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Abstract: Convolutional Long Short-Term Memory Neural Networks (CNN-LSTM) are a variant
of recurrent neural networks (RNN) that can extract spatial features in addition to classifying or
making predictions from sequential data. In this paper, we analyzed the use of CNN-LSTM for gas
source localization (GSL) in outdoor environments using time series data from a gas sensor network
and anemometer. CNN-LSTM is used to estimate the location of a gas source despite the challenges
created from inconsistent airflow and gas distribution in outdoor environments. To train CNN-LSTM
for GSL, we used temporal data taken from a 5 × 6 metal oxide semiconductor (MOX) gas sensor
array, spaced 1.5 m apart, and an anemometer placed in the center of the sensor array in an open area
outdoors. The output of the CNN-LSTM is one of thirty cells approximating the location of a gas
source. We show that by using CNN-LSTM, we were able to determine the location of a gas source
from sequential data. In addition, we compared several artificial neural network (ANN) architectures
as well as trained them without wind vector data to estimate the complexity of the task. We found
that ANN is a promising prospect for GSL tasks.

Keywords: metal oxide gas sensors; sensor networks; gas detection; gas source localization; artificial
neural networks; CNN-LSTM; machine learning

1. Introduction

Gas source localization (GSL) is the task of determining the place of origin from which gas is
being released. It is an important research theme for those concerned with the emission of harmful
gases. Landfill sites, mines, and factories are some of the areas likely to release harmful gases. Landfill
sites regularly monitor for emission of greenhouse gases (GHGs), such as methane and carbon dioxide,
using several personnel [1]; mines are areas known for occupational hazards such as being exposed to
lethal gas or gas explosions [2]; and factories regularly monitor for leakages. Mines and factories use
stationary gas sensors for detection but do not have the means for source localization. It is important
that gas sources are located as soon as leaks are detected to prevent further damage from occurring.
In all the above scenarios, the task of autonomous GSL can be applied.

In order for GSL to be successful, we first need to have a gas sensor that can detect the presence
of a target gas in air. We also need an appropriate strategy to decide where the measurements
should be made as well as effective algorithms for processing the gas sensor signal and estimating the
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source location [3]. The focus of this paper is on the processing of signals obtained from gas sensors at
multiple locations in a given environment to estimate the location of the gas emission point. GSL can be
extremely challenging even if gas sensors that can accurately and selectively measure the concentration
of a target gas are developed. Since molecular diffusion is a slow process, the released gas is spread
in the environment mainly by airflow. As the flow we encounter is almost always turbulent, a gas
distribution with a complicated and constantly fluctuating shape is generated [3]. GSL algorithms
have to be able to cope with the fluctuations caused by turbulence.

Nevertheless, autonomous GSL is useful for tasks that can be too laborious, repetitive,
or hazardous for humans to perform [3]. Presently, there are two main methods for autonomous
localization: using mobile robots or an array of stationary sensors. Mobile robots are easier to deploy
than stationary sensors but the data collected is limited in comparison. Although deploying stationary
sensors can be very time consuming, they provide richer information about the environment and can
be kept on site if data must be collected regularly.

Research on using mobile robots for GSL first started by using bio-inspired gas tracking
strategies, such as the strategies underlying the chemo-orientation behavior of bacteria and moths [4].
For example, male moths find their mates by tracking aerial trails of sexual pheromone released
by conspecific females. The underlying strategy was found to be odor-gated anemotaxis, i.e., to
fly upwind as long as contact with an aerial pheromone trail is maintained [5]. This strategy was
implemented into mobile robots and tested to see if they were able to reach the gas source by tracking
spatial gas distributions. They have been successful in environments where the distribution of gas
is consistent [6,7] but suffer in outdoor environments because highly fluctuating wind often makes
the gas distribution sporadic. Since then, researchers have explored strategies, such as the particle
filter-based algorithm [8,9], that estimate the location of a gas source from signals obtained from
sensors on a mobile robot. Therefore, GSL using mobile robots has a nature similar to methods using
stationary sensors, as both try to estimate a gas-source location from gas concentration and wind
velocity measured at multiple positions. In the methods proposed in [8,9], the gas source location is
estimated by using a time sequence of the wind velocity vector to trace back the trajectory of gas puffs
detected by a mobile robot to a common origin.

