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Abstract: Laser rangefinders (LRFs) are widely used in autonomous systems for indoor positioning
and mobile mapping through the simultaneous localization and mapping (SLAM) approach.
The extrinsic parameters of multiple LRFs need to be determined, and they are one of the key
factors impacting system performance. This study presents an extrinsic calibration method of
multiple LRFs that requires neither extra calibration sensors nor special artificial reference landmarks.
Instead, it uses a naturally existing cuboid-shaped corridor as the calibration reference, and it
hence needs no additional cost. The present method takes advantage of two types of geometric
constraints for the calibration, which can be found in a common cuboid-shaped corridor. First, the
corresponding point cloud is scanned by the set of LRFs. Second, the lines that are scanned on
the corridor surfaces are extracted from the point cloud. Then, the lines within the same surface
and the lines within two adjacent surfaces satisfy the coplanarity constraint and the orthogonality
constraint, respectively. As such, the calibration problem is converted into a nonlinear optimization
problem with the constraints. Simulation experiments and experiments based on real data verified
the feasibility and stability of the proposed method.

Keywords: 2D laser rangefinder; extrinsic calibration; mobile mapping; indoor positioning;
line detection

1. Introduction

A 2D laser rangefinder (LRF) can provide an accurate range with high angular resolution over long
distances [1]. As it has lower power consumption, smaller size, and lower cost compared to general 3D
laser scanners, it is widely used in autonomous systems such as robot positioning [2], navigation [3],
and mobile mapping [4,5] through the simultaneous localization and mapping (SLAM) technique [6].
Many systems, such as the light detection and ranging (LiDAR)-based SLAM system [7,8], employ
several 2D LRFs simultaneously to perform sensor fusion, which reinforces the concern of extrinsic
calibration for fusing all the LiDAR point cloud into a global reference frame. Moreover, the
performances of mapping and SLAM are sensitive to calibration errors, especially when they have a
long working range, so that small rotation errors can produce significant distortions in the map [9].

The calibration of the sensors is generally divided into intrinsic parameter calibration and extrinsic
parameter calibration. The intrinsic parameters relate to the acquisition process and involve issues that
are both temporal and geometric [10,11]. The extrinsic parameters determine the pose transformation
relationship among multiple sensors or between one sensor and a reference coordinate system [12].
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The work of this paper focuses on the extrinsic calibration of multiple 2D LRFs, assuming that the
intrinsic calibration has been done.

The extrinsic calibration of multiple 2D LRFs is more difficult than the extrinsic calibration of
multiple 3D laser scanners [13,14], multiple depth cameras [15], or even the extrinsic calibration
between one LRF and one camera [16–18]. The latter can be done by placing retroreflective targets or
using features that are easily recognized in 3D scenes, whereas it is hard to find discriminative features
in a 2D LRF point cloud. Although multiple LRFs can be indirectly calibrated by doing the calibration
between each LRF and another type of sensor, such as a camera, not all LRFs have enough of a common
field of view with the camera, and the propagation of error can also affect the final calibration accuracy.

Some applications may only be concerned with three degrees of freedom (DOF) of external
reference calibration on the horizontal scanning plane. For example, in References [19,20], the
three-DOF extrinsic calibration of multiple LRFs on the scanning plane was achieved by matching
the target motion trajectories in the overlapping scanning region of the LRFs. However, for
many applications, such as 3D mapping applications, there may be large angles between scanning
planes [8,12], and then a six-DOF extrinsic calibration needs to be done. The authors of Reference [12]
made a special facility based on the scanning planes of multiple LRFs to ensure all the LRFs were able
to scan the small V-shaped targets mounted on the facility, and then they used the centers of the targets
as control points for the extrinsic calibration. Obviously, this method required manual targets to be
made based on pre-measured installation configurations, and this method did not automatically solve
the problem of finding distinguishing features on multiple LRF scan planes.

However, although it is difficult to directly find corresponding discriminative features in LRF
point clouds, some geometric characters can be used to indirectly estimate the control points located
outside the scanning planes of LRFs. As well as using spherical targets to do an extrinsic calibration of
multiple Kinect sensors [21], the 2D LRF can obtain a circular arc when scanning a spherical target,
the position of the spherical center outside of the scanning plane can be derived according to the
known radius of the target, and then the extrinsic calibration between multiple LRFs can be performed
using the corresponding target centers in all the frame data [22,23]. In Reference [24], the extrinsic
calibration between a single LRF and a fixed 3D reference frame was done by designed targets using
the inherent geometrical characteristics formed by a cone and a pyramid. Additionally, the authors
in Reference [25] used conic targets to perform an extrinsic calibration between a 3D laser scanner
and a 2D LRF. In References [26–28], geometric-based methods were used in the extrinsic calibration
between a single LRF and a camera. Reference [26] used a scene corner to form a line-to-plane and a
point-to-plane constraint, Reference [27] used a simple folding pattern to form a rotation constraint
and a point-to-plane constraint, and Reference [28] used a V-shaped pattern to form a point-to-plane
constraint. All these geometric constraints can convert the calibration problem to an error minimization
problem so as to achieve extrinsic calibration.

In Reference [29], the authors used the geometric constraints formed by static objects (buildings)
to achieve the extrinsic calibration between a 3D laser scanner and an inertial measurement unit (IMU)
sensor. In References [30–32], the calibration between a 2D LRF and an IMU, and a GNSS and a body
reference frame of the multisensor system, was deployed by using differently orientated georeferenced
planar surfaces. With the linking component from a 3D scanner, the calibration could be done by
minimizing distance between the pointwise-observed referenced surfaces and their nominal position.
If this method were used for calibrating the 2D LRFs, however, multiple line segments could be gotten
instead of line-plane pairs, so the problem would be totally different.

