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Abstract: In this paper, a synthesized design of fault-detection filter and fault estimator is considered
for a class of discrete-time stochastic systems in the framework of event-triggered transmission
scheme subject to unknown disturbances and deception attacks. A random variable obeying
the Bernoulli distribution is employed to characterize the phenomena of the randomly occurring
deception attacks. To achieve a fault-detection residual is only sensitive to faults while robust to
disturbances, a coordinate transformation approach is exploited. This approach can transform the
considered system into two subsystems and the unknown disturbances are removed from one of
the subsystems. The gain of fault-detection filter is derived by minimizing an upper bound of
filter error covariance. Meanwhile, system faults can be reconstructed by the remote fault estimator.
An recursive approach is developed to obtain fault estimator gains as well as guarantee the fault
estimator performance. Furthermore, the corresponding event-triggered sensor data transmission
scheme is also presented for improving working-life of the wireless sensor node when measurement
information are aperiodically transmitted. Finally, a scaled version of an industrial system consisting
of local PC, remote estimator and wireless sensor node is used to experimentally evaluate the
proposed theoretical results. In particular, a novel fault-alarming strategy is proposed so that the
real-time capacity of fault-detection is guaranteed when the event condition is triggered.

Keywords: fault detection and estimation; event-triggered transmission scheme; coordinate
transformation

1. Introduction

Wireless sensor networks (WSNs) have grown rapidly in the past decades and found
wide applications in the areas of industrial process, smart building, health care and battlefield
surveillance, etc. [1,2]. In those applications, data-transmission usually communicates over a wireless
channel. Replacing old batteries without energy of wireless sensors is always a costly operation or
even impossible [3]. In addition, the capacity of a wireless channel normally varies with external
environment. This time-varying property can impact the overall dynamic system performance.
Consequently, less data-transmission between the sensor and the remote state estimator (or actuator)
can significantly prolong the lifetime of the sensors. Event-triggered transmission schemes provide an
inspiring opportunity to a trade-off between energy efficiency and system performance.

In parallel with the quiet evolution of WSNs technologies, the network security problem
has recently become an emerging topic of research from the defenders’ perspectives. Due to the
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unprotected and shared property of a wireless communication link, the exchanged information can
be easily exploited by adversaries. It is worth mentioning that a deception attack is one of the most
dangerous attack behaviors which can maliciously degrade network reliability through arbitrarily
injecting the false data information. Using the techniques of variance-constrained and Lyapunov
stability theories, some excellent results concerning security control and estimation problems have
been reported in [4–6]. For instant, a security-guaranteed filter was designed in [4] for nonlinear
stochastic time-delay systems with randomly occurring sensor saturations and deception attacks,
where a new concept of mean-square security domain was introduced to quantify the security degree.
In [5], a variance-constrained distributed filtering was presented for time-varying systems subject to
multiplicative noises and deception attacks over sensor networks. Reference [6] addressed a problem
of observer-based event-triggered consensus control for a class of discrete-time multi-agent systems
with lossy sensors and cyber-attacks, where a dynamic output feedback controller was derived such
that the prescribed security in probability was guaranteed while obtaining an upper bound of the
quadratic cost criterion.

For the purpose of increasing the safety and reliability in modern dynamical system, model-based
fault diagnosis has been promising research and application topics. In the model-based fault diagnosis,
the observer-based strategy is often viewed as one of the most effective methods for fault diagnosis.
So far, the issues of observer-based fault diagnosis for dynamic system have received a great deal
of attentions from many researchers, and lots of outstanding results were made: [7–17]. Similar
to event-triggered control and estimation problems [18–20], the event-triggered data transmission
scheme could also be applied to fault diagnosis purposes. An event-triggered fault-detection filter
was established in [21] for discrete-time systems with nonlinear perturbation subject to transmission
delay, where the designed filter parameters were given through solving some linear matrix inequalities.
Literature [22] studied fault detection and isolation using event-triggered sensor data transmission
strategy. Its feature was that the proposed fault detection filter was presented based on l1, H− and
H∞, and further applied to underwater robotic platforms. A polynomial fuzzy fault-detection filter
was designed in [23] for nonlinear discrete-time systems under an event-triggered data transmission
framework, where the asymptotically stable of the polynomial fault-detection residual system was
guaranteed while satisfying the desired performance criteria.

The aforementioned studies have proposed some results to show the effectiveness of
event-triggered scheme in fault diagnosis. However, an event-triggered fault detection and estimation
problem have not been fully investigated yet especially when the system is subject to deception attacks
in a possibly random way. On the other hand, the sensibility and real-time capacity of fault detection
were neglected in the existing literature. Due to the considered event-triggered scheme adopting an
aperiodic fashion to data-transmission, remote fault-detection filter can not detect in real time when a
fault occurs. Furthermore, a fault-detection residual may further become insensitive, because unknown
disturbances and faults are often coupled in practical systems, it is difficult to distinguish among them.
Therefore, the purpose of the paper is to solve the problems we discussed. The main contributions of
this paper are summarized as follows:

(1) A synthesized design of fault-detection filter and fault estimator with an event-triggered
sensor data transmission scheme in discrete-time stochastic systems is proposed, for the first time,
to deal with the phenomena of both unknown disturbances and randomly occurring deception attacks,
which reflects the reality closely. The design of the fault-detection filter and the fault estimator is
simple due to the utilization of reduce-order subsystems.

(2) Using the coordinate transformation approach, the desired fault-detection residual is sensitive
only to faults while insensitive to disturbances. An upper bound of the fault-detection filtering error
covariance is minimized at each iteration with proper filtering parameters computed via a recursive
algorithm. In particular, the proposed fault-alarming strategy cannot be influenced by the impact of
event-triggered data transmission to ensure a real-time capacity of fault detection.
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(3) System faults can be robustly estimated using the designed event-triggered remote fault
estimator at the same time. Two upper bounds of the state and fault estimation error covariance
matrices are obtained in form of Riccati-like difference equations by utilizing the mathematical
induction approach. The explicit forms of the fault estimator gains are obtained to minimize such
upper bounds through a recursive algorithm. Furthermore, the corresponding event-triggered scheme
is given to trade the computation for communication.

(4) A simulation testbed where the terminal voltages of a three-cell battery string are estimated is
implemented. Estimation accuracy, fault-alarming strategy and battery life are given for verifying the
effectiveness of the proposed theoretical algorithms.

Nomenclature: Prob {x} means the occurrence probability of the event x. E(·), Var(·) and tr(·)
denote the mathematical expectation, variance and the trace of a matrix, respectively. N and R denote
the sets of natural and real numbers, respectively. Rm×n denotes the sets of m by n real-valued matrices,
whereas Rn is short for Rn×1. Rn×n

+ and Rn×n
++ are the sets of n× n positive semi-definite and positive

definite matrices, respectively. When X ∈ Rn×n
+ , it is simply denoted as X ≥ 0 or X > 0 if X ∈ Rn×n

++ .
For X ∈ Rm×n, XT denotes the transpose of X and ‖X‖ denotes the Euclidean norm of X. “I” denotes a
identity matrix with appropriate dimensions. Furthermore, the terms state observer and state estimator
are used synonymously in this paper.

