidity and its evolution during exemplary days, including a vacation day on 3 April 2018.
Notably, good thermal comfort is never achieved because of too much heating during the winter
season. (b) The correlation between inside and outside temperature are shown: A class room facing
south (e.g., PHI) exceeds the acceptable limit of 25 ◦C in the majority of days, unlike class rooms facing
north (e.g., R.2.21), due to more pronounced influence of heating by the sun.
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In this particular school, the heating system automatically starts to work at 5 am without active
control with the intention to provide comfortable thermal conditions by 8 am. However, due to varying
outdoor conditions this usually leads to an overheating early in the day. More precisely, on all days of
the study the average room temperature during the morning has exceeded 23 ◦C, which is why a good
thermal comfort range is only achieved in the early hours of each day. Additional heat generated by the
class then quickly led to mediocre thermal comfort levels. While thermal comfort depends to a large
extend on the subjective preference [6] and may still be judged acceptable by the pupils during most of
the time the results show that an active thermal control taking into account outdoor temperature may
lead to considerable cost savings via tailored heating. Moreover, the analysis of the data taking into
account the orientation of each room shows that individual control of the thermal parameters taking
into account radiative heating via sunshine is necessary to achieve good thermal comfort.

The temperature data of the classroom summarizing the complete monitoring period is depicted
in Figure 5b, where the average indoor temperature is plotted versus the average outside temperature
on the particular day. The correlation between average outdoor temperature and average indoor
temperature is more than three times stronger when comparing class rooms facing north with those
facing south. A linear fit to the complete data set reveals a slope of sS = (90 ± 40) mK/K for a room
facing south and sN = (28 ± 8) mK/K facing north. These results underline the necessity to individually
monitor and control each room in a building according to its peculiarities.

Adding the information about the CO2 levels allows for a more comprehensive IEQ assessment
and a transient, exemplary week is shown in Figure 6, using a color scheme to indicate overall IEQ.
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Figure 6. Transient evaluation of temperature, humidity and CO2 concentration in room R2.17 in the
period between 19.02.2018 and 19.03.2018. Due to overheating the thermal comfort was only medium
throughout the week. The CO2 levels have been recorded to be above 2000 ppm almost every day at
some point.

Even though room R2.17 is the biggest room in this study in terms of volume and area it exceeds
the recommended value of 1000 ppm after only about 22 min on average even when starting from
the 400 ppm level. Because of noise pollution windows have to remain shut during a class and
combining this with the high building standard leads to medium or poor indoor air quality even in a
comparatively large room. The evolution of the CO2 level as the most important indicator for health
and concentration capabilities has consequently been analyzed in more detail. To this end we have
determined the background levels during the week as well as the evolution of the CO2 level within
each day. In Figure 7 we present raw data and the analysis of the background concentration in the
class at 7.30 am, i.e., before teacher or pupils enter the room. The transient raw data for Monday shows
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that CO2 levels quickly increase from background level of about 400 ppm CO2 to about 2000 ppm
within 90 min. Afterwards the room is ventilated for 15 min, which leads to a drop of about 1000 ppm.
Consequently, during the next class the CO2 level inevitably rises to almost 3000 ppm. School on that
day has finished shortly before 2 pm and the doors are shut afterwards. Because of the high level of
thermal insulation, the natural ventilation rate of the building is low, which leads to a high level of
CO2 remaining in the class the next day, when classes start at about 1000 ppm background level in the
first class given that day. Notably, the ventilation behavior plays a crucial role in maintaining CO2

concentrations at a reasonable level. In this regard, it is not only important to manage one class room
well but because CO2 accumulated in the building as a whole, holistic strategies for CO2 management
of the complete building are necessary. Even though the importance of ventilation is known in this
school, the background level in class rooms not only increases during each day but also during the
week. The average CO2 level in room R2.17 at 7.30 am is plotted in Figure 7b and shows that it is rising
throughout the week. Thursday is an exception because the room is not used at all on Wednesdays,
which leads to a drop in early morning CO2 levels consistent with natural ventilation.
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Figure 7. (a) Exemplary dynamics of the evolution of the CO2 level on three days of the week.
Because doors and windows are closed after school finished CO2 can accumulate. (b) The accumulation
leads to a constant increase in the background level of CO2, which makes it harder to maintain good
CO2 levels the older the week gets.

We have analyzed the different types of ventilation that are applied to the rooms and the ACR
can be used to identify the type of action taken by the teacher and classify it. As expected the ACR
greatly depends on opening the window and the air flow. The highest ACR results from opening
several windows and doors simultaneously. This method is more than two orders of magnitude faster
than the natural exchange of air of the room. Based on the results regarding the ventilation and CO2

background levels we have calculated which level of air change rate would be necessary to maintain
CO2 levels consistent with good IAQ for ventilation times of 5 min, 15 min, 1 h, and 16 h respectively.
The results are plotted in Figure 8 and show that natural ventilation of the building is insufficient to
achieve good IAQ even after 16 h.
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Figure 8. Air change rate as a function of the type of ventilation as well as the threshold ventilation rate
required to achieve good IAQ. The results show that a 5 minute break is not sufficient to reestablish
good IAQ. Only after 15 min of ideal and strong ventilation may low CO2 levels be achieved.

Even more attention-grabbing, the determined average natural ventilation rate of the building is
below 0.1, which means that even a weekend is not long enough to recuperate background levels of
400 ppm CO2 if teachers fail to vent the room on Friday. This ultimately leads to an accumulation of
CO2 during weeks and months, if no appropriate action is taken. Also a short 5 min break in between
classes is insufficient to obtain good IAQ. Only a 15 min break and maximal ventilation would allow
for good IAQ after a class. As a consequence even in schools with teachers that are highly aware of
IEQ issues, such as at Remchingen Gymnasium, it is highly improbable that good IEQ can be achieved
at all without the help of indoor air quality indicating systems.

4. Conclusions

High building standards and good thermal insulation have led to considerable saving in energy
expenditure of buildings. Here we have shown that the strong suppression of the natural ventilation
of buildings makes it very difficult to maintain good IAQ without active HVAC systems. CO2 not only
accumulates during each school day but also during the course of the week leading to ever poorer
IAQ. Only with ideal ventilation after each class is it possible to maintain good IAQ. At the same time
schools are overheated to varying degrees depending on the orientation of the room. The results also
show that it is important to monitor and control rooms individually to design mitigation strategies
tailored to each room. This does not take away from the fact that a building wide strategy for IAQ
control is necessary if good air quality is to be achieved. Because most schools are not equipped
with active environmental control systems and thermal insulation is an important cornerstone for a
sustainable energy landscape, the monitoring and implementation of intelligent ventilation strategies
is much in need. In this regard, wireless sensor networks are a suitable technique to provide data
on various temporal and spatial scales. The limiting factor is oftentimes the cost of each individual
sensing node and here we have showed that low-cost, reliable, and selective gas sensing nodes are
indeed feasible.
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