According to the literature surveyed, in recent years some research works have directly calibrated
the extrinsic parameters of multiple LRFs based on geometric constraints, and because the geometric
constraints they used could be found in daily life, the man-made scanning target was omitted.
References [33,34] used a coplanarity constraint and an orthogonality constraint formed by a pair of
perpendicular planes for the extrinsic calibration of LRFs. Generally, this geometric pattern can be
found in daily life, such as the corner portion of a vertical wall outside a building. The author of
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Reference [35] used two kinds of coplanarity constraints formed by a large plane to do the extrinsic
calibration of LRFs. This method requires a flat surface that is large enough and flat enough, such as a
playground floor. It requires at least three LRFs. According to our practical experience, for the methods
in References [33,34], it is difficult to find a corner that is large enough, free of obstacles, and not made
of reflective or light-transmissive glass in our modern living environment. This paper proposes a
method using the same geometric constraints but choosing a common cuboid-shaped corridor as the
georeferenced target. That is, the method does not need extra sensors or artificial landmarks, and it
utilizes a coplanarity constraint and an orthogonality constraint formed by a corridor, rotating the
multiple LRFs with different orientations to perform the extrinsic calibration.

The rest of the paper is organized as follows: Section 2 introduces the basic calibration principle
of this method; Section 3 describes the detail of the calibration methodology; Section 4 shows the
simulation experiments and the experiments based on real data; and Sections 5 and 6 are the discussion
and the conclusion of this work.

2. Calibration Principle

This section explains the objective of an extrinsic calibration, the reason why a cuboid-shaped
corridor can be used to do the calibration, and the calibration procedures.

2.1. Objective

An indoor mapping device was taken as an example, as shown in Figure 1. It is a laser-based
backpack and trolley device. Three 2D LRFs and one inertial measurement unit (IMU) were installed
on the device, and their own coordinate frames are shown in Figure 1b. For the device, the extrinsic
parameters of the four sensors needed to be calibrated, but only the calibration of the three LRFs
is discussed here: It was also planned to be the premise of the IMU extrinsic calibration. Thus, the
objective of the extrinsic calibration was to obtain the relative rotation and translation parameters
between the three LRFs.

The three LRFs are denoted as LRF1, LRF2, and LRF3 from top to down, and the coordinate
frames of them are denoted as S1, S2, and S3. Let [R1|T1], [R2|T2], [R3|T3]∈ <3 be the LRF poses
with respect to a common reference frame. For the hardware system, the frame of the IMU may be
used as a device frame and also as a reference frame, but for the convenience of calibration, S1 is taken
as the reference frame. So, the final calibration results are [R2|T2] and [R3|T3], and in terms of values
are three Euler angles and three translation values for each of [R2|T2] and [R3|T3].
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Figure 1. The indoor mapping device: (a) Picture; (b) frames in the device.
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2.2. Geometric Constraints

The scanning plane of each LRF is a 2D plane in the 3D real word. Ideally, when it is used to scan
a cuboid-shaped corridor, a parallelogram is gotten, as shown in Figure 2a (the 90◦ dead zone of the
LRF should be noted, and the z axis is behind the 2D figure, actually, according to the right-hand rule).

When scanning the cuboid-shaped corridor using multi-LRFs, multiple parallelograms can be
gotten, and all the sides of the parallelograms are on the surfaces of the corridor. As shown in Figure 2b,
Ca

i and Ia
i are the center points and the line vectors of the lines scanned by LRFi (i = 1, 2, 3; a = 1, 2,

3, 4) on the surface a. After converting these scanned 2D lines into 3D space, there are two types of
geometric constraints, the coplanarity constraint and the orthogonality constraint.

The coplanarity constraint means that the lines scanned by LRFs, which lie on the same surface,
should be on the same 3D plane. That is, the distance between the two coplanar lines should be zero.
Thus, the coplanarity constraint is expressed as follows:

(R1Ia
1 ×R2Ia

2)·(R1Ca
1 + T1 −R2Ca

2 − T2) = 0, (1)

where a denotes the surface the lines are on. The first-half part of the left item of the equation
can represent the distance vector between them, and then the left item of the equation equals the
distance value.
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(a) The 2D view of the scanned parallelogram by a single LRF; (b) the 3D view of the two scanned
parallelograms scanned by two LRFs.

The orthogonality constraint means that two adjacent corridor surfaces should be perpendicular
to each other, whereas the normal vector of the surface can be expressed by the cross product of the
line vectors. Thus, the orthogonality constraint is expressed as follows:

na·nb = (R1Ia
1 ×R2Ia

2)·(R1Ib
1 ×R2Ib

2) = 0, (2)

where a and b denote two adjacent surfaces of the corridor. Generally, the cross product of vectors
of two lines can be taken as the normal vector of the plane they are on. Then the perpendicular
relationship of the two planes means that the dot product of their normal vectors should be zero.

The geometric constraints are the key point of the calibration, and the initial poses of LRFs
are given at first. Because they deviate from the correct poses, the scanned lines do not satisfy the
coplanarity constraint and orthogonality constraint. The calibrated poses can be gotten by finally
minimizing this deviation.

However, obviously, the extrinsic calibration of a LRF is a nonlinear problem with six DOFs,
whereas just one corridor observation cannot provide full six DOF constraints. As shown in Figure 2b,
assume the calibration is done with all the lines meeting the geometric constraints using just one
observation, and the translation parameter along the y axis is still uncertain. Therefore, in order to
provide sufficient constraints by the corridor observations, the device must be required to gather data
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while rotating inside the corridor with different orientations. The specific rotating operation will be
stated and discussed in Sections 4.1 and 5.