2. Problem Statement

2.1. System Model

Consider the following stochastic linear system defined on k ∈ [0, N − 1]:{
xk+1 = Axk + Wwk + F̃ fk + Ddk

ȳk = Cxk + Vvk + F̄ fk
(1)

In above equations, the constant subscript “k” is a discrete-time index, system state xk is a
n-dimensional vector. The variables ȳk ∈ Rp is the sensor’s measurement signals. The additional
terms, fault signals fk is a q-dimensional vector to be detected as well as estimated, and dk is bounded
external disturbances with dimension of s. The process noises {wk} and the measurement noises
{vk} are assumed white and zero-mean sequences with known variance: E

(
wkwT

k
)
= Qw ≥ 0,

E
(
vkvT

k
)
= Rv > 0 and E

(
x0xT

0
)
= P0 > 0, respectively. The adopted mathematical model of

randomly occurring deception attacks is described by{
ȳa,k = −ȳk + βk

yk = ȳk + αk ȳa,k
(2)

where the variables ȳa,k ∈ Rp and yk ∈ Rp are the attack signals sent by adversaries and the received
measurement signals by the remote estimator, respectively. The non-zero βk satisfying ‖βk‖ ≤ β is an
arbitrary limited magnitude signal where the bound β is a known positive scalar that can be estimated
through statistical tests or specified by security requirements. The random variable αk is a Bernoulli
distributed white sequence with the following probabilities

Prob {αk = 1} = α and Prob {αk = 0} = α1 = 1− α (3)

As can be seen from (2), it is clear that if a deception attack occurs, i.e., αk = 1, the remote estimator
can only obtain the signals βk sent by attackers. If αk = 0, the actual measurement signals ȳk are sent
to the remote estimator. In other words, the actual measurement signals received by remote estimator
can be rewritten as follows

yk = (1− αk) ȳk + αkβk (4)
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Throughout this paper, the noise signals {wk}, {vk} and the stochastic variable αk are assumed
mutually independent. It is further supposed that the matrices A, C, F̃, F̄, W, D and V with appropriate
dimensions are known. Furthermore, an event-triggered transmission decision variable γk determines
whether the current measurement information is sent to the remote estimator or not. When γk = 1
indicates that yk is sent out and γk = 0, otherwise. Therefore, only when γk = 1, the remote estimator
knows the exact value yk. Clearly, the corresponding event only happens at each time instant.

Remark 1. In practice, attack detectors are usually viewed as a soft barrier, and there exists some network
constraints that should be faced by the adversaries. Such constraints include network load, network congestion,
and network transmission rate that are typically randomly fluctuated [5]. This kind of random characteristic
from network constraints should be taken into consideration if a comprehensive yet realistic deception attack
model is to be established. In addition, such a random nature brings a new challenge when designing our
fault-detection filter and fault estimator.

For the above system, two assumptions are first introduced as follows.

Assumption 1. [24]
rank (C× D) = rank (D) (5)

Assumption 2. [11]

For every complex number ζ with nonnegative real part,

rank

([
A− ζ I F̃ D

C 0 0

])
= n + rank

(
F̃
)
+ rank (D) (6)

2.2. Transforming of the System into Two Subsystems

Inspired by [11,24,25], we will adopt the coordinate transformation approach to transform the
system into two subsystems: the first subsystem will free from disturbances, but subject to system
faults. For the first subsystem, a fault-detection residual based on the derived fault-detection filter
will only sensitive to faults; inversely, the desired fault estimator of the second subsystem will include
disturbances and system faults, which will robust to disturbances. The transformation results are
briefly presented below.

According to [11], Assumption 1 is equivalent to the existence of two non-singular matrices T
and S such that

x = T−1

[
x̃1

x̃2

]
, and y = S−1

[
ỹ1

ỹ2

]
(7)

respectively, so that the system can be accordingly transformed into

x̃1
k+1 = Ã11 x̃1

k + Ã12 x̃2
k + W̃1wk + F̃1 fk

x̃2
k+1 = Ã22 x̃2

k + Ã21 x̃1
k + W̃2wk + F̃2 fk + D̃ddk

y1
k = (1− αk) C̃11 x̃1

k + (1− αk) Ṽ1vk + (1− αk) F̄1 fk + αkS1βk

y2
k = (1− αk) C̃22 x̃2

k + (1− αk) Ṽ2vk + (1− αk) F̄2 fk + αkS2βk

(8)

where

TAT−1 =

[
Ã11 Ã12

Ã21 Ã22

]
, TW =

[
W̃1

W̃2

]
, TF̃ =

[
F̃1

F̃2

]
(9)

SCT−1 =

[
C̃11 0
0 C̃22

]
, SV =

[
Ṽ1

Ṽ2

]
, SF̄ =

[
F̄1

F̄2

]
, S =

[
S1

S2

]
(10)
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Matrix D̃d has full rank and C̃22 is invertible. It was shown in [11] that the pair
(
C̃11, Ã11

)
was

detectable if and only if Assumption 2 was satisfied. Two subsystems given by (8) can be rewritten
separately as

The 1st subsystem:

x̃1
k+1 = Ã11 x̃1

k + Ã12 x̃2
k + W̃1wk + F̃1 fk

y1
k = (1− αk) C̃11 x̃1

k + (1− αk) Ṽ1vk + (1− αk) F̄1 fk + αkS1βk
(11)

The 2nd subsystem:

x̃2
k+1 = Ã22 x̃2

k + Ã21 x̃1
k + W̃2wk + F̂2 fd,k

y2
k = (1− αk) C̃22 x̃2

k + (1− αk) Ṽ2vk + (1− αk) F2 fd,k + αkS2βk
(12)

where F̂2 =
[

F̃2 D̃d

]
, F2 =

[
F̄2 0

]
and fd,k =

[
fk
dk

]
.

Remark 2. From the Formula (11) and (12), it can be easily seen that the 1st subsystem is not included
disturbances, as well as the 2nd subsystem contains both. For the 1st subsystem, a fault-detection filter and
fault-alarming strategy will be designed under an event-triggered data transmission framework; for the 2nd
subsystem, an event-triggered fault estimator will be derived.

Before giving the main results, the following lemma, which will be useful in this paper, needs to
be introduced.

Lemma 1. (Lemma 1 [26]) For any two matrices X and Y with appropriate dimensions, the inequality XYT +

YXT ≤ τXXT + τ−1YYT holds where τ > 0 is a constant scalar.

3. Event-Triggered Fault-Detection Strategy Based on Reduce-Order Filter

In this section, a fault-detection system will be presented involving a residual generator, a residual
evaluator and fault-alarming strategy under an event-triggered data transmission framework.

3.1. Residual Generator

For the residual generation, the following reduce-order filter is constructed as follows ˆ̃x1
k+1 = Ã11 ˆ̃x1

k + Ã12 ˆ̃x2
k + K1

k

(
ỹ1

k − ˆ̃y1
k

)
ˆ̃y1
k = α1C̃11 ˆ̃x1

k

(13)

where ˆ̃xi
k and ˆ̃yi

k indicate estimated state and output estimation values for each i = 1 and 2, respectively.
The matrix K1

k is the filtering gain to be determined. Denote state estimation errors for each i = 1 and 2 as

ei
k = x̃i

k − ˆ̃xi
k (14)

Then, the corresponding error dynamics of the 1st subsystem without system faults are calculated
by subtracting the filtering (13) from the 1st subsystem (11)

e1
k+1 = x̃1

k+1 − ˆ̃x1
k+1

=
(

Ã11 − α1K1
k C̃11

)
e1

k + Ã12e2
k + W̃1wk − (1− αk)K1

kṼ1vk − αkK1
k S1βk − (αk − α)K1

k C̃11 x̃1
k

(15)
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Further, let us define error covariance Pi
k for each i = 1 and 2 as

Pi
k = E

[(
x̃i

k − ˆ̃xi
k

) (
x̃i

k − ˆ̃xi
k

)T
]

(16)

The purpose of this section is to design a form (13) of fault-detection filter for the 1st subsystem (11)
subject to deception attacks. More specifically, we are interested in looking for the filtering parameter
K1

k such that the following requirements are met simultaneously:
(1) A form (13) of fault-detection filter such that an upper bound of the filter error convariance P1

k
is derived, i.e., there exists a sequence of positive-definite matrices P̄1

k (0 ≤ k ≤ N − 1) that satisfies

E
[(

x̃1
k − ˆ̃x1

k

) (
x̃1

k − ˆ̃x1
k

)T
]
≤ P̄1

k (17)

(2) The sequence of upper bound P̄1
k is minimized by the desired filtering gain K1

k through a
recursive scheme.

Now, an upper bound of the filtering error convariance is presented for our proposed
fault-detection filter in the following theorem.