In this research, we focus on the use of an array of stationary sensors (sensor network). There has
been research on using these sensor networks for GSL by calculating the position of a continuous gas
source from the advection-diffusion model [10,11]. These methods use the Gaussian model to describe
the gas concentration distribution in a turbulent plume, and estimate the source location by fitting the
model equation to the measured concentration distribution. Another method that has been used is
by using machine learning such as support vector machines (SVMs) and kernel ridge regression [12].
We instead propose the use of artificial neural networks (ANNs), specifically convolutional long-short
term memory neural networks (CNN-LSTMs) [13–15], to model and estimate the location of a gas
source in outdoor environments. We also hope that the insights provided by this research can be
expanded into research using mobile robots.

We intend to deal with the ongoing problem of GSL in outdoor environments. Studies so far are
usually limited to using simulations or environments of specific conditions [12,16]. This is because
airflow in outdoor environments is usually intermittent and unpredictable making it difficult to model.
Given enough data, we can train the CNN-LSTM to determine the type of environment and model
necessary for GSL tasks. CNN-LSTMs have been successful for many visual learning tasks such as
video description and activity recognition [13–15]. Using sequences of images (e.g., videos) as the
input, the network can describe in detail the activity taking place in a scene. The time series data of
a gas sensor network can be used in place of a sequence of images to describe the conditions of the
environment and determine the location of a gas source.

In the work described in this paper, CNN-LSTM was tasked to estimate the location of a gas source
from sequential data collected from an evenly distributed wired sensor array and an anemometer.
The network assumes that a single high concentration gas source exists and sufficiently large responses



Sensors 2018, 18, 4484 3 of 12

are obtained. We also assume that the gas is released at a constant rate. Ethanol was used as the target
gas in our experiments but future work will include methane gas detection. For practical applications,
the work should be combined with gas discrimination techniques [17]. A single anemometer was used
under the assumption that the direction of airflow is approximately uniform in large open areas [8].
CNN-LSTM is used in place of other ANN architectures because of its ability to extract information
both spatially and temporally. This is because the CNN-LSTM leverages the combined strengths of
convolutional neural networks (CNNs) and long short-term memory neural networks (LSTMs). CNNs
have demonstrated outstanding performance in visual classification tasks [18]. LSTM on the other
hand is a special type of recurrent neural network (RNN), which excels at tasks with sequential data.
LSTMs stand apart from other RNN architectures for their ability to learn long-term dependencies and
remove features [19,20]. By combining the strengths of CNN and LSTM architectures, CNN-LSTMs
become a perfect choice for our task, simply because GSL tasks have spatio-temporal dependencies.

The remainder of this paper is organized into sections as follows: Section 2 introduces the
materials and experiments conducted to collect the data necessary for training and evaluating ANNs
as well as the methodology of using CNN-LSTM for GSL. Section 3 covers the results of training and
evaluation as well as how it is interpreted. The final section summarizes the analysis and includes
plans for further research.

2. Materials and Methods

2.1. Experimental Data

To train the CNN-LSTM for GSL, sufficient training and validation data must be collected. We
conducted experiments in an outdoor environment with a large open space that allowed wind from
any direction. The experiments took place in the sports field of Tokyo University of Agriculture and
Technology, shown in Figure 1, during the summer of 2018.

Figure 1. Experimental setup for obtaining training and validation data. MOX gas sensors are placed
in each cell marked by the green strings. The anemometer can be visibly seen in the center.

