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Abstract: The design and synthesis of fluorescent probes for monitoring pH values inside living
cells have attracted great attention, due to the important role pH plays in many biological processes.
In this study, the optical properties of two different two-photon fluorescent probes for pH are studied.
The ratiometric sensing of the probes are theoretically illustrated. Meanwhile, the recognitional
mechanisms of the probes are investigated, which shows the energy transfer process when react with
H+. Specially, the calculated results demonstrate that Probe1 possesses a higher energy transfer
efficiency and a larger two-photon absorption cross-section than Probe2, indicating it to be a
preferable pH fluorescent probe. Therefore, the influence of connection between the donor and the
acceptor on the sensing performances of the probe is demonstrated. Our results help to understand
the experimental observations and provide a theoretical basis to synthesize efficient two-photon
fluorescent probes for monitoring pH changes.

Keywords: fluorescent probe; two-photon absorption; pH sensor; time-dependent density functional
theory

1. Introduction

Intracellular pH value plays a pivotal role in biological processes, such as the growth of the cell,
transportation of the ions, shrinkage of muscle, and activity of the enzyme [1,2]. Abnormal pH values
can lead to cellular dysfunctions and cause serious diseases, such as Alzheimer’s, cancer, arthritis,
and many others [3–5]. Therefore, monitoring pH changes inside living cells is of great importance to
research on the pathological and physiological processes of the cells [6,7].

The value of pH can be assessed by various techniques, including nuclear magnetic resonance,
permeable microelectrodes, absorbance spectroscopy, and fluorescence microscopy. Thereinto,
fluorescence microscopy with pH-sensitive probes has become an indispensable tool, due to its
high sensitivity and selectivity, simple operation, and non-destructive use in living cells [8,9]. In the
past decades, many fluorescent sensors for pH have been reported. However, most of the reported
pH probes are based on one-photon excitation, in which the light penetration and imaging resolution
are limited [10–13]. In this context, two-photon fluorescence microscopy, using two photons with
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lower energy as the excitation source, has attracted much attention for its evident advantages,
such as localized excitation, increased penetration depth, and low tissue autofluorescence and
self-absorption [14–16].

Up to now, a variety of two-photon fluorescent probes have been developed for measuring pH.
For instance, Kim et al. reported a new family of small molecule and ratiometric two-photon probes
derived from benzimidazole for monitoring acidic pH values based on the intramolecular charge
transfer (ICT) mechanism [17]. Besides, a novel tumor-targeting and lysosome-specific two-photon
fluorescent probe for imaging pH changes by photoinduced electron transfer (PET) mechanism was
synthesized [18]. Usually, these probes are designed on basis of single-emission intensity changes
and can be easily affected by the environmental conditions, instrumental efficiency, and probes’
concentration. An effective approach to eliminate these interferences is to use a ratiometric fluorescent
probe, which adopts a built-in correction of two emission bands [19]. Several strategies, including
Förster resonance energy transfer (FRET) and through bond energy transfer (TBET), have been
employed to design ratiometric fluorescent probes. For FRET-based fluorescent probes, the energy
donor and acceptor are linked by a flexible and electronically non-conjugated spacer, and there is a
large overlap between the emission of the donor and the absorption of the acceptor. As a result, when
the donor moiety is excited, the energy transfer process occurs through space, and the emission of
acceptor is observed. In the case of TBET-based fluorescent probes, the linker between the energy
donor and the acceptor is a rigid and electronically conjugated bond. Energy transfer can, thus, occur
through the bond directly, and spectral overlap is not necessary.

Many FRET/TBET-based fluorescent probes have been put forward for the ratiometric detection
of pH so far [20–22]. Very recently, Zhou et al. designed a unique type of ratiometric TBET-based
two-photon fluorescent probe (hereafter named as Probe1), in which a two-photon fluorophore
(naphthalimide derivative) and a rhodamine B fluorophore were directly connected, for imaging of
lysosomal pH in living cells and tissues [23]. By adopting the same donor and acceptor of Probe1 and
connecting them with a flexible piperidine linker, they reported a FRET-based two-photon fluorescent
pH probe (hereafter named as Probe2), which showed high imaging resolution and deep tissue
imaging depth [24]. Although the experimental measurements demonstrate that both Probe1 and
Probe2 are reliable and specific probes for pH, there are few theoretical investigations on the underlying
mechanism of these probes. Furthermore, for these energy transfer-based probes, the rate of energy
transfer between the donor and acceptor is a very important indicator for evaluating the efficiency
of the probe. A uniform standard to evaluate the energy transfer rate experimentally is lacking.
Thus, comparison on the energy transfer rate of the probes, at the same theoretical level, is greatly
desired. In this work, we carry out theoretical studies on the optical properties of Probe1 and Probe2
in the absence and presence of H+. Special attention has been paid to analyzing the recognitional
mechanism of the probes using a molecular orbital diagram. Importantly, a feasible approach has been
used to predict the energy transfer rate between the energy donor and acceptor of the probe. Our
theoretical investigations can provide helpful information for rationally designing fluorescent probes
with high efficiency.