Theorem 1. For the 1st subsystem (11) subject to deception attacks in the fault-free case and given
τj (j = 1, 2, and 3), the filtering error covariance satisfies the following form:

P1
k+1 ≤ P̄1

k+1 (18)

where

P̄1
k+1 = (1 + τ1 + τ2α)

(
Ã11 − α1K1

k C̃11

)
P̄1

k

(
Ã11 − α1K1

k C̃11

)T
+
(

1 + τ−1
1 + τ3α

)
Ã12P̄2

k ÃT
12

+
(

α + τ−1
2 α + τ−1

3 α
)

β2K1
k S1ST

1

(
K1

k

)T
+ W̃1Qw

(
W̃1
)T

+ α2K1
k C̃11

(
P̄1

k + ˆ̃x1
k

(
ˆ̃x1
k

)T
)

C̃T
11

(
K1

k

)T
+ α1K1

k D̃1
vRv

(
D̃1

v

)T(
K1

k

)T

(19)

α1 = 1− α, α2 = E
[
(αk − α)2

]
= α (1− α) and the initial condition P̄1

0 = P1
0 .

Proof. Based on the error dynamics of the 1st subsystem (15) and the definition of the filtering error
covariance (16), the expression for the error covariance matrix of the 1st subsystem can be expanded as

P1
k+1 = E

[(
x̃1

k − ˆ̃x1
k

) (
x̃1

k − ˆ̃x1
k

)T
]

= E
[((

Ã11 − α1K1
k C̃11

)
e1

k + Ã12e2
k + W̃1wk − (1− αk)K1

kṼ1vk − αkK1
k S1βk − (αk − α) C̃11K1

k x̃1
k

)
×
((

Ã11 − α1K1
k C̃11

)
e1

k + Ã12e2
k + W̃1wk − (1− αk)K1

kṼ1vk − αkK1
k S1βk − (αk − α) C̃11K1

k x̃1
k

)T
]

=
(

Ã11 − α1K1
k C̃11

)
P1

k

(
Ã11 − α1K1

k C̃11

)T
+ Ã12P2

k ÃT
12 + W̃1Qw

(
W̃1
)T

+ α1K1
kṼ1Rv

(
Ṽ1
)T
(

K1
k

)T

+ αK1
k S1βkβT

k ST
1

(
K1

k

)T
+
(

Ã11 − α1K1
k C̃11

)
E
[

e1
k

(
e2

k

)T
]

ÃT
12 + Ã12E

[
e2

k

(
e1

k

)T
] (

Ã11 − α1K1
k C̃11

)T

− α
(

Ã11 − α1K1
k C̃11

)
E
[
e1

k βT
k

]
ST

1

(
K1

k

)T
− αK1

k S1E
[

βk

(
e1

k

)T
] (

Ã11 − α1K1
k C̃11

)T

− αÃ12E
[
e2

k βT
k

]
ST

1

(
K1

k

)T
− αK1

k S1E
[

βk

(
e2

k

)T
]

ÃT
12 + α2K1

k C̃11E
[

x̃1
k

(
x̃1

k

)T
]

C̃T
11

(
K1

k

)T

(20)
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where α1 = 1− α, α2 = E
[
(αk − α)2

]
= α (1− α). Noticing the fact that E

[
x̃1

k
(

x̃1
k
)T
]
= P1

k + ˆ̃x1
k

(
ˆ̃x1
k

)T
,

we have

P1
k+1 =

(
Ã11 − α1K1

k C̃11

)
P1

k

(
Ã11 − α1K1

k C̃11

)T
+ Ã12P2

k ÃT
12 + W̃1Qw

(
W̃1
)T

+ α1K1
kṼ1Rv

(
Ṽ1
)T
(

K1
k

)T

+ αK1
k S1βkβT

k ST
1

(
K1

k

)T
+
(

Ã11 − α1K1
k C̃11

)
E
[

e1
k

(
e2

k

)T
]

ÃT
12 + Ã12E

[
e2

k

(
e1

k

)T
] (

Ã11 − α1K1
k C̃11

)T

− α
(

Ã11 − α1K1
k C̃11

)
E
[
e1

k βT
k

]
ST

1

(
K1

k

)T
− αK1

k S1E
[

βk

(
e1

k

)T
] (

Ã11 − α1K1
k C̃11

)T

− αÃ12E
[
e2

k βT
k

]
ST

1

(
K1

k

)T
− αK1

k S1E
[

βk

(
e2

k

)T
]

ÃT
12 + α2K1

k C̃11

(
P1

k + ˆ̃x1
k

(
ˆ̃x1
k

)T
)

C̃T
11

(
K1

k

)T

(21)

To obtain an upper bound of P1
k+1, the following parts of this theorem can be proved by

mathematical induction. According to the initial condition, we have P̄1
0 ≥ P1

0 . Assume that P̄1
k ≥ P1

k ,
and then P̄1

k+1 ≥ P1
k+1 need to be proved. With the help of Lemma 1, it follows from (21) that

P1
k+1 ≤ (1 + τ1 + τ2α)

(
Ã11 − α1K1

k C̃11

)
P1

k

(
Ã11 − α1K1

k C̃11

)T
+
(

1 + τ−1
1 + τ3α

)
Ã12P2

k ÃT
12

+
(

α + τ−1
2 α + τ−1

3 α
)

K1
k S1βkβT

k ST
1

(
K1

k

)T
+ W̃1Qw

(
W̃1
)T

+ α2K1
k C̃11

(
P1

k + ˆ̃x1
k

(
ˆ̃x1
k

)T
)

C̃T
11

(
K1

k

)T
+ α1K1

kṼ1Rv
(
Ṽ1
)T
(

K1
k

)T

(22)

Combining inequality ‖βk‖ ≤ β into Formula (22) leads to

P1
k+1 ≤ (1 + τ1 + τ2α)

(
Ã11 − α1K1

k C̃11

)
P̄1

k

(
Ã11 − α1K1

k C̃11

)T
+
(

1 + τ−1
1 + τ3α

)
Ã12P̄2

k ÃT
12

+
(

α + τ−1
2 α + τ−1

3 α
)

β2K1
k S1ST

1

(
K1

k

)T
+ W̃1Qw

(
W̃1
)T

+ α2K1
k C̃11

(
P̄1

k + ˆ̃x1
k

(
ˆ̃x1
k

)T
)

C̃T
11

(
K1

k

)T
+ α1K1

kṼ1Rv
(
Ṽ1
)T
(

K1
k

)T
= P̄1

k+1

(23)

which implies that inequality (18) is true.

So far, the upper bound of the filtering error covariance has been presented in the above results.
We are now in a position to derive the desired filtering gain K1

k through minimizing this upper bound
at every time instant.

Theorem 2. Consider the 1st subsystem (11) with deception attacks in the fault-free case. For given
τj (j = 1, 2, and 3), the filtering gain is given by

K1
k = α1

(
1 + τ1 + τ2α2

)
Ã11P̄1

k C̃T
11

×
(

α2
1

(
1 + τ1 + τ2α2

)
C̃11P̄1

k C̃T
11 +

(
α + τ−1

2 + τ−1
3

)
β2S1ST

1 + α1D̃1
vRv

(
D̃1

v

)T
+ X̃

)−1 (24)

where X̃ = α2C̃11

(
P̄1

k + ˆ̃x1
k

(
ˆ̃x1
k

)T
)

C̃T
11. The obtained upper bound P̄1

k+1 of the filtering error covariance P1
k+1

on the 1st subsystem is minimized at each time instant.

Proof. The filtering gain described by (13) is optimal in the sense that minimizes the upper bound of
filtering error covariance. Notice that the first, second and third terms on the upper bound (19) are
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quadratic in K1
k . The matrix differentiation formula can be applied to Formula (19), and differentiate

tr
(

P̄1
k+1

)
with respect to K1

k . The result is

∂
(

tr
(

P̄1
k+1

))
∂
(
K1

k
) = −2α1 (1 + τ1 + τ2α)

(
Ã11 − α1K1

k C̃11

)
P̄1

k C̃T
11

+ 2
(

α + τ−1
2 α + τ−1

3 α
)

β2K1
k S1ST

1 + 2α1K1
kṼ1Rv

(
Ṽ1
)T

+ 2α2K1
k C̃11

(
P̄1

k + ˆ̃x1
k

(
ˆ̃x1
k

)T
)

C̃T
11

(25)

Now, set the derivative equal to zero and solve for the optimal gain. The following form can
be derived:

K1
k = α1

(
1 + τ1 + τ2α2

)
Ã11P̄1

k C̃T
11

×
(

α2
1

(
1 + τ1 + τ2α2

)
C̃11P̄1

k C̃T
11 +

(
α + τ−1

2 + τ−1
3

)
β2S1ST

1 + α1D̃1
vRv

(
D̃1

v

)T
+ X̃

)−1 (26)

where X̃ = α2C̃11

(
P̄1

k + ˆ̃x1
k

(
ˆ̃x1
k

)T
)

C̃T
11.