We used an array of thirty commercially available metal oxide (MOX) gas sensors (TGS2620,
Figaro Engineering Inc., Minoh, Japan) and one ultrasonic anemometer (Model 81000, R.M. Young Co.,
Traverse City, MI, USA). The gas sensors use tin dioxide for organic solvent detection and also respond
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to a variety of flammable gases. The gas sensors were spaced 1.5 m apart and arranged into a 5
× 6 matrix as shown in Figure 2a. Each cell in the matrix contains one gas sensor in the center.
The anemometer is placed in the center of the entire matrix; a single anemometer was used under the
assumption that the direction of airflow is approximately uniform in large open areas. The gas source
used in the experiments was ethanol vapor with a flow rate of 500 mL/min and positioned in one of
the cells as shown in Figure 2b. A porous filter was attached to the outlet so that vapor is released
isotropically. Nearly saturated concentrations of ethanol vapor were generated by bubbling liquid
ethanol. To obtain data sufficient for training, we would need to conduct experiments thirty times—one
for each gas source location. Instead, we conducted experiments nine times to obtain data for each gas
source in the cells numbered 〈0, 1, 2, 5, 6, 7, 10, 12, 18〉 in Figure 2a. The experiments were conducted
over a span of four days. We obtained data for 〈6, 12, 18〉 on the first day, 〈0, 1, 2〉 on the third day,
and 〈5, 7, 10〉 on the fourth day. On the second day, we obtained data for 〈6, 12, 18〉 again to evaluate
the network with untrained conditions. We then rotated the data to obtain data for the remaining gas
source locations. Data was logged for thirty minutes at a sampling period of ∆t = 0.5 s, giving us a
total of 3600 samples per gas source location. Each set of samples was divided into 300 time-step long
sequences giving us a total of twelve datasets per gas source location. The datasets for each gas source
location were then divided equally so that the first half of the sequences were used for training and the
second halves were used for validation.

Figure 2. Schematic of experimental setup. (a) The numbers in each cell correspond to the location of
a gas sensor; (b) Placement of gas source in each cell. The gas source was offset slightly between the
sensor and the bottom-left corner of the cell.

To examine the spatial and temporal patterns learned by the ANNs, videos were created from the
data using MATLAB (MathWorks Inc., Natick, MA, USA). Snapshots of two datasets are shown in
Figure 3 with their respective wind spectrums shown in Figure 4. The wind angle and 2D velocity
ranged from 36.4◦ to 346.8◦ and 0.16 m/s to 4.75 m/s, respectively. The wind velocity in the z-axis
(the depth) ranged from −1.31 m/s to 1.07 m/s with averages across all datasets ranging from
−0.07 m/s to 0.29 m/s. Since the density of ethanol vapor in the ppm concentration range detected
by the gas sensors is similar to air (except for the vicinity of the gas source) and wind velocity in the
z-axis was small, we assumed that gas released was mostly spread in 2D. Future work will include
evaluation in 3D when dealing with lower density gases, e.g., methane. The resistance change of each
gas sensor was converted into voltage change using a voltage divider circuit [1]. This voltage value
increases as the gas concentration in the surrounding air becomes higher and was recorded together
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with the anemometer. Although we use voltage values, ANNs can accept any type of scalar input.
Figure 3a–c illustrates that the max sensor response was always located in the same cell as the gas
source and Figure 3d–f shows that the max sensor response was not; in addition, the sensor response
pattern changes according to wind direction.

Figure 3. Frames of time-step data taken from two datasets of a gas source indicated by the star.
The colors of the circles in each cell represent gas sensor data and the arrow indicates the magnitude
and direction of the wind. (a–c) is one dataset to show that the max sensor response was located in the
same cell as the gas source. (d–f) is another dataset of the same gas source; we can see that the max
sensor response does vary depending on the wind.
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However, there appears to be a delay to the change as shown in Figure 3e–f. In Figure 3e, the wind
direction points slightly towards the bottom left corner cell but gas does not arrive at that cell until the
time-step in Figure 3f. This delay was expected because of the time it takes for gas to travel in response to
changes in the wind direction. We can also see in Figure 3f that gas appears to remain at the cell above
the bottom left corner cell because of the slow recovery of MOX gas sensors. All datasets have a mix of
these patterns which ensures that the ANNs do not simply learn from the location of the max sensor
response. We checked the videos and confirmed that large resistance changes are correlated with the
source location and wind direction, suggesting the small influence of wind on the sensors’ response.

Figure 4. The wind vectors of two datasets are shown in polar coordinates to show the range.
(a) The wind vector range of the dataset shown in Figure 3a–c. (b) The wind vector range of the
dataset shown in Figure 3d–f.