2. Computational Methods

In this work, geometrical structures of all the studied molecules are fully optimized by using
the density functional theory with the 6-31G(d, p) basis set, and the B3LYP hybrid functional [25].
Frequency analyses are carried out to ensure no imaginary frequency is obtained. On the basis of the
optimized ground state structures, the one-photon absorption (OPA) spectra are calculated by the
time-dependent density functional theory (TD-DFT) at the same calculation level, and the geometry
optimization of the first excited state and emission spectra are obtained by B3LYP/6-31G(d, p). All the
above calculations are implemented with the Gaussian09 program package [26]. Considering that
all the experimental measurements are carried out in an aqueous environment [23,24], the effect
of water solution is taken into account within the self-consistent reaction field theory by using the
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polarizable continuum model (PCM) [27]. It should be noted that upon the addition of analyte, the
analyte concentration is increased, and the free probes are transformed gradually. In this process,
the solution includes both the free probe and the product until all the probe molecules are reacted.
Thus, the actual fluorescent probe changes its absorbance and fluorescent intensity with an increase
in analyte concentration. In the calculation, we investigate the properties of the free probe and the
product, directly, to compare with the experimental measurements.

The transition probability of one-photon absorption and emission can be described by the
oscillator strength

δOPA(OPE) =
2ωij

3 ∑
α

|〈i|µα|j〉|2, (1)

where ωij denotes the energy difference between the states i and j, µα is the electric dipole moment
operator, and the summation is performed over the axes α = {x, y, z}.

Moreover, the DALTON2013 program [28] is employed to calculate the two-photon absorption
(TPA) properties of the molecules in an aqueous environment with the B3LYP functional and 6-31G(d, p)
basis set, using response theory. The solvent effect is taken into account within the PCM. The radiuses
of cavities are taken from the Gaussian calculations.

From the sum-over-state formulas, the resonant two-photon absorption matrix element can be
expressed as [29]

Sαβ = ∑
s

[ 〈i|µα|s〉〈s|µβ|j〉
ωsi −ω

+
〈i|µβ|s〉〈s|µα|j〉

ωsi −ω

]
, (2)

where µα(β) denotes the dipole moment operator in the direction α, βε(x,y,z); ω is the energy of the
incident laser beam and equal to half of the excitation energy of the final state j; and the summation
covers all the intermediate states. The TPA cross-section of a molecule is given by orientational
averaging over the TPA probability:

δTPA = ∑
α,β

[F× SααS∗ββ + G× SαβS∗αβ + H × SαβS∗βα]. (3)

Here, the coefficients F, G, and H are related to the polarization of the excitation laser pulse.
For linearly polarized light, the values of F, G, and H are 2, 2, and 2; and for the circular case, the values
are—2, 3, and 3, respectively. The summation covers the molecular x, y, and z axes, namely, α, βε(x,y,z).

The TPA cross-section, directly comparable with experiment, is then defined as [30]

σTPA =
4π2a0

5αω2g(ω)

15cΓ
δTPA. (4)

Here, a0, α, and c are the Bohr radius, the fine structure constant, and the speed of the light,
respectively; h̄ω is the incident photon energy; g(ω) provides the spectral line profile; and the lifetime
broadening of the final state Γ is assumed to be a typical value of 0.1 eV.

3. Results and Discussion

3.1. Molecular Structure

The structures of all the studied molecules in the present work are shown in Figure 1. One can see
that both Probe1 and Probe2 have the same donor (naphthalimide derivative) and acceptor (rhodamine
B unit). Nevertheless, the connection between the two parts is different. When reacting with H+, the
ring-closed rhodamine in the probes are induced to be ring-opened forms, as shown in Probe1+H+

and Probe2+H+. The optimized ground state geometries of the molecules in H2O show that the donor
and acceptor moieties of the probes, in the absence and presence of H+, are coplanar, and there is a
large tortuosity between them (see Figure 2), which is beneficial to the energy transfer process from
donor to acceptor.
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Figure 1. Molecular structures of the studied molecules.
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Figure 2. The optimized ground state molecular structures of the studied molecules.