Remark 3. In the Theorems 1 and 2, the constructed fault-detection filter has been presented for stochastic
systems against randomly occurring deception attacks. The available information of the deception attacks has
been reflected in our proposed filtering design including α, α1, α2 and β. In addition, three scalars τ1, τ2 and τ3

have been introduced to enhance the flexibility in our fault-detection filter.

Remark 4. Theorem 2 provides the optimal gain K1
k without system faults, which is similar to the discrete-time

standard Kalman filter [27]. Consequently, when the 1st subsystem is healthy, the mean-square filtering error
is minimized so as to ensure accurate estimation; otherwise, the filtering error will be bigger than the system
without fault to achieve the purpose of fault alarming.

3.2. Fault-Alarming Strategy

Prior to presenting a novel fault-alarming strategy, a fault indicating signal (i.e., residual), can be
generated using the output estimation of the 1st subsystem as follows

rk = E
[
ỹ1

k − ˆ̃y1
k

]
(27)

where ˆ̃y1
k = α1C̃11 ˆ̃x1

k . Once a fault occurs, the residual and the filtering error dynamics of the proposed
fault-detection filtering become:

rk = α1C̃11e1
k − (αk − α) C̃11 x̃1

k + (1− αk) Ṽ1vk + αkS1βk + (1− αk) F̄1 fk

e1
k+1 =

(
Ã11 − α1K1

k C̃11

)
e1

k + Ã12e2
k + W̃1wk − (1− αk)K1

kṼ1vk

− αkK1
k S1βk − (αk − α) C̃11 x̃1

k + F̃1 fk − (1− αk)K1
k F̄1 fk

(28)

Now, our event-triggered fault-alarming strategy is presented in Figure 1 and Algorithm 1.
As shown in Figure 1, the remote estimation of a system is based on the measurements taken by a
battery-powered sensor. The remote estimator receives the measurements through a wireless channel.
A copy of remote estimator and event generator (which is also called event-triggered data transmission
scheme) determines whether the current measurement information is sent to the remote estimator
or not. When an event occurs i.e., γk = 1, the remote estimator receives the measurement, otherwise
γk = 0. A local estimator runs the fault-detection residual of the above 1st subsystem that we defined.
Clearly, if the system is free from faults ( fk ≡ 0), then lim

t→∞
E (rk) ≈ 0; conversely, if a fault occurs in the
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system (F̃1 fk 6= 0 and F̄1 fk 6= 0), then lim
t→∞

E (rk)� 0 to achieve fault alarming. Furthermore, a copy of

remote estimator, event generator and local estimator are supposed to be integrated in an embedded
system which is presented in the experimental verification.

Algorithm 1 Event-triggered fault detection.
Step 1: Design a bank of fault-detection filter of the form (13).
Step 2: Compute the fault-detection residuals rk, and choose a threshold δ f which can be chosen as
small as possible theoretically.
Step 3: If rk < δ f , there exists no fault and the corresponding fault-alarming is turned off.
Step 4: If γk = 1, the current measurements can be sent to the remote estimator.
Step 5: else γk = 0, the remote estimator cannot receive the measurements to achieve energy saving.
Step 6: end if
Step 7: else rk ≥ δ f , a fault has occured and the corresponding fault alarming is turned on. For the
purpose of detecting system fault in the remote estimator, the current sensor measurements is sent to
the remote estimator without entering the event-triggered decision.
Step 8: end if
Step 9: end

Figure 1. A block diagram of event-triggered fault-alarming strategy.

As discussed in Algorithm 1, if rk < δ f , it implies that the system is free from fault; and then,
the event-triggered data transmission scheme can be utilized to achieve energy conversation. On the
other hand, if rk ≥ δ f , it is claimed that the system is faulty. The current sensor information is sent to the
remote estimator manually without entering event-triggered decision. The delay issue of fault-alarming
can be effectively solved, although such strategy may reduce working-life of battery slightly.

4. Co-Design Scheme of Fault Estimator and Event-Triggered Generator

After a fault occurs, a fault estimator for subsystem (12) is constructed as follows:
ˆ̃x2
k+1 = Ã22 ˆ̃x2

k + Ã21 ˆ̃x1
k + F̂2 f̂k + K2

k

(
ỹ2

p,k − ˆ̃y2
k

)
f̂k+1 = f̂k + K3

k

(
ỹ2

p,k − ˆ̃y2
k

)
ˆ̃y2
k = α1

(
C̃22 ˆ̃x2

k + F2 f̂k

) (29)

where ˆ̃x2
k is an estimated state and the matrices Ki

k (i = 2 and 3) are estimator’s gains with appropriate
dimensions to be designed. Fault estimation signal f̂k+1 is updated by the estimated information f̂k as
well as output estimation errorˆ̃y2

k . The previous measurement information ỹ2
p,k is transmitted from

sensor to remote fault estimator module when no new measurement information is transmitted. In the
event generator module described in Figure 1, sensor information is not transmitted at each time
instant, rather this is done only at the transmission times that are denoted by ks and s ∈ N. As a result,
measurements sent to the remote fault estimator module can be expressed as ỹi

p,k = ỹi
ks

(i = 1 and 2),
k ∈ [ks, ks+1) and k ∈ N where ks+1 > ks.

Remark 5. It is worth mentioning that our fault estimator utilizes the previous received measurement
information ỹ2

p,k because of implementation of event generator. As discussed in Algorithm 1, the current
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measurement information is sent to the remote estimator without entering the event-triggered decision when a
fault occurs. However, such a remote fault estimator can ensure that the undetected faults are also estimated if
the event condition is triggered.

Denote fault estimation error and the corresponding error covariance as

e f ,k = fd,k − f̂k (30)

Pf ,k = E
[
e f ,keT

f ,k

]
(31)

Then, the error dynamics of the 2nd subsystem can be formulated as

e2
k+1 = x̃2

k+1 − ˆ̃x2
k+1

=
(

Ã22 − α1K2
k C̃22

)
e2

k + Ã21e1
k +

(
F̂2 − α1K2

k F2

)
e f ,k + W̃2wk − K2

k δk

− (1− αk)K2
kṼ2vk − αkK2

k S2βk + (αk − α)K2
k C̃22 x̃2

k + (αk − α)K2
k F2 fd,k

(32)

where δk = ỹ2
k − ỹ2

p,k.

e f ,k+1 = fd,k+1 − f̂k+1

= fd,k+1 − fd,k + fd,k − f̂k − K3
k

(
ỹ2

p,k − ˆ̃y2
k

)
= fd,k+1 − fd,k + fd,k − f̂k − α1K3

k C̃22e2
k − (1− αk)K3

kṼ2vk − αkK3
k S2βk

+ (αk − α)K3
k C̃22 x̃2

k − K3
k δk + (αk − α)K3

k F2 fd,k − α1K3
k F2e f ,k

(33)

which can be rewritten as

e f ,k+1 = ∆ fk +
(

I − α1K3
k F2

)
e f ,k − α1K3

k C̃22e2
k − (1− αk)K3

kṼ2vk − αkK3
k S2βk

+ (αk − α)K3
k C̃22 x̃2

k − K3
k δk + (αk − α)K3

k F2 fd,k

(34)

where ∆ fk = fd,k+1 − fd,k.