2.2. Methodology

We propose CNN-LSTM for GSL because of its ability to extract features that is both spatially
and temporally deep. CNN-LSTMs are used for many visual learning tasks but are also known to be
used for speech recognition and natural language processing. We classify GSL as a visual learning
task, specifically classification from a sequence of images. This is because the gas sensor array data
〈k1, k2, . . . , kn〉, where k is the sensor response and n is the sensor position, can be arranged to resemble
a sequence of monochrome images. Each “image” is a 5 × 6 matrix rt where t is the time-step of a fixed
length sequence and 〈k1, k2, . . . , kn〉 ∈ rt. The architecture of our CNN-LSTM is shown in Figure 5.
At each time-step, rt is processed by the CNN layer [18]. The CNN layer consists of one convolutional
layer followed by a hyperbolic tangent activation function and two sets of a fully connected layer and
rectified linear unit (ReLU) activation function. The output is often written as:

Φ(rt) = p(Wrt + b), (1)

where p is an activation function, W is the weight matrix and b is the bias. The kernel shape of
the feature transformation function in the convolutional layer was set to 〈3, 3, 5〉 with no padding.
The purpose of the CNN layer is to process each input rt into a feature transformation function to
extract spatial features.

Once the last input in the sequence has been processed, the outputs 〈Φ(r1), Φ(r2), . . . , Φ(rT)〉
of length T and the wind vectors 〈U1, U2, . . . , UT〉 are processed by the LSTM layer. Here, the LSTM
layer learns the temporal features. Typical RNNs have difficulty learning long-term dependencies
because of exploding or vanishing gradients resulting from gradients propagating at each time-step.
LSTMs were developed as a solution by using structures called gates. These gates regulate information
or memory in the LSTM called the cell state Ct by removing or adding information every time-step
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depending on the previous LSTM output ht−1 and the current input Φ〈(rt) , Ut〉. The action of
removing information is synonymous to “forgetting” and is one of the defining features of LSTMs. This
is advantageous for GSL tasks where wind is highly intermittent with frequent periods of stagnation.
The data taken during these periods of stagnation would be discarded by the LSTM, simplifying its
task of learning the temporal dynamics. At each time-step the LSTM updates the following:

ft = σ
(

W f ·[ht−1, Φ(rt), Ut] + b f

)
, (2)

it = σ(Wi·[ht−1, Φ(rt), Ut] + bi), (3)

C′t = tanh(WC·[ht−1, Φ(rt), Ut] + bC), (4)

Ct = ft ∗ Ct−1 + it ∗ C′t, (5)

ot = σ(Wo·[ht−1, Φ(rt), Ut] + bo), (6)

ht = ot ∗ tanh(Ct), (7)

where ft is the forget gate, it is the input gate, C′t is a vector of new candidate values for the cell state Ct

and ot is the output gate. “*” denotes the element-wise product of vectors. From (5), we can see that the
cell state is updated by discarding values from the previous cell state Ct−1 decided by the forget gate
and adding new values C′t decided by the input gate. The output of the LSTM ht is called the hidden
state which is the cell state filtered by the output gate. The cell state contains pertinent information
about what should be output by the LSTM. For GSL tasks, if the LSTM determined that the location of
the gas source is at yn where n is the n-th sensor location then the cell state may contain information
about all sensors and the output gate filters for only the nearest sensor locations around yn.

Figure 5. Simplified architecture of the CNN-LSTM for GSL. The output of the CNN-LSTM is an array
of binary values where 1 represents the location of the gas source. The output in this figure shows that
the gas source is in the same cell as k2.

Since wind vector data is also included in the input of the LSTM, the cell state may contain
information about how these sensors should respond should the wind vector change at the next
time-step. The outputs of the LSTM 〈h1, h2, . . . , hT〉 are then processed by the deep neural network
(DNN) layer which consists of two sets of a fully connected layer and ReLU activation function and
one set of a fully connected layer and sigmoid activation function. The sigmoid function squashes the
output between 0 and 1 with each output being independent of each other, this allows us to train the
network for multiple sources in the future. In the case presented in this paper, a 300 time-step long
sequence measured over 150 s is given to the network. The per time-step predictions of the LSTM layer
are merged for the whole sequence and processed by the DNN layer to classify them as one of thirty
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labels representing the location of the gas source. Therefore, one estimate of the gas source location is
provided after processing the 150 s long sensor data. We chose 150 s considering the recovery time
of the gas sensors (~30 s) and the time scales of the environment (we observed changes in the wind
direction over several tens of seconds).