3.2. One-Photon Absorption

The OPA process is closely related to the fluorescence of the molecules, thus, it is necessary
to analyze the molecular OPA properties. The absorption spectra of the studied molecules in
H2O are presented in Figure 3. It can be seen that both Probe1 and Probe2 have one absorption
peak, located at 409 nm and 413 nm, respectively. With the presence of H+, the spectral shape
of Probe1+H+ and Probe2+H+ have pattern characterized by two absorption bands with different
intensities. The absorption peaks of Probe1+H+ and Probe2+H+, with weaker intensities located
at about 410 nm, are nearly the same as those of Probe1 and Probe2. On the other hand, the newly
appeared peaks with larger intensities at about 480 nm for Probe1+H+ and Probe2+H+ can be attributed
to the open-ring rhodamine (see analysis of the molecular orbitals involved hereinafter).
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Figure 3. The one-photon absorption (OPA) spectra of (a) Probe1, Probe1+H+ and (b) Probe2, Probe2+H+.

To get a better understanding of the spectral phenomenon, the details of the transition
corresponding to the OPA peaks of all the studied molecules are shown in Figures 4–7. As shown in
Figure 4, the OPA peak of Probe1 originates from the HOMO−3 to LUMO transition (here, the HOMO
and LUMO represent the highest occupied molecular orbital and the lowest unoccupied molecular
orbital, respectively). It can be observed that the absorption peak of Probe1 is distributed on the
donor moiety, and the corresponding transition is the ground state S0 to the second excited state S2.
For Probe1+H+ (see Figure 5), the long wavelength absorption peak is contributed to by the HOMO
to LUMO transition, and localized on the acceptor moiety, corresponding to the S0 to S2 transition.
And the short wavelength absorption peak of Probe1+H+ results from the HOMO−1 to LUMO+1
transition, which is localized on the molecular donor. Similar changing trends occur in Probe2 and
Probe2+H+ (see Figures 6 and 7), revealing that there is no strong electronic interaction between the
donor and acceptor. Thus, the donor and acceptor can be individually excited at their characteristic
absorption wavelength, which is conductive to the energy transfer process.
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3.3. Fluorescent Emission

Discernible changes on the fluorescent signal either on the wavelength or the intensity should
be shown when a probe reacts with the analyte. The fluorescence properties of Probe1 and Probe2 in
the absence and presence of H+ are calculated by optimizing the first excited state geometries of the
molecules. The optimized first excited state molecular structures of the studied molecules are given in
Figure 8. It can be found that the geometries show little change when excited from the ground state to
the first excited state.
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Figure 9 shows the fluorescent spectra of the studied molecules. In comparison with the emission
wavelength of Probe1 at 438 nm, that of Probe2 is redshifted to 452 nm, which agrees with the trend in
the experiments [23,24]. With the addition of H+, the fluorescent wavelengths of the probes exhibit
large redshifts, and the fluorescent intensities are strongly enhanced. Moreover, the H+-induced
redshift is more significant for Probe1 than Probe2. Namely, the redshifts on the fluorescence are
110 nm and 92 nm for Probe1 and Probe2 when reacting with H+, respectively, which is in reasonable
agreement with the experimental measurements of 80 nm and 60 nm [23,24]. Notable, although the
calculated values correspond with the experimental results on the trend, there are still numerical
discrepancies. This may result from the vibrational contributions and the interaction between the
solute and solvent, that have not been considered in the calculations.
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In order to analyze the emission process, the molecular orbitals involved in the transitions
corresponding to the OPE peaks of all the studied molecules are demonstrated in Figures 10 and 11.
It can be seen that the emission processes of the molecules are mainly contributed by the transitions
from the first excited state to the ground state, which conforms to the Kasha’s rule. In addition, the
emission is localized on the donor part for the free probes, whereas it is on the acceptor moiety when
the probes react with the H+. Thus, the fluorescence of the probes features the emission wavelength of
the naphthalimide derivative and the rhodamine B unit in the absence and presence of H+, respectively.
Consequently, the fluorescence shows great redshifts when the probes react with H+, which agrees
with the experimental observations.
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In addition, compared with the Stokes shifts of 1619 cm−1 for Probe1, that of Probe2 is increased
to 2089 cm−1. After reacting with H+, the largest Stokes shifts for Probe1+H+ and Probe2+H+ are
2584 cm−1 and 2582 cm−1, respectively. Thus, one can predict that the interference from the absorption
on the fluorescence for Probe1 and Probe2 can be receded under acidic conditions. Moreover, the
Stokes shift of Probe1 increased from 1619 to 2584 cm−1 in the presence of H+, which is larger than
that of Probe2 from 2089 to 2582 cm−1, indicating Probe1 to be a probe with less interference.