Remark 6. Literature [28,29] assumed that the fault difference item was too small to be neglected, because the
sampling interval were supposed to be sufficiently small. However, in many practical cases, faults might generate
a great amplitude change of at a certain time, especially when time-varying faults occur. Hence, the paper
considers the effect on the estimation performance, which reduces the conservatism of our fault estimator.

Similar to the design of fault-detection filter gain, the gains K2
k , K3

k and the corresponding
event-triggered data transmission scheme can be derived such that upper bounds of state and fault
estimation error covariance are minimized at each time step. Before proceeding further, the following
assumption is made.

Assumption 3. [11] For a small positive constant bd, the inequality

∥∥∥∥∥
[

fk+1
dk+1

]
−
[

fk
dk

]∥∥∥∥∥ ≤ bd holds,

where ‖·‖ is the Euclidean norm.

Now, it is ready to give the upper bounds of both the covariance matrix P2
k of estimation error

and the fault estimation error covariance Pf ,k in the following theorem.
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Theorem 3. For given positive scalars δe, τj (j = 4, ..., 15) and ρj (j = 1, ..., 12), the state estimation error
covariance P2

k and fault estimation error covariance Pf ,k have the following upper bounds P̄2
k and P̄f ,k with

initial conditions P̄2
0 = P2

0 and P̄f ,0 = Pf ,0, respectively, where

P̄2
k+1 = (1 + τ4 + τ5 + τ6 + τ7α)

(
Ã22 − α1K2

k C̃22

)
P̄2

k

(
Ã22 − α1K2

k C̃22

)T

+
(

1 + τ−1
4 + τ8 + τ9 + τ10α

)
Ã21P̄1

k ÃT
21 +

(
1 + τ−1

5 + τ−1
8 + τ11 + τ12α

) (
F̂2 − α1K2

k F2

)
¯Pf ,k

(
F̂2 − α1K2

k F2

)T

+
(

1 + τ−1
6 + τ−1

9 + τ−1
11 + τ13α

)
δ2

e K2
k

(
K2

k

)T
+
(

α + τ−1
7 α + τ−1

10 α + τ−1
12 α + τ−1

13 α
)

K2
k S2β2ST

2

(
K2

k

)T

+ W̃2Qw
(
W̃2
)T

+ (1− α)K2
kṼ2Rv

(
Ṽ2
)T
(

K2
k

)T
+
(

1 + τ−1
14

)
α2K2

k C̃22

(
P̄2

k + ˆ̃x2
k

(
ˆ̃x2
k

)T
)

C̃T
22

(
K2

k

)T

+ (1 + τ14) α2K2
k F2

(
(1 + τ15) P̄f ,k +

(
1 + τ−1

15

)
f̂k f̂ T

k

)
FT

2

(
K2

k

)T

(35)

and

P̄f ,k+1 = (1 + ρ1 + ρ2α1 + ρ3α + ρ4)
(

I − α1K3
k F2

)
P̄f ,k

(
I − α1K3

k F2

)T
+
(

1 + ρ−1
1 + ρ5α1 + ρ6α + ρ7

)
b2

d I

+
(

α2
1 + ρ−1

2 α1 + ρ−1
5 α1 + ρ8αα1 + ρ9α1

)
K3

k C̃22P̄2
k C̃T

22

(
K3

k

)T

+
(

α + ρ−1
3 α + ρ−1

6 α + ρ−1
8 αα1 + ρ10α

)
β2K3

k S2ST
2

(
K3

k

)T

+
(

1 + ρ−1
4 + ρ−1

7 + ρ−1
9 α1 + ρ−1

10 α
)

δ2
e K3

k

(
K3

k

)T
+ (1 + ρ11) α2K3

k C̃22

(
P̄2

k + ˆ̃x2
k

(
ˆ̃x2
k

)T
)

C̃T
22

(
K3

k

)T

+
(

1 + ρ−1
11

)
α2K3

k F2

(
(1 + ρ12) P̄f ,k +

(
1 + ρ−1

12

)
f̂k f̂ T

k

)
FT

2

(
K3

k

)T
+ (1− α)K3

kṼ2Rv
(
Ṽ2
)T
(

K3
k

)T

(36)

Furthermore, the event condition satisfies that∥∥∥ỹ2
k − ỹ2

p,k

∥∥∥ ≤ δe (37)

Proof. First, recall from the definition of state estimation error covariance (16), P2
k can be calculated

as follows

P2
k+1 = E

[(
x̃2

k − ˆ̃x2
k

) (
x̃2

k − ˆ̃x2
k

)T
]

= E
[(

Ã22 − α1K2
k C̃22

)
e2

k + Ã21e1
k +

(
F̂2 − α1K2

k F2

)
e f ,k + W̃2wk − K2

k δk

− (1− αk)K2
kṼ2vk − αkK2

k S2βk + (αk − α)K2
k C̃22 x̃2

k + (αk − α)K2
k F2 fd,k

]
×
[(

Ã22 − α1K2
k C̃22

)
e2

k + Ã21e1
k +

(
F̂2 − α1K2

k F2

)
e f ,k + W̃2wk − K2

k δk

− (1− αk)K2
kṼ2vk − αkK2

k S2βk + (αk − α)K2
k C̃22 x̃2

k + (αk − α)K2
k F2 fd,k

]T

=
(

Ã22 − α1K2
k C̃22

)
P2

k

(
Ã22 − α1K2

k C̃22

)T
+ Ã21P1

k ÃT
21

+
(

F̂2 − α1K2
k F2

)
Pf ,k

(
F̂2 − α1K2

k F2

)T
+ W̃2Qw

(
W̃2
)T

+ K2
k δkδT

k

(
K2

k

)T

+ (1− α)K2
kṼ2Rv

(
Ṽ2
)T
(

K2
k

)T
+ αK2

k S2βkβT
k ST

2

(
K2

k

)T
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+
(

Ã22 − α1K2
k C̃22

)
E
[

e2
k

(
e1

k

)T
]

ÃT
21 + Ã21E

[
e1

k

(
e2

k

)T
] (

Ã22 − α1K2
k C̃22

)T

+
(

Ã22 − α1K2
k C̃22

)
E
[
e2

keT
f ,k

] (
F̂2 − α1K2

k F2

)T
+
(

F̂2 − α1K2
k F2

)
E
[

e f ,k

(
e2

k

)T
] (

Ã22 − α1K2
k C̃22

)
−
(

Ã22 − α1K2
k C̃22

)
E
[
e2

kδT
k

] (
K2

k

)T
− K2

kE
[

δk

(
e2

k

)T
] (

Ã22 − α1K2
k C̃22

)T

− α
(

Ã22 − α1K2
k C̃22

)
E
[
e2

k βT
k

]
ST

2

(
K2

k

)T
− αK2

k S2E
[

βk

(
e2

k

)T
] (

Ã22 − α1K2
k C̃22

)T

+ Ã21E
[
e1

keT
f ,k

] (
F̂2 − α1K2

k F2

)T
+
(

F̂2 − α1K2
k F2

)
E
[

e f ,k

(
e1

k

)T
]

ÃT
21 − Ã21E

[
e1

kδT
k

] (
K2

k

)T

− K2
kE
[

δk

(
e1

k

)T
]

ÃT
21 − αÃ21E

[
e1

k βT
k

]
ST

2

(
K2

k

)T
− αK2

k S2E
[

βk

(
e1

k

)T
]

ÃT
21

−
(

F̂2 − α1K2
k F2

)
E
[
e f ,kδT

k

] (
K2

k

)T
− K2

kE
[
δkeT

f ,k

] (
F̂2 − α1K2

k F2

)T

− α
(

F̂2 − α1K2
k F2

)
E
[
e f ,kβT

k

]
ST

2

(
K2

k

)T
− αK2

k S2E
[

βkeT
f ,k

] (
F̂2
)T

+ αK2
kE
[
δkβT

k

]
ST

2

(
K2

k

)T

+ αK2
k S2E

[
βkδT

k

] (
K2

k

)T
+ α2K2

k C̃22E
[

x̃2
k

(
x̃2

k

)T
]

C̃T
22

(
K2

k

)T
+ α2K2

k F2E
[

fd,k( fd,k)
T
]