2.3. Calibration Procedure

The entire calibration solution consists of three key points: (1) Line detection; (2) the acquiring
of coplanar line pairs and orthogonality line pairs with respect to the coplanarity constraint and the
orthogonality constraint, respectively; (3) solving the calibration problem with these line pairs as input.

After the scanned lines are detected from the raw LRF data, it is still unknown which lines lie
on the same corridor surface as well as which coplanar line pairs lie on two neighboring corridor
surfaces, even when the initial poses of LRFs are given at first. In fact, the problem of getting these
line pairs means finding the correct corridor observation based on each group of data. Hence, the
line sorting method, the generating of all corridor observation candidates, and the method of finding
correct corridor observations were designed to solve this problem. The whole calibration procedure is
shown in Figure 3. The detailed explanation of these processes is carried out in Section 3.
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3. Method

3.1. Line Detection

A random sample consensus (RANSAC) [36] is used to detect the lines in the 2D points scanned
by LRFs. As can be seen in Figure 2a, there exists a discontinued line (line “A–D”) due to the dead
view zone of LRFs (or due to other reasons such as reflection), and this can be clustered as the same
line by RANSAC.

In order to enhance the robustness of detecting lines using RANSAC, some modifications were
made on the basis of traditional algorithms:

(1) The nearest available distance threshold was added. If a person is holding a device to rotate a
device equipped with LRFs during the experiment, it is possible to scan a portion of the human body
that is closer to the distance, and the nearest available distance threshold according to the calibration
scene can filter out such interference.
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(2) The farthest available distance threshold was added. First, the common LRF sensors can scan
to a distance of tens of meters. If the calibrated scene has only a limited distance or the further scene is
too messy, then it is necessary to add the farthest available distance threshold to avoid impact from
the further scene. Second, considering the issue of balance (related to the methods in Section 3.4), the
detected lines are not allowed to be too long.

(3) The minimum limit of the distance between two sampled points was added. Assuming that
the two sampled points are on the same line, the greater the distance between them, the closer the line
is to the actual line. On the other hand, it is also considered that when the LRF scans a close-range
target, the point density is relatively large due to the fixed angular resolution, and even a short line
may have many inliers, so this limitation also limits the interference of the near object to the line
detection to some extent.

(4) Traditional RANSAC saves the model whenever it finds enough inliers. However, considering
multiple lines should be detected, and inliers are not shared between them, an inner loop with a fixed
number of repetitions is added to ensure that lines with more inliers have a higher extracted priority.

The line detection algorithm is shown in Algorithm 1.

Algorithm 1. Line detection based on modified random sample consensus (RANSAC).

Input:
2D points: P = {pi} = {xi, yi}
Nearest valid distance: NVD
Farthest valid distance: FVD
Threshold used to differentiate between inliers and outliers: ε
Shortest line length: SLL
Minimum number of inliers: MNI
Maximum outer loop times: MOLT
Fixed inner loop times: FILT

Output:
The number of lines: nL
All the lines: Ls
The inliers for each line: Inliers

Procedure:
(1) SC ← Remove the points that are too near (using NVD) or too far (using FVD) from P;
(2) Repeat sampling two points p1 and p2 from SC within FILT times until the distance between p1 and
p2 is bigger than SLL;
(3) Generate a 2D line model based on p1 and p2: {A, B, C}

(
Ax + By + C = 0, A2 + B2 = 1

)
;

(4) Get the number of points to satisfy |Ax + By + C| < ε (inliers) in SC;
(5) Repeat (2), (3), and (4) for FILT times, and get the line L with the biggest number of inliers;
(6) If the number of inliers based on L is bigger than MNI, then L∗ ← refine L with the least-square
method and recompute the inliers based on L∗, else return all the lines and the number of them now;
(7) Save L∗ to Ls and save the inliers to Inliers;
(8) SC ← Remove the inliers from SC based on model L∗;
(9) Repeat (2)–(8) until the number of points in SC is less than MNI or the number of repetitions is greater
than MOLT;
(10) Return the number of lines nL, all the lines Ls, and Inliers.

3.2. Line Sorting

The lines detected by the method based on modified RANSAC are unordered with respect to the
real physical corridor surfaces. The purpose of line sorting is to sort these lines with respect to the
thee-surfaces order and to reduce the complexity of finding the correct corridor observation (details are
in Sections 3.3 and 3.4). This means each line is set a line index. Suppose there are n (n ≤ 4) straight
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lines, then one of them is chosen to be the first line, and other lines are set an index between 2 and 4
with respect to the physical order.

The line sorting method is applied as follows:
(1) compute the center points of each line;
(2) sort the lines by the angle between the vector from zero point to the center point and the vector

of the positive x axis direction (as shown in Figure 4);
(3) set the line index of the first line as “1st”, and infer whether the line with the next index is an

opposite line or the previous adjacent line or next adjacent line, and repeat this until each line is set
an index.