2.3. Optimizations

To reduce the significance of weight initialization and prevent overfitting during training,
batch normalization and dropout layers were added to the CNN and DNN layers. The purpose of batch
normalization is to not only speed up training but to reduce the significance of weight initialization [21].
The purpose of dropout is to reduce overfitting [22], the ratios were all set to 0.5 to essentially reduce
the number of nodes connected to the next layer by half after each dropout. It is also important to
note that the number of outputs for each fully connected layer can be controlled, which directly affects
the total number of parameters in the network and the speed of training. The number of outputs of
all fully connected layers in the CNN and DNN layers were set to 300 unless they are followed by
the last activation function, in which case the number of outputs was set to 30 to match the number
of labels. The fully connected layers in the LSTM layer affect the size of the cell state. In this case,
we set the number of outputs of these layers to 33 to match the number of inputs at each time-step.
These optimizations are also used in other network architectures for fair comparison.

2.4. Training and Validation

In addition to training the CNN-LSTM, we have trained several network architectures for
comparison. We have also trained the networks using only gas sensor data to see how removing wind
vector data affects the results. The network architectures used for comparison are LSTM, CNN-DNN,
and DNN. Each architecture is simply the CNN-LSTM split into their main components to estimate
the complexity of the GSL task. The program used for training and validation was Neural Network
Console (Sony Network Communications Inc., Tokyo, Japan). Since training and validation data
is limited, we used an adaptive optimizer which gives good results when using input data that is
sparse. The adaptive optimizer used was the adaptive momentum (Adam) optimizer with default
parameters. Each network was trained using the training datasets, comprised of six datasets per gas
source location, and considered converged when validation error no longer improved after several
epochs. The networks were then evaluated using the validation datasets which also comprise of six
datasets per gas source location; Neural Network Console provides us performance data necessary for
comparison. We used binary cross entropy as the loss function for training and validation error.

3. Results and Discussion

In this section, we evaluate the performance of each network using standard performance metrics
for classification problems in machine learning: accuracy, precision, recall and F1-score. Accuracy is
the measure of the number of correct predictions over the total predictions made. There are exactly
thirty labels with six input sequences for each label, making the metric valid because of balanced data.
Precision is the measure of true positives over the sum of true positives and false positives. Recall is
the measure of true positives over the sum of true positives and false negatives. Precision and recall
are measurements used to determine the proportion of false positives and false negatives respectively.
If we are concerned about both proportions, F1-score is used as a single measurement. The results
of evaluating the networks are shown in Tables 1 and 2. Table 1 compares the performance of each
network architecture using all input data (gas sensor and wind vector data) and Table 2 shows us the
comparison using only gas sensor data. The validation error and epoch in the tables show when the
lowest validation error was achieved before convergence, where an epoch is one pass of all training
datasets to the networks.
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Table 1. Performance metrics of each ANN when wind vector data is included as an input.

Model Accuracy Precision Recall F1-Score Validation Error Epoch

CNN-LSTM 95.0% 96.5% 95.0% 94.7% 0.0115 160
LSTM 85.0% 87.3% 85.0% 84.9% 0.0307 310

CNN-DNN 90.0% 92.7% 90.0% 89.1% 0.0273 260
DNN 91.1% 93.0% 91.1% 90.6% 0.0200 350

Table 2. Performance metrics of each ANN when wind vector data is removed.