FT
2

(
K2

k

)T

+ α2K2
k C̃22E

[
x̃2

k( fd,k)
T
]

FT
2

(
K2

k

)T
+ α2K2

k F2E
[

fd,k

(
x̃2

k

)T
]

C̃T
22

(
K2

k

)T

(38)

By using the result of Lemma 1, the above equation can be simplified as

P2
k+1 ≤ (1 + τ4 + τ5 + τ6 + τ7α)

(
Ã22 − α1K2

k C̃22

)
P2

k

(
Ã22 − α1K2

k C̃22

)T

+
(

1 + τ−1
4 + τ8 + τ9 + τ10α

)
Ã21P1

k ÃT
21 +

(
1 + τ−1

5 + τ−1
8 + τ11 + τ12α

) (
F̂2 − α1K2

k F2

)
Pf ,k

(
F̂2 − α1K2

k F2

)T

+
(

1 + τ−1
6 + τ−1

9 + τ−1
11 + τ13α

)
K2

k δkδT
k

(
K2

k

)T
+
(

α + τ−1
7 α + τ−1

10 α + τ−1
12 α + τ−1

13 α
)

K2
k S2βkβT

k ST
2

(
K2

k

)T

+ W̃2Qw
(
W̃2
)T

+ (1− α)K2
kṼ2Rv

(
Ṽ2
)T
(

K2
k

)T
+
(

1 + τ−1
14

)
α2K2

k C̃22E
[

x̃2
k

(
x̃2

k

)T
]

C̃T
22

(
K2

k

)T

+ (1 + τ14) α2K2
k F2

(
(1 + τ15) Pf ,k +

(
1 + τ−1

15

)
f̂k f̂ T

k

)
FT

2

(
K2

k

)T

(39)

Considering that E
[

x̃2
k
(
x̃2

k
)T
]
= P2

k + ˆ̃x2
k

(
ˆ̃x2
k

)T
and ‖βk‖ ≤ β, (39) can be further reduced as

P2
k+1 ≤ (1 + τ4 + τ5 + τ6 + τ7α)

(
Ã22 − α1K2

k C̃22

)
P2

k

(
Ã22 − α1K2

k C̃22

)T

+
(

1 + τ−1
4 + τ8 + τ9 + τ10α

)
Ã21P1

k ÃT
21 +

(
1 + τ−1

5 + τ−1
8 + τ11 + τ12α

) (
F̂2 − α1K2

k F2

)
Pf ,k

(
F̂2 − α1K2

k F2

)
+
(

1 + τ−1
6 + τ−1

9 + τ−1
11 + τ13α

)
K2

k δkδT
k

(
K2

k

)T
+
(

α + τ−1
7 α + τ−1

10 α + τ−1
12 α + τ−1

13 α
)

K2
k S2β2ST

2

(
K2

k

)T

+ W̃2Qw
(
W̃2
)T

+ (1− α)K2
kṼ2Rv

(
Ṽ2
)T
(

K2
k

)T
+
(

1 + τ−1
14

)
α2K2

k C̃22

(
P2

k + ˆ̃x2
k

(
ˆ̃x2
k

)T
)

C̃T
22

(
K2

k

)T

+ (1 + τ14) α2K2
k F2

(
(1 + τ15) Pf ,k +

(
1 + τ−1

15

)
f̂k f̂ T

k

)
FT

2

(
K2

k

)T

(40)

If the event condition is satisfied, i.e.,
∥∥∥ỹ2

k − ỹ2
p,k

∥∥∥ ≤ δe, we have

P2
k+1 ≤ (1 + τ4 + τ5 + τ6 + τ7α)

(
Ã22 − α1K2

k C̃22

)
P2

k

(
Ã22 − α1K2

k C̃22

)T

+
(

1 + τ−1
4 + τ8 + τ9 + τ10α

)
Ã21P1

k ÃT
21 +

(
1 + τ−1

5 + τ−1
8 + τ11 + τ12α

) (
F̂2 − α1K2

k F2

)
Pf ,k

(
F̂2 − α1K2

k F2

)T

+
(

1 + τ−1
6 + τ−1

9 + τ−1
11 + τ13α

)
δ2

e K2
k

(
K2

k

)T
+
(

α + τ−1
7 α + τ−1

10 α + τ−1
12 α + τ−1

13 α
)

K2
k S2β2ST

2

(
K2

k

)T

+ W̃2Qw
(
W̃2
)T

+ (1− α)K2
kṼ2Rv

(
Ṽ2
)T
(

K2
k

)T
+
(

1 + τ−1
14

)
α2K2

k C̃22

(
P2

k + ˆ̃x2
k

(
ˆ̃x2
k

)T
)

C̃T
22

(
K2

k

)T

+ (1 + τ14) α2K2
k F2

(
(1 + τ15) Pf ,k +

(
1 + τ−1

15

)
f̂k f̂ T

k

)
FT

2

(
K2

k

)T

(41)
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Next, let us calculate the error covariance of fault estimation as follows

Pf ,k+1 = E
[
e f ,k+1eT

f ,k+1

]
= E

[
∆ fk +

(
I − α1K3

k F2

)
e f ,k − α1K3

k C̃22e2
k − (1− αk)K3

kṼ2vk

−αkK3
k S2βk − K3

k δk + (αk − α)K3
k C̃22 x̃2

k + (αk − α)K3
k F2 fd,k

]
×
[
∆ fk +

(
I − α1K3

k F2

)
e f ,k − α1K3

k C̃22e2
k − (1− αk)K3

kṼ2vk

−αkK3
k S2βk − K3

k δk + (αk − α)K3
k C̃22 x̃2

k + (αk − α)K3
k F2 fd,k

]T

=
(

I − α1K3
k F2

)
Pf ,k

(
I − α1K3

k F2

)T
+ ∆ fk∆ f T

k + α2
1K3

k C̃22P2
k C̃T

22

(
K3

k

)T
+ (1− α)K3

kṼ2Rv
(
Ṽ2
)T
(

K3
k

)T

+ αK3
k S2βkβT

k ST
2

(
K3

k

)T
+ K3

k δkδT
k

(
K3

k

)T
+ α2K3

k C̃22E
[

x̃2
k

(
x̃2

k

)T
]

C̃T
22

(
K3

k

)T

+ α2K3
k F2E

[
fd,k f T

d,k

]
FT

2

(
K3

k

)T
+ α2K3

k C̃22E
[

x̃2
k( fd,k)

T
]

FT
2

(
K3

k

)T
+ α2K3

k F2E
[

fd,k

(
x̃2

k

)T
]

C̃T
22

(
K3

k

)T

+E
[

∆ fkeT
f ,k

(
I − α1K3

k F2

)T
]
+E

[(
I − α1K3

k F2

)
e f ,k∆ f T

k

]
− α1E

[
∆ fk

(
e2

k

)T
]

C̃T
22

(
K3

k

)T

− α1K3
k C̃22E

[
e2

k∆ f T
k

]
− αE

[
∆ fkβT

k

]
ST

2

(
K3

k

)T
− αK3

k S2E
[

βk∆ f T
k

]
−E

[
∆ fkδT

k

] (
K3

k

)T

− α1

(
I − α1K3

k F2

)
E
[

e f ,k

(
e2

k

)T
]

C̃T
22

(
K3

k

)T
− α1K3

k C̃22E
[
e2

keT
f ,k

] (
I − α1K3

k F2

)T

− α
(

I − α1K3
k F2

)
E
[
e f ,kβT

k

]
ST

2

(
K3

k

)T
− αK3

k S2E
[

βkeT
f ,k

] (
I − α1K3

k F2

)T

−
(

I − α1K3
k F2

)
E
[
e f ,kδT

k

] (
K3

k

)T
− K3

kE
[
δkeT

f ,k

] (
I − α1K3

k F2

)T
+ α1αK3

k C̃22E
[
e2

k βT
k

]
ST

2

(
K3

k

)T

+ α1αK3
k S2E

[
βk

(
e2

k

)T
]