In the third step, the relationship between two lines is inferred by the vector of the line and the
vector from zero point to its center point for each line. Assume v1 and v2 are the two vectors of line l1
and line l2, whose line indexes are i1 and i2. If |v1 × v2| ≈ 0, then the two lines are on two opposite
surfaces, which means |i1 − i2| = 2, else they are on two adjacent surfaces. Then, if l1 and l2 are on two
adjacent surfaces, assume u1 and u2 are the two vectors from zero point to the center points of l1 and
l2. If (u1 × u2)·Z > 0 (Z is the vector of the positive direction of the z axis), then i2 = mod(i1, 4) + 1,
otherwise, i1 = mod(i2, 4) + 1.
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3.3. Generating All Corridor Observation Candidates in Each Group of Data

After the line sorting process, a sorted line set is gotten in each group of data:

SL = {SSLi} (i = 1, 2, . . . nLRFs), (3)

where nLRFs is the number of LRFs, and SSLi is the subsorted line set, which comes from the sorted
lines of LRFi,

SSLi =
{

Lj
i

}
(i = 1, 2, . . . nLRFs), (4)

where Lj
i denotes the sorted line with an index of j in the lines from LRFi. Each LRF can get up to

4 lines in each group of data, which is based on the fact that each LRF can get at most 1 line on each
surface of the corridor. Thus, the number of elements in SSLi is between 0 and 4. It should be noted
that the index of the lines may be not continuous. For example, if there are only two lines detected
from LRF2, and they lie on opposite corridor surfaces, then SSL2 =

{
L1

2, L3
2
}

, according to Section 3.2.
It is still unknown which line pairs are on the same surface as well as which coplanar line pairs lie

on two neighboring corridor surfaces after the above processing. The corridor observation is used to
describe this problem.

A corridor observation can be taken as a line container. Specifically, because the corridor has four
surfaces, one corridor observation consists of four line sets,

CO = {S1, S2, S3, S4}, (5)

where Sa (a = 1, 2, 3, 4) denotes the line set with respect to corridor surface a:
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Sa = {La
i } (a = 1, 2, 3, 4; i = 1, 2, . . . nLRFs). (6)

In order to get CO, all the lines in SL need to be arranged in the four line containers of the CO.
By comparing Equation (4) with Equation (6), it is found that the essence of the problem is how
to convert Lj

i into La
i . In other words, it is how to convert the line index into the corridor surface

index with the interval of indexes staying the same. In this way, the lines with the same surface
index are coplanar line pairs, and the lines with adjacent surface indexes are on two surfaces that are
perpendicular to each other.

Suppose that there are 3 lines from LRF1, 2 lines from LRF2, and 4 lines from LRF3. If the
line sequence in each LRF is not being considered, then the number of all the corridor observation
candidates is A3

4 ×A2
4 ×A4

4 = 6912 (it is an arrangement problem, where each LRF can get at most 1
line in each surface of the corridor). However, when the line sequence is considered, and assuming the
two lines in LRF2 lie on two opposite corridor surfaces, then the generating of all corridor observation
candidates can be described as putting the lines into the four surfaces (line containers), which is shown
in Figure 5.

To get all the corridor observation candidates, the surface indexes of the lines for each LRF should
be moved together. If there are no adjacent lines in one LRF, such as LRF2 here, then the line sequence
should be fixed. Otherwise, the line sequence should be double (such as LRF3, and the opposite
sequence is L4, L3, L2, L1). However, regardless of the double sequences, the direction of movement
must be fixed. Thus, there are (1× 4)× (2× 4) = 32 (where “1” and “2” stand for a fixed sequence
and double sequence, respectively) corridor observation candidates. If there exist adjacent lines of
LRF2, the number doubles.
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If there is a special case where no lines are detected in the point cloud of one of the LRFs, then
this observation is abandoned. Otherwise, finally, the total number of all possible observations is as
seen in Equation (7):

τ = 4× 2ℵ1×ℵ2 × 4× 2ℵ3 , (7)

where ℵi(i = 1, 2, 3) is related to whether the lines from LRF2 and LRF3 need to be moved in a double
sequence. If there is one line or two opposite lines detected in LRFi, then ℵi = 0. Otherwise, ℵi = 1.

In addition, although the calibration is working with pairs of LRFs, considering all the lines from
three LRFs into the generation makes the assessment of the corridor observation more stable.

3.4. Finding the Correct Corridor Observation in Each Group of Data

Among all the corridor observation candidates generated, a corridor observation assessment
method based on a coplanarity assessment method is used to assess them, and the corridor observation
with lowest error is taken as the correct corridor observation.
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In Reference [33], the authors did the calibration by scanning perpendicular planes, which
generated all the two possible corner observations for each pair of LRFs (each LRF gets two lines totally
on the corner), and then they used RANSAC to filter out the incorrect corner observations based on the
initialized relative poses of LRFs. This meant that at least half of the observations were totally incorrect
from the original input observations, and the inliers were different at each calibration experiment even
with the same data and the same parameters due to the corner observation selection method, which
led to an unstable calibration result. In this method, with the line sorting result and the generating
of all corridor observation candidates above, the correct corridor observation, which means all the
coplanar line pairs and the neighboring surface pairs are all correct, can be gotten by using the corridor
observation assessment method, which is also based on the coplanarity assessment method.

3.4.1. Coplanarity Assessment Method

The line detection procedure generates the inliers of the lines, so it is easy to get the two end
points of each line. The volume of the tetrahedron, whose vertices are the four end points of the two
lines, is used to assess the coplanarity of the two lines. The two lines are more inclined to be a coplanar
line pair if their tetrahedron is small, as shown in Figure 6 (the box has no relation to the method, and
it is to make the figure be more like a 3D one).
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Figure 6. The schematic of assessing the coplanar lines by the volume of the tetrahedron. The red
points are the end points of the black lines, and the transparent surfaces are the tetrahedron drawn
by two end points. (a) A bad coplanar line pair, and the volume of the tetrahedron they form is 1/6;
(b) a good coplanar line pair, and the volume of the tetrahedron they form is 0.