Model Accuracy Precision Recall F1-Score Validation Error Epoch

CNN-LSTM 93.9% 95.6% 93.9% 93.6% 0.0116 300
LSTM 88.9% 89.9% 88.9% 88.4% 0.0214 290

CNN-DNN 93.3% 94.8% 93.3% 93.0% 0.0135 300
DNN 88.3% 91.6% 88.3% 87.6% 0.0206 270

If we simply chose the place with the maximum average gas sensor response as the estimated gas
source location, the accuracy was only 45.6%. Much higher accuracy was obtained for all ANNs tested.
The results in Table 1 show that CNN-LSTM performed the best in all metrics (accuracy, precision,
recall, and F1-score) while LSTM performed the worst. The LSTM architecture may have suffered
because inputs were directly injected into the LSTM layer. This is because when spatial features are
extracted from the CNN layer of the CNN-LSTM, we are essentially filtering the data for the LSTM
layer to process. We also see that the LSTM and CNN-DNN architectures show fair improvements
when wind vector data was removed from the input. This could be due to the delay between the
gas sensor response and change in wind direction being removed from the network. Although we
see that CNN-LSTM performed the best when compared to the other networks, the difference is
modest. This tells us that the difficulty of the task was simpler than anticipated. It could also be
due to the size of the sensor array and distance between sensors, reducing the number of sensors
or increasing the distance between them may show more disparity between network architectures.
While the non-recurrent networks performed just as well, they will not be considered for further
research because of their inability to recognize temporal patterns, using data from untrained weather
conditions may make them unable to predict.

For the CNN-LSTM, there were 26 labels with a prediction rate of 6/6, two labels with a prediction
rate of 3/6 and two labels with 4/6 and 5/6. The DNN had 22 labels with a prediction rate of 6/6,
four labels with a prediction rate of 5/6, two labels with 4/6 and two labels with 2/6. To get a better
understanding of what the networks output, heatmaps were created from labels with the lowest
prediction rate and are shown in Figure 6. Figure 6a shows us the average output of a gas source for
the DNN architecture while Figure 6b shows us the average output of a gas source for the CNN-LSTM
architecture. The first thing we notice is that for both architectures, prediction values are highest
around the true gas source location. This is a good indication that the networks are learning about the
gas distribution. In Figure 6a we can see that while the true gas location had low prediction values,
the location above was high. For our purposes, this can still be an acceptable outcome since we narrow
our search near the true location. To show the practicality of using ANNs for GSL, we have evaluated
the CNN-LSTM network using data collected on a different day, shown in Figure 7. The heatmaps
show the average output for two of the three gas source locations. We can see that the outputs overlap
with the true source location. Since evaluating networks with untrained conditions, in this case
weather, can produce substantially lower prediction rates, these results showed that as long as weather
conditions are somewhat similar, adequate predictions can be made. It also shows that the networks
are not overfitted. The CNN-LSTM predicted 15 of the 18 datasets collected.
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Figure 6. Heatmaps of the ANN output with the lowest prediction rate for each ANN architecture.
The labels are the same as the cell numbers in Figure 2. The true gas source location is indicated by the
star. (a) The output of a label with the lowest prediction rate for the DNN. (b) The output of a label
with the lowest prediction rate for the CNN-LSTM.

Figure 7. Heatmaps of the CNN-LSTM output using data collected on a different day. The labels
are the same as the cell numbers in Figure 2. The true gas source location is indicated by the star.
(a) The output of the CNN-LSTM for a gas source placed in cell 12. (b) The output of the CNN-LSTM
for a gas source placed near cell 18.

4. Conclusions

In this research, the CNN-LSTM was proposed to model and estimate the location of a gas source
in outdoor environments using time series data of a gas sensor network and anemometer as the input.
The data was obtained through several experiments in large open areas for practicality. Through
training and evaluation, we found that the CNN-LSTM was able to successfully predict the location
of a gas source. We also evaluated several networks for comparison as well as removed the wind
vector data from the input to evaluate the difficulty of the task given to the networks. The results
show that the task of determining the location of a single gas source was simpler than we believed.
This is partly because the size of the sensor array and the distance between sensors gave us relatively
high-resolution data—decreasing the number of sensors or increasing the distance between sensors
could affect the results. We believe the results of this research make ANNs a promising prospect for
GSL tasks and will be further studied. For future research, we plan to use CNN-LSTM to estimate the
location of multiple gas sources with their respective emission rates. We will also collect data under
different weather conditions and reduce the number of sensors or length of the input sequence to see



Sensors 2018, 18, 4484 11 of 12

how the results will change, we will give the network a portion of the data each time-step to imitate
the movement of a mobile robot. Although the proposed ANNs can be applied to different types of
gas sensors and target gases, future work also needs to address the effect of the density mismatch
between the target gas and ambient air on estimating the gas source location.
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