3.4. Responsive Mechanism

Although the recognitional mechanisms of Probe1 and Probe2 are referred to in the experiments [23,24],
theoretical rationalization on this issue has not been discussed up to now. In order to gain further insight
into the underlying mechanism of the probes, the response process of the probes to the excitation light
are specifically exhibited by using the molecular orbital distribution diagrams. The absorption process of
Probe1 in Figure 4 shows that when excited by the light, the mainly allowed electronic transition is localized
on the donor moiety. Then, the molecule at a higher excited state will relax to the lowest vibrational level
of the first excited state, followed by decaying back to the ground state with the photon emission according
to Kasha’s rule. From the distributions of the molecular orbitals involved in the emission process (see
Figure 10), one can clearly see that the fluorescence of Probe1 is also distributed on the donor moiety.

When reacting with H+, the situation is greatly changed. As shown in Figure 5, upon excitation
with the laser wavelength of 413 nm, the molecule Probe1+H+ is excited to the fourth excited state
through the transition localized on the naphthalimide derivative. However, Figure 10 shows that the
emission of Probe1+H+ is localized on the accepter unit. Thus, the fluorescence from the open-ring
rhodamine will be observed. This process indicates that the energy transfer occurs between the donor
and acceptor of Probe1+H+. Consequently, the energy transfer off–on transform, stimulated by the
addition of H+, induces fluorescent signal from the donor to the acceptor.

The photoabsorption and photoemission processes of Probe2 and Probe2+H+ are similar to those
of Probe1 and Probe1+H+. That is to say, both the absorption and emission of Probe2 are localized on
the donor moiety. However, Probe2+H+ can be stimulated by exciting the molecular donor while the
radiative transition is localized on the molecular acceptor. In general, the energy transfer process in
Probe2+H+ is intuitively demonstrated.

To further assign the recognitional mechanisms to FRET or TBET, the connection between the
donor and acceptor should be considered. As we have mentioned above, for probes based on the FRET
and TBET strategies, their donor and acceptor are linked by flexible non-conjugated spacer and rigid
conjugated spacer, respectively. As a result, Probe1 is designed as a TBET-based probe, while Probe2 is
a FRET-based probe.
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3.5. Energy Transfer Rate

For an energy transfer-based system, the energy transfer rate is a very important parameter, which
directly describes the efficiency of the probe. Here, we adopt a feasible method to calculate the energy
transfer rate, i.e., the energy transfer probability per unit time, by applying the Fermi’s golden rule.
The detailed theory has been reported in [31].

In this section, the single molecule is divided to two parts, i.e., the naphthalamide (the donor)
and the rhodamine B (the acceptor). Due to the fact that the energy transfer process actually means
the acceptor part is excited by absorbing the fluorescence of donor, we thus calculate the emission
of the donor moiety and the absorption of the acceptor moiety. In this paper, the short axis of the
xanthene structure of rhodamine, the long axis of the xanthene, and the direction perpendicular to the
plane of xanthene are set to be the x-axis, y-axis, and z-axis for Probe1+H+, while they are set to be the
z-axis, x-axis, and y-axis for Probe2+H+ (see Figure 12). On basis of the fixed coordinates, the transition
wavelength and strength, corresponding to both the emission of donor and the absorption of the
acceptor, are calculated and listed in Table 1. Obviously, the overlap between the emission wavelengths
of the donor and the absorption wavelength of the acceptor for Probe2+H+ are much larger than that
for Probe1+H+. This confirms the recognitional mechanisms of Probe1+H+ and Probe2+H+ to be TBET
and FRET, respectively.
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Table 1. The transition wavelength λ (nm) and the corresponding transition strength δ (a.u.) of the
emission of the donor (Donor-emission) and the absorption of the acceptor (Acceptor-absorption),
the distance vector Rx,y,z (Å), and energy transfer rate KDA (104) between the donor and acceptor for
Probe1+H+ and Probe2+H+ in H2O.