Assume
→
a ,
→
b , and

→
c are the three vectors from one vertex to the other three vertices in one

tetrahedron, and then the volume of the tetrahedron can be computed easily by the below equation
with very little computation:

Vtetrahedron =

∣∣∣∣∣∣ (
→
a ×

→
b )·→c

6

∣∣∣∣∣∣. (8)

Considering the endpoints of the lines are the points scanned by LRFs, they may not lie on the
detected lines, which can produce a small error. Thus, the endpoints in the inliers are replaced by the
projection of them onto the line.

3.4.2. Corridor Observation Assessment Method

With all possible corridor observations generated by the method in the previous section, each of
them can be assessed by the sum of all the volume of tetrahedrons in all the four corridor surfaces:

VCO =
4

∑
w=1

Φ(l1, l2, . . . lnw), (9)
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where nw denotes the number of lines in the corridor surface w, the function Φ represents the sum of
the volumes of the tetrahedrons formed by all the line segment pairs that can be formed by lines from
l1 to lnw , and VCO is the final assessment score of the corridor observation.

The coplanarity assessment score represents the error formed by the condition that the two lines
are taken as a coplanar line pair, and the corridor assessment score represents the error formed by the
condition that the line sets in CO are taken as a corridor observation. Thus, the corridor observation
with the smallest sum volume of tetrahedrons is taken as the correct observation finally.

3.5. Calibration Using All Correct Corridor Observations

One correct corridor observation can be gotten after the assessment process based on one frame
of data from all LRFs. The input of the calibration solution is a frame sequence with different poses, so
many corridor observations with correct coplanar line pairs and correct perpendicular corridor surface
pairs can be gotten. Finally, the calibration can be converted into a nonlinear optimization problem
based on the coplanarity constraint and orthogonality constraint, which is expressed as:

argmin
{R,T}

∑N
i=1

(
∑4

a=1 ωa
i

((
RjIa

j ×RkIa
k

)
·(Rjca

j + Tj −Rkca
k − Tk)

)2
+

∑3
a=1 ωa,a+1

i

((
RjIa

j ×RkIa
k

)
·(RjIa+1

j ×RkIa+1
k )

)2
)

,
(10)

where N is the number of corridor observations, j is the index of the LRF to be calibrated, k is the index
of the LRF to be referenced, a indicates the surface index of the corridor, and ωx

i (the superindex x
stands for a or {a , a + 1}) is the weight of the corresponding residual from COi, which is computed
through linearization from a first-order Taylor approximation of the error functions.

The resulting nonlinear least squares problem is solved iteratively using Levenberg–Marquardt:[
µk

2∆Tk
2, . . . , µk

m∆Tk
m

]T
= −(H + λ diag(H))−1g, (11)

where m is the number of the LRFs, k is the index of the iteration, µk
j (j = 2, . . . m) stands for the rotation

increment represented by the exponential map
(
euj Rj

)
, ∆Tk

m stands for the translation increment,
λ is the Levenberg–Marquardt damping factor, H is the Hessian matrix (a symmetric matrix of
dimension 6(m− 1)), and g is the gradient (a column vector of dimension 6(m− 1)) of the cost
function. As for the specific calculation of H, g, and ωx

i , please refer to Reference [33]. After the solving
using Levenberg–Marquardt, the rotation matrix is updated using the update exponential map [37] as

Rk+1
j = eµk

j Rk
j , Tk+1

j = ∆Tk
j + Tk

j , j ∈ [2, m] (12)

from an initial guess for the relative poses of LRFs, which may be obtained from a rough measurement
of the rig.

4. Experiments and Analysis

4.1. Simulation

Simulation experiments were based on the LRF scanning geometry model and the corridor
geometry model. By setting the initial poses for LRFs and the rotational motion trajectory time series
of the device as the input of the simulation, the calibration result could be gotten. The true LRF
poses were set in the scanning geometry, so they could be taken as the true values in evaluating the
calibration accuracy.

The scanning model of LRFs is based on HOKUYO UTM-30LX 2D LRF, whose characteristics
are shown in Table 1. In order to make the simulated observation data close to the actual data, Gauss
noise with σ = 0.03 m [38] was added to the simulated data.
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Table 1. Characteristics of the HOKUYO UTM-30LX 2D laser rangefinder.

Detection
Range σ

Angular
Resolution

Measurement
Resolution Field of View Scan Speed

0.1–60 m 0.03 m 0.25◦ 0.001 m 270◦ 25 ms

Rotation operation is important for the calibration because it is directly related to whether the
collected data has sufficient geometric constraints. Considering that some devices may be heavy
rather than very convenient for rotating in actual use, Table 2 lists several sets of rotations that can be
simulated and applied in almost all situations. The device pose in operation F (random pose) at each
moment in the simulation system was random, but it could be used as a random rotation operation in
reality. In addition, the rotation sequence of the Euler angles was “z-x-y” (yaw-pitch-roll), and the start
pose of the device was the same as the world reference pose in Figure 2b.

Table 2. List of rotation operations under simulation: “sin()” is the sine function, and “rand(m,n)” is a
function to generate an m-by-n matrix with numbers within [0, 1].