C̃T
22

(
K3

k

)T
+ α1K3

k C̃22E
[
e2

kδT
k

] (
K3

k

)T
− K3

kE
[
δk∆ f T

k

]
+ α1K3

kE
[

δk

(
e2

k

)T
]

C̃T
22

(
K3

k

)T
+ αK3

k S2E
[

βkδT
k

] (
K3

k

)T
+ αK3

kE
[
δkβT

k

]
ST

2

(
K3

k

)T

(42)

Similar to the derivations of (39), (40) and (41), the upper bound of Pf ,k+1 can be given by

Pf ,k+1 ≤ (1 + ρ1 + ρ2α1 + ρ3α + ρ4)
(

I − α1K3
k F2

)
Pf ,k

(
I − α1K3

k F2

)T
+
(

1 + ρ−1
1 + ρ5α1 + ρ6α + ρ7

)
b2

d I

+
(

α2
1 + ρ−1

2 α1 + ρ−1
5 α1 + ρ8αα1 + ρ9α1

)
K3

k C̃22P2
k C̃T

22

(
K3

k

)T

+
(

α + ρ−1
3 α + ρ−1

6 α + ρ−1
8 αα1 + ρ10α

)
β2K3

k S2ST
2

(
K3

k

)T

+
(

1 + ρ−1
4 + ρ−1

7 + ρ−1
9 α1 + ρ−1

10 α
)

δ2
e K3

k

(
K3

k

)T
+ (1 + ρ11) α2K3

k C̃22

(
P2

k + ˆ̃x2
k

(
ˆ̃x2
k

)T
)

C̃T
22

(
K3

k

)T

+
(

1 + ρ−1
11

)
α2K3

k F2

(
(1 + ρ12) e f ,keT

f ,k +
(

1 + ρ−1
12

)
f̂k f̂ T

k

)
FT

2

(
K3

k

)T
+ (1− α)K3

kṼ2Rv
(
Ṽ2
)T
(

K3
k

)T

(43)

where ∆ fk∆ f T
k ≤ b2

d I. Subsequently, by employing the mathematical induction approach, it is not
difficult to verify that

Pf ,k+1 ≤ P̄f ,k+1 and P2
k+1 ≤ P̄2

k+1 (44)

which completes the proof of upper bounds of state and fault estimation error covariance matrices.

In what follows, the explicit forms of the fault estimator gains will be given via minimizing the
obtained upper bounds P̄f ,k+1 and P̄2

k+1 at each time step.
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Theorem 4. For the addressed subsystem (12) suffering from deception attacks, the gains of the proposed fault
estimator (29) are given by

K2
k =

(
α1τ̃1 Ã22P̄2

k C̃T
22 + α1τ̃2 F̂2P̄f ,kFT

2

) (
α2

1τ̃1C̃22P̄2
k C̃T

22 + α2
1τ̃2F2P̄f ,kFT

2 + τ̃3δ2
e I + τ̃4S2β2ST

2

+ (1− α) Ṽ2Rv
(
Ṽ2
)T

+ (1 + τ14) α2M̃1 +
(

1 + τ−1
14

)
α2M̃2

)−1 (45)

K3
k = ρ̃1α1P̄f ,kFT

2

(
ρ̃1α2

1F2P̄f ,kFT
2 + ρ̃2C̃22P̄2

k C̃T
22 + ρ̃3S2β2ST

2 + ρ̃4δ2
e I

+ (1 + ρ11) α2M̃2 +
(

1 + ρ−1
11

)
α2M̃3 + (1− α) Ṽ2Rv

(
Ṽ2
)T
)−1 (46)

where τ̃1 = 1 + τ4 + τ5 + τ6 + τ7α, τ̃2 = 1 + τ−1
5 + τ−1

8 + τ11 + τ12α, τ̃3 = 1 + τ−1
6 + τ−1

9 +

τ−1
11 + τ13α, τ̃4 =

(
1 + τ−1

13 + τ−1
7 + τ−1

10 + τ−1
12

)
α, M̃1 = F2

(
(1 + τ15) P̄f ,k +

(
1 + τ−1

15

)
f̂k f̂ T

k

)
FT

2 ,

M̃2 = C̃22

(
P̄2

k + ˆ̃x2
k

(
ˆ̃x2
k

)T
)

C̃T
22, ρ̃1 = 1 + ρ1 + ρ2α1 + ρ3α + ρ4, ρ̃2 = α2

1 + ρ−1
2 α1 + ρ−1

5 α1 +

ρ8αα1 + ρ9α1, ρ̃3 = α + ρ−1
3 α + ρ−1

6 α + ρ−1
8 αα1 + ρ10α, ρ̃4 = 1 + ρ−1

4 + ρ−1
7 + ρ−1

9 α1 + ρ−1
10 α and

M̃3 = F2

(
(1 + ρ12) P̄f ,k +

(
1 + ρ−1

12

)
f̂k f̂ T

k

)
FT

2 .

With the aid of estimator gains (45) and (46), the obtained upper bounds P̄2
k+1 and P̄f ,k+1 of the

state and fault estimation error-covariance matrices in (38) and (42) can separately be minimized at
each time step.

Proof. According to Theorem 3, the design of gains K2
k and K3

k needs to be minimized by tr
(

P̄2
k+1

)
and tr

(
P̄f ,k+1

)
, respectively. For this purpose, taking the derivatives of tr

(
P̄2

k+1

)
and tr

(
P̄f ,k+1

)
with

respect to K2
k and K3

k , respectively; and then, getting the derivatives be zero, we obtain

∂
(

tr
(

P̄2
k+1

))
∂
(
K2

k
) = −2α1τ̃1

(
Ã22 − α1K2

k C̃22

)
P̄2

k C̃T
22 − 2α1τ̃2

(
F̂2 − α1K2

k F2

)
P̄f ,kFT

2 + 2τ̃3δ2
e K2

k + 2τ̃4K2
k S2β2ST

2

+ 2 (1− α)K2
kṼ2Rv

(
Ṽ2
)T

+ 2 (1 + τ14) α2K2
k M̃1 + 2

(
1 + τ−1

14

)
α2K2

k M̃2 = 0

(47)

where τ̃1 = 1 + τ4 + τ5 + τ6 + τ7α, τ̃2 = 1 + τ−1
5 + τ−1

8 + τ11 + τ12α, τ̃3 = 1 + τ−1
6 + τ−1

9 + τ−1
11 +

τ13α, τ̃4 =
(

1 + τ−1
13 + τ−1

7 + τ−1
10 + τ−1

12

)
α, M̃1 = F2

(
(1 + τ15) P̄f ,k +

(
1 + τ−1

15

)
f̂k f̂ T

k

)
FT

2 and M̃2 =

C̃22

(
P̄2

k + ˆ̃x2
k

(
ˆ̃x2
k

)T
)

C̃T
22.

∂
(

tr
(

P̄f ,k+1

))
∂
(
K3

k
) = −2ρ̃1α1

(
I − α1K3

k F2

)
P̄f ,kFT

2 + 2ρ̃2K3
k C̃22P̄2

k C̃T
22 + 2ρ̃3K3

k S2β2ST
2 + 2ρ̃4δ2

e K3
k

+ 2 (1 + ρ11) α2K3
k M̃2 + 2

(
1 + ρ−1

11

)
α2K3

k M̃3 + 2 (1− α)K3
kṼ2Rv

(
Ṽ2
)T

(48)