Molecule Moiety λ δ
Distance Vector

KDA
Rx Ry Rz R

Probe1+H+ Donor-emission 378 0.48
12.86 −0.78 0.43 12.89 5.2Acceptor-absorption 479 0.94

Probe2+H+ Donor-emission 423 0.24 12.07 0.63 1.63 12.20 1.9
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As is known, the energy transfer rate depends crucially on the distance vector between the donor
and acceptor of the molecule [32]. Data in Table 1 show that the distance has the largest component in
the x-axis direction, both for Probe1+H+ and Probe2+H+. Although the total distances between the
donor and acceptor are almost the same for the two molecules, the energy transfer rate of Probe1+H+

is about 2.7 times larger than that of Probe2+H+, indicating that Probe1 can be a preferable probe with
higher efficiency.

3.6. Two-Photon Absorption

The analyses on the fluorescence and recognitional mechanism of the probes have demonstrated that
Probe1 and Probe2 can effectively identify H+. Importantly, the naphthalimide derivative is reported as a
good two-photon fluorophore. Hence, the TPA properties of the studied molecules are theoretically
discussed. In the range of 700–900 nm, the two-photon excitation energy, the corresponding TPA
wavelength, and the TPA cross-section are summarized in Table 2. One can see from Table 2 that
the free probes do not have significant two-photon response in the wavelength range of 700–900 nm
(σTPA < 50 GM). In the presence of H+, the maximum TPA cross-sections of Probe1+H+ and Probe2+H+

exhibit great enhancement from 47 to 300 GM, and from 27 to 117 GM, respectively, which is contributed
to by the open-ring rhodamine. Note that the maximum TPA cross-section of Probe1 is much larger
than that of Probe2, both in the absence and presence of H+. Due to the probes possessing similar donor
and acceptor, but different connections, it can be concluded that the connection between the donor and
acceptor plays a dominant role in the TPA performance. As a consequence, Probe1 is proven to be a
preferable candidate as the two-photon fluorescent probe for H+ in comparison with Probe2.

Table 2. The two-photon excitation energy ETPA (eV), the corresponding TPA wavelength λTPA (nm),
and the TPA cross-section σTPA (GM = 10−50 cm4 s/photon) for the studied molecules in H2O.

Molecule ETPA λTPA σTPA Molecule ETPA λTPA σTPA

Probe1

3.03 818 47

Probe1+H+

2.90 852 252
3.08 802 0 3.01 821 42
3.22 768 0 3.05 810 300
3.40 727 0 3.26 758 8
3.50 706 43 3.37 733 0
3.53 700 0 3.39 729 35

Probe2

2.77 892 20

Probe2+H+

3.02 822 117
3.00 826 27 3.12 792 32
3.04 813 0 3.13 790 1
3.32 744 0 3.15 785 15
3.49 708 0 3.23 765 13

For Probe1, using a laser with 826 nm as the excitation source, the probe is excited and the
fluorescence emitted from the donor part can be observed on account of no energy transfer. When H+

is present, the energy transfer process will occur in Probe1+H+, and the fluorescence from the acceptor
can be observed. In this case, the detection of H+ is efficiently achieved, with weaker photodamage
and photobleaching.

4. Conclusions

In this work, the optical properties, recognitional mechanisms, and energy transfer rate of two
fluorescent chemosensors for pH are theoretically investigated. The calculated results show that
the photoabsorption and photoemission of the probes are significantly changed with the addition of
H+, indicating the probes can serve as efficient fluorescent probes for ratiometric pH measurements.
Molecular orbital diagrams are utilized to elucidate the sensing mechanisms of the probes, where
the TBET and FRET processes have been specifically modeled. Importantly, the energy transfer rates
of the energy transfer-based fluorescent probes are compared based on the same theory level, and
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the results reveal that Probe1 has a higher energy transfer rate, suggesting that Probe1 can be a
promising TBET-based fluorescent sensor compared with Probe2. In addition, two-photon absorption
cross-section is largely enhanced when the probes react with H+. It shows that both probes are
efficient two-photon fluorescent probes. Specially, the two-photon cross-section of Probe1 is larger
both in the absence and in the presence of H+, which confirms Probe1 to be a better H+ chemosensor.
Further, the effect of the connection between the donor and the acceptor of the probe is demonstrated.
Our theoretical investigations revealed the underlying mechanisms that satisfactorily explained the
experimental results, providing efficient information on designing more two-photon fluorescent probes.
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