Operation Name t Sequence Pitch Sequence (◦) Roll Sequence (◦) Yaw Sequence (◦)

A 1, 2, . . . , 360 0 × t 0 × t t
B 1, 2, . . . , 360 0 × t + 45 0 × t t
C 1, 2, . . . , 360 sin(4 × t) × 45 + 45 0 × t t
D 1, 2, . . . , 360 sin(4 × t) × 45 + 45 sin(4 × t) × 45 + 45 t
E 1, 2, . . . , 360 (360 − t) × 45/360 0 × t sin(4 × t) × 90

F (random pose) - rand(360,1) × 360 rand(360,1) × 360 rand(360,1) × 360

The geometric model of the corridor was set to a simple rectangular tubular structure with an
infinite length. First, the width and height of the corridor were set to 2 m. The simulated true poses
of LRF2 and LRF3 were set to [−80◦, 0◦, −35◦], [−150 mm, 150 mm, −200 mm], and [80◦, 0◦, −150◦],
[150 mm, 150 mm, −500 mm], respectively, whereas their simulated initial poses were set to [−90◦, 0◦,
−30◦], [−100 mm, 100 mm,−250 mm], and [90◦, 0◦,−145◦], [100 mm, 100 mm,−550 mm], respectively.
Each operation gathered 360 frames of data, which was taken as the input of the calibration process.
After 10 repeated calibrations (the simulated data was regenerated at each repeat), the error distribution
of the calibrated three Euler angles and three translation values of LRF2 based on operations B, C, D, E,
and F were calculated and are shown in Figure 7, but not the results based on operation A.
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Since operation A was only the rotation of the device in the yaw angle and without pitch angle
or roll angle, the data of each frame of LRF1 could only scan the wall on the left and right sides, so
only two parallel straight lines were obtained, which could not provide enough constraints. After the
10 repeated calibrations, the mean value of the calibrated Euler angles and three translation values
of LRF2 were [−78.56◦, 4.43◦, −34.89◦] and [−159.16 mm, 161.94 mm, −184.25 mm], which deviated
from the set true roll angle by more than 4◦ and deviated from the set true z translation by more than
15 mm.

At the same time, the calibration results based on the operations B, C, D, E, and F were very close
to the true value. Although the accuracy based on the five operations appeared to be lightly different
from Figure 7, in fact the ease of the operation could be considered more. For example, operation
C and operation D were too complicated, so they are not recommended in general. However, if the
device is too large or inconvenient to rotate 360◦, operation E can be considered. Of course, the actual
operation is not limited to these, as long as it is capable of providing sufficient constraints.

The error distribution of 10 repeated simulation experiments with different numbers of
observations are shown in Figure 8. Based on operation B, frame sample intervals of 1, 5, 10, and 40
were set to get 360, 72, 36, and 9 observations, respectively, from the original generated 360 frames of
simulated data. As can be seen from the figure, in general, the greater the number of observations, the
higher the accuracy of the calibration results were.
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In order to verify that the method was applicable to corridors of different dimensions, the
corridor dimensions with width to height ratios of 1:1, 2:1, and 1:2 were each set under the simulation
experiment. The simulated corridor width and height corresponding to these ratios were [2 m, 2 m],
[4 m, 2 m], and [2 m, 4 m]. Similarly, the error distribution after 10 repeated times based on operation
B and a 5-frame sample interval is shown in Figure 9. Therefore, the different aspect ratios of the
corridor had little effect on the calibration.
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Figure 9. Error distribution of simulation with different corridor sizes based on operation B.

4.2. Real Data

The 3D indoor mapping device shown in Figure 1 was taken as the calibration device. The device
was placed on a trolley to easily do the rotation movements. Figure 10 shows the experiment
environment, which is easy to find in many buildings, such as an office building. The device employed
three HOKUYO UTM-30LXes (the characteristics of the LRF are shown in Table 1), and the extrinsic
calibration of LRF1 and LRF2, and LRF1 and LRF3, were done automatically after the gathering of data.
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Figure 10. Experiment scene A.

Figure 11 shows an example of the line detection result and the correct corridor observation
selection result. The color of the lines should be noted. The method in Section 3.2 was used to sort
the lines detected in each LRF, and they are displayed in red, green, blue, and magenta in order. It is
apparent from the right-down figure in Figure 11 that the line segments scanned by the three LRFs
could not be perfectly overlapped into a rectangle based on the initial extrinsic parameters.
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Figure 11. The line detection results and the selected correct corridor observations. Left-top, right-top,
and left-bottom are the line detection results of LRF1, LRF2, and LRF3, respectively, and the sequence
of the lines are plotted by red, green, blue, and magenta. Right-bottom is the corresponding correct
corridor observation based on the initial poses (from the view of the corridor direction). The lines at the
same surface are plotted by the same color, and the order of colors is still red, green, blue, and magenta.

Figure 12 shows the contrast between an incorrect corridor observation and a correct corridor
observation with the same group of data and the same initial poses of LRFs. When the observation
was not the correct one, which means that the “coplanar lines” were not in fact on the same surfaces,
the sum of the volumes of all the tetrahedrons was greatly larger than the correct one. Hence, with this
assessment method, the inputted correct coplanar line pairs and neighboring surface pairs could be
ensured to be correct as long as the initial poses were not far from the true poses.

The initial poses of LRF2 and LRF3 were set to [−90◦, 0◦, −30◦], [100 mm, 50 mm, −300 mm], and
[90◦, 0◦, −140◦], [−100 mm, 50 mm, −600 mm], respectively. Figure 13 shows the update trajectories
of the three Euler angles and the three translations of LRF2 during calibration. The magnitude
of the parameter update gradually decreased and gradually approached the target solution as the
iteration progressed.

The purpose of the extrinsic calibration was to fusion all the point clouds from multiple LRFs into
a global reference frame. Because the corridor was cuboid-shaped, if the calibration result was accurate,
then projecting the fused point cloud onto a plane perpendicular to the corridor was a rectangle formed
by a plurality of 3D line segments overlapping together. Figure 14 shows the comparison before and
after calibration in this case. Therefore, after the calibration, the point clouds from three LRFs could
be well merged into a cuboid-shaped corridor, so that the accuracy of the calibration result could be
visually verified.
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Figure 12. The comparison of the sum of the volume of tetrahedrons in an incorrect corridor observation
and in a correct corridor observation. (a,b) The different views of the tetrahedrons based on an
incorrect corridor observation; (c,d) the different views of the tetrahedrons based on a correct corridor
observation. The lines on the same surface are plotted by the same color. It should be noted that there
was no tetrahedron when there were fewer than two lines on a surface.

Sensors 2018, 18, x FOR PEER REVIEW  15 of 22 

 

    
(a) (b) (c) (d) 

Figure 12. The comparison of the sum of the volume of tetrahedrons in an incorrect corridor 

observation and in a correct corridor observation. (a,b) The different views of the tetrahedrons based 

on an incorrect corridor observation; (c,d) the different views of the tetrahedrons based on a correct 

corridor observation. The lines on the same surface are plotted by the same color. It should be noted 

that there was no tetrahedron when there were fewer than two lines on a surface. 

 

Figure 13. The convergence trajectory of the calibration parameters. 

To verify the repeatability of the method, more experimental results are shown in Tables 3 and 

4. Among them, Table 3 is the calibration result based on the device in Figure 1 and experiment scene 

A, and a total of three sets of data with each set of data was repeatedly calibrated 10 times to obtain 

the average value and standard deviation of the results. Considering that some devices are large like 

the device in Reference [39], they may be inconvenient to rotate in small scenes like scene A. 

Therefore, the configuration of the three LRFs was reconfigured and then recalibrated in scene B 

(Figure 15). The width and height of the corridor in scene A were 1.7 m and 2.4 m, respectively. 

Because the corridor was long enough, the three datasets in Table 3 were gathered based on 

operations B, C, and F. The length of the corridor in scene B was only 6.4 m, and its width and height 

were 2.2 m and 2.3 m, respectively. Thus, the three datasets in Table 4 were gathered based on 

operation E. 

Figure 13. The convergence trajectory of the calibration parameters.

To verify the repeatability of the method, more experimental results are shown in Tables 3 and 4.
Among them, Table 3 is the calibration result based on the device in Figure 1 and experiment scene A,
and a total of three sets of data with each set of data was repeatedly calibrated 10 times to obtain the
average value and standard deviation of the results. Considering that some devices are large like the
device in Reference [39], they may be inconvenient to rotate in small scenes like scene A. Therefore,
the configuration of the three LRFs was reconfigured and then recalibrated in scene B (Figure 15).
The width and height of the corridor in scene A were 1.7 m and 2.4 m, respectively. Because the
corridor was long enough, the three datasets in Table 3 were gathered based on operations B, C, and F.
The length of the corridor in scene B was only 6.4 m, and its width and height were 2.2 m and 2.3 m,
respectively. Thus, the three datasets in Table 4 were gathered based on operation E.
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Figure 14. Comparison of the fused point cloud before and after calibration. (a,c) The different views
of the fused point cloud before the calibration; (b,d) the different views after the calibration. The points
from LRF1, LRF2, and LRF3 are plotted by red, green, and blue, respectively.
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Table 3. Calibration results and their deviations based on scene A.

Item Rotation
(◦)

Rotation Dev.
(◦)

Translation
(mm)

Translation Dev.
(mm)

No. 1: LRF2 −79.28, −0.63, −29.84 0.19, 0.05, 0.05 93.23, 97.27, −405.35 0.55, 6.85, 3.29
No. 2: LRF2 −78.31, −1.11, −29.57 0.26, 0.14, 0.10 94.79, 91.65, −405.15 0.57, 4.51, 3.27
No. 3: LRF2 −78.82, −0.84, −29.72 0.43, 0.23, 0.14 93.42, 99.60, −406.79 0.98, 5.81, 3.73
No. 1: LRF3 85.16, 1.14, −135.72 0.15, 0.04, 0.03 −173.31, 59.24, −622.66 1.76, 3.04, 1.45
No. 2: LRF3 85.28, 1.24, −135.63 0.20, 0.05, 0.04 −171.33, 54.08, −624.87 2.33, 3.73, 1.64
No. 3: LRF3 85.46, 1.27, −135.55 0.14, 0.06, 0.05 −169.73, 52.64, −624.38 1.73, 2.44, 1.50

Table 4. Calibration results and their deviations based on scene B.

Item Rotation
(◦)

Rotation Dev.
(◦)

Translation
(mm)

Translation Dev.
(mm)

No. 1: LRF2 90.31, 1.86, −157.87 0.31, 0.10, 0.05 −97.7, 208.93, −1355.90 1.30, 6.96, 3.54
No. 2: LRF2 90.24, 1.80, −157.72 0.27, 0.08, 0.02 −90.80, 211.66, −1350.00 1.56, 6.61, 4.67
No. 3: LRF2 89.80, 2.05, −158.55 0.39, 0.13, 0.01 −92.66, 212.95, −1350.50 1.68, 10.30, 5.00
No. 1: LRF3 85.51, 1.18, 162.56 0.18, 0.06, 0.05 103.97, 212.24, −987.95 0.48, 2.11, 2.09
No. 2: LRF3 86.16, 1.67, 162.99 0.16, 0.06, 0.04 109.41, 211.43, −975.19 0.42, 1.92, 2.83
No. 3: LRF3 86.38, 1.53, 162.44 0.51, 0.13, 0.05 104.68, 205.66, −976.37 1.30, 6.96, 3.54

The initial poses of the LRFs in Table 3 were the same as above, and the initial poses of LRF2

and LRF3 in Table 4 were set to [90◦, 0◦, −155◦], [−100 mm, 150 mm, −150 mm], and [90◦, 0◦, 155◦],
[100 mm, 150 mm, −1200 mm], respectively. As can be seen from Tables 3 and 4, the deviation of the
calibration result was kept substantially within 1◦ and 10 mm. In addition, it could be found that the
deviation of the pitch angle was larger than the deviation of the roll angle and the yaw angle, and the
deviation of the translation in the x direction was larger than the deviation of the translation in the x
direction and the translation in the z direction. This phenomenon was normal for Table 3 because it
was the same as the error distribution based on operation B, C, and F (simulation results in Figure 7).
But for Table 4, it was because it was difficult to provide a relatively large pitch angle for the device in
actual operation, so that the constraint in the y direction was weak, and the constraint in the pitch angle
was also weak. Thus, the error distribution was more like the error distribution based on operation B.

To further prove the stability of the method, two batches of calibration experiments were
implemented based on the first dataset in Table 3. First, almost all the conditions of the mismeasurement
by hand for the initial poses of LRFs were taken into consideration. Assuming that each of the initial
Euler angles had three possibilities with deviations of −10◦, 0, and +10◦, and each of the initial
translations had three possibilities with deviations of −100 mm, 0 mm, 100 mm, then there were
36 = 729 combinations of all considered deviation possibilities. Taking the calibration of LRF2 as an
example, the referenced accurate pose could be gotten from Table 3, and the result distribution of
the 729 times of calibration is shown in Figure 16. There were only 19 outliers among all the results,
with most of them centered on a small range. In addition, from a practical point of view, the 10◦ and
100 mm error could be avoided by a manual measurement.

Furthermore, another 729 times of calibration were implemented without deviations, which meant
all the initial extrinsic parameters came from the centered results in Figure 16. As shown in Figure 17,
the calibration results were all stably distributed around an accurate result. Hence, the calibration
method was stable under multiple tests.
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5. Discussion

The proposed extrinsic calibration method of 2D LRFs uses a common cuboid-shaped corridor as
the experiment environment, which is very common in indoor buildings. The method in Reference [33]
was not very suitable for indoor devices due to corners that can meet the requirement being scarce in
most of cities, especially in indoor environments. Whether it is a corner or a corridor, it should be of
sufficient length and have no material that reflects light or transmits light on its surfaces. Obviously,
this method is more suitable under indoor conditions.

Although the method of solving nonlinear optimization problems and the geometric constraints
used are the same as the method in Reference [33], the calibration scene used and the processes from
the acquiring of the data to the finding of corridor observations are different. First, as for the calibration
scenes, the authors in Reference [35] made two extrinsic calibration solutions, one of them based
on scanning a flat plane and another one based on scanning perpendicular planes. The former one
needed at least three LRFs, and the latter one needed two or three perpendicular planes. The method
in this paper is based on scanning a cuboid-shaped corridor, which is with four planes. Second, the
line detection in this method was modified based on traditional RANSAC as well as the coplanarity
assessment method, and the corridor assessment method was proposed to make sure the inputted
observations for the nonlinear solver are correct, resulting in a stable calibration result. These methods
can also be extended to other application scenarios.

It should be noted that the device cannot be rotated too fast in actual operation. Since the 2D LRF
ranges based on the rotation of a laser beam, each laser point on the scanning plane is not obtained at
the same time as other laser points. Thus, if the device moves or rotates fast, the gathered points in each
frame are not the same 3D plane (it is the same time in simulation). This is one of the sources of the
calibration error, actually. If it moves or rotates too slowly, the amount of data collected is very large,
and then frame sampling is required when the calibration is performed, or otherwise the processing
time is long. Therefore, the speed of the rotating should not be fast, but it does not need to be too slow.

Future work may focus on reducing the method’s requirements for accuracy of the initial poses.
In general, manual measurement errors are generally guaranteed to be within 10 cm because the
three translation parameters are independent of each other. However, since the three Euler angles
are not independent of each other, even the different Euler angle combinations can generate the same
orientation matrix, so if the method of manually measuring the pose angles is inappropriate, it is likely
to cause the initial angles to deviate more than 10◦.

Moreover, devices equipped with multiple LRFs are often equipped with an IMU, just like the
one shown in Figure 1, and the extrinsic calibration of the IMU is often necessary. After the extrinsic
calibration of LRFs, the relative pose relationship between them is determined so that they can be
considered as a rigid sensor, meaning that they can be used as a 3D laser scanner together. Thus, the
calibration of the extrinsic parameters between the IMU and the LRFs is easier than the calibration of
the extrinsic parameters of the IMU and a single LRF.

6. Conclusions

An extrinsic calibration method for multiple 2D LRFs by using an existing cuboid-shaped corridor
as the reference is proposed. It does not need special artificial targets in the environment and does not
need supervised data association. Its only requirement is rotating the LRFs to scan a common indoor
cuboid-shaped corridor.

The coplanarity constraint and the orthogonality constraint from an indoor corridor are used for
finding the accurate relative poses of LRFs. In order to provide the nonlinear solver correct input, a
modified RANSAC algorithm, the line sorting method, the coplanarity assessment method, as well
as the corridor assessment method are proposed to improve the stability of the finding of the correct
corridor observation. Among them, the modified RANSAC algorithm and the coplanarity assessment
method may also be useful for other applications.
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The following work may focus on improving the robustness of the initial pose deviation. This may
be done by adding other useful geometric constraints. At the same time, based on this work and based
on the result of this calibration, the extrinsic calibration of the IMU will also be a future research plan.
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