where ρ̃1 = 1+ ρ1 + ρ2α1 + ρ3α+ ρ4, ρ̃2 = α2
1 + ρ−1

2 α1 + ρ−1
5 α1 + ρ8αα1 + ρ9α1, ρ̃3 = α+ ρ−1

3 α+ ρ−1
6 α+

ρ−1
8 αα1 + ρ10α, ρ̃4 = 1+ ρ−1

4 + ρ−1
7 + ρ−1

9 α1 + ρ−1
10 α and M̃3 = F2

(
(1 + ρ12) P̄f ,k +

(
1 + ρ−1

12

)
f̂k f̂ T

k

)
FT

2 .
Then, we have

α2
1τ̃1K2

k C̃22P̄2
k C̃T

22 + α2
1τ̃2K2

k F2P̄f ,kFT
2 + τ̃3δ2

e K2
k + τ̃4K2

k S2β2ST
2 + (1− α)K2

kṼ2Rv
(
Ṽ2
)T

+ (1 + τ14) α2K2
k M̃1 +

(
1 + τ−1

14

)
α2K2

k M̃2 = α1τ̃1 Ã22P̄2
k C̃T

22 + α1τ̃2 F̂2P̄f ,kFT
2

(49)
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ρ̃1α2
1K3

k F2P̄f ,kFT
2 + ρ̃2K3

k C̃22P̄2
k C̃T

22 + ρ̃3K3
k S2β2ST

2 + ρ̃4δ2
e K3

k + (1 + ρ11) α2K3
k M̃2

+
(

1 + ρ−1
11

)
α2K3

k M̃3 + (1− α)K3
kṼ2Rv

(
Ṽ2
)T

= ρ̃1α1P̄f ,kFT
2

(50)

which can be further calculated as follows

K2
k =

(
α1τ̃1 Ã22P̄2

k C̃T
22 + α1τ̃2 F̂2P̄f ,kFT

2

) (
α2

1τ̃1C̃22P̄2
k C̃T

22 + α2
1τ̃2F2P̄f ,kFT

2 + τ̃3δ2
e I + τ̃4S2β2ST

2

+ (1− α) Ṽ2Rv
(
Ṽ2
)T

+ (1 + τ14) α2M̃1 +
(

1 + τ−1
14

)
α2M̃2

)−1 (51)

K3
k = ρ̃1α1P̄f ,kFT

2

(
ρ̃1α2

1F2P̄f ,kFT
2 + ρ̃2C̃22P̄2

k C̃T
22 + ρ̃3S2β2ST

2 + ρ̃4δ2
e I

+ (1 + ρ11) α2M̃2 +
(

1 + ρ−1
11

)
α2M̃3 + (1− α) Ṽ2Rv

(
Ṽ2
)T
)−1 (52)

Hence, the desired filter gain matrices can be obtained via (51) and (52). In addition, the upper
bounds P̄2

k+1 and P̄f ,k+1 of the state and fault estimation error-covariance matrices are recursively
calculated by Riccati-like difference Equations (35) and (36), respectively.

Based on the results derived, the complete algorithm of the event-triggered remote fault estimation
is concluded in Algorithm 2.

Algorithm 2 Recursive algorithm of the event-triggered remote fault estimation.

Set the initial conditions P̄1
0 , P̄2

0 , P̄f ,0, ˆ̃x1
0, ˆ̃x2

0, γ0 = 1 and k = 0;
1: while k ≤ N − 1 do
2: Calculate P̄1

k , P̄2
k and P̄f ,k sequentially according to (19), (35) and (36);

3: Calculate K1
k , K2

k and K3
k in terms of (24), (45) and (46);

4: if
∥∥∥ỹ2

k − ỹ2
p,k

∥∥∥ ≤ δe then
5: γk = 0, the remote fault estimator cannot receive the current measurement information to

achieve energy conversation;
6: State estimation step:

7: ˆ̃x1
k+1 = Ã11 ˆ̃x1

k + Ã12 ˆ̃x2
k + K1

k

(
ỹ1

p,k − ˆ̃y1
k

)
;

8: ˆ̃y1
k = α1C̃11 ˆ̃x1

k ;

9: ˆ̃x2
k+1 = Ã22 ˆ̃x2

k + Ã21 ˆ̃x1
k + F̂2 f̂k + K2

k

(
ỹ2

p,k − ˆ̃y2
k

)
;

10: Fault estimation step:

11: f̂k+1 = f̂k + K3
k

(
ỹ2

p,k − ˆ̃y2
k

)
;

12: ˆ̃y2
k = α1

(
C̃22 ˆ̃x2

k + F2 f̂k

)
;

13: else
14: γk = 1, the current measurement information can be allowed to send out to ensure

robust estimation;
15: State estimation step:

16: ˆ̃x1
k+1 = Ã11 ˆ̃x1

k + Ã12 ˆ̃x2
k + K1

k

(
ỹ1

k − ˆ̃y1
k

)
;

17: ˆ̃x2
k+1 = Ã22 ˆ̃x2

k + Ã21 ˆ̃x1
k + F̂2 f̂k + K2

k

(
ỹ2

k − ˆ̃y2
k

)
;

18: Fault estimation step:

19: f̂k+1 = f̂k + K3
k

(
ỹ2

k − ˆ̃y2
k

)
;

20: ˆ̃y2
k = α1

(
C̃22 ˆ̃x2

k + F2 f̂k

)
;

21: end if
22: end while
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Remark 7. The scalars β, δe and bd, reflected in the state and fault estimation error covariance upper bounds (35)
and (36), represent the available items of randomly occurring deception attacks, event condition and fault
difference, respectively. it is easily shown that the state and fault estimation error-covariance bounds are
dependent on these scalars which means that bigger scalars β, δe and bd could lead to bigger upper bounds. It can
be noted that the derivations of event-triggered state estimator for the 1st subsystem is not included in the proof
of Theorems 3 and 4. They are omitted because their derivations are similar to the derivations of fault estimator
for the 2nd subsystem, which have little influence on our main results. Furthermore, the performance of the
proposed fault estimator coincides with that of the time-driven estimator for δe = 0. Hence, the derivation of
event-triggered fault estimator is omitted, when γk = 1.

Remark 8. From the event condition in (37), it is clear that the proposed event-triggered sensor
data-transmission scheme is based on a send-on-delta regulation [30,31], namely, only when the measurement
values change more than a predetermined threshold, the sensors transmit their sampling data to remote
data centers for processing. Neither the approximated probability density functions of states conditional
on measurements nor the assumption on the distribution of δk is required in the presented fault estimator.
In addition, the implementation of event-triggered scheme cannot bring too much computational burden, which is
proved in the next section. The design of fault-detection filter and fault estimator are simple because they are
based on reduced-order subsystems. In other words, the applicability and feasibility of the event-triggered fault
estimator are enhanced.

5. Experimental Verification

5.1. Experimental Setup

To evaluate the performance of the designed fault-detection strategy and event-triggered fault
estimator, a simulation platform, representing a scaled version of an industrial system, is implemented,
where the terminal voltages of a three-cell battery string are observed over a wireless channel. As shown
in Figure 2, the dynamic system which worked in a local personal computer which collocated with
a sensor node communicates wirelessly with a remote estimator. We now describe the details of the
components of our system.

Figure 2. The components of our system.



Sensors 2018, 18, 321 17 of 25

Figure 3 shows that hardwares of wireless sensor node that consist of an STM8S micro-controller,
USR-C322 transceiver and a rechargeable polymer lithium-ion battery. The reason why we choose
the wireless transceiver is that it can use a low power consumption pattern. Indeed, most wireless
modules belong to the characteristic of high performance in the mainstream market. Despite the fact
that event-triggered transmission mechanism can make the wireless modules sleep, it still consumes
the energy similarly as it works. Luckily, this problem has been successfully solved through choosing
USR-C322. Then, it makes the module enter a “status of deep sleep” and stop working completely.
Moreover, STM8S microcontroller has embedded 32 Kbyte Flash, 2 Kbyte RAM, 16-bit advanced
control timer and abundant communication interfaces that allow us to use them as a sensor node.
The selection of STM8S microcontroller implies that the implementation of event-triggered scheme
cannot bring too much computational burden. More information about the hardwares of the node can
be found in [32,33].

Figure 3. The components of our wireless sensor node.

Now, the proposed theoretical results is applied to a linear continuous-time system of the three-cell
battery string presented in [11]. After discretisation with sampling period T = 1s, the discrete-time
system can be described as the system (1) with following parameters

A =

 −0.6026 0 0
0 −0.6026 0
0 0 −0.6026

 , C =

 1 0 0
0 1 0
0 0 1

 , B =

 0.1795 5.2484 0.0225
0.1795 5.2484 0.0225
0.1795 5.2484 0.0225

 (53)

W =

 −3
1
−1

 , V =

 0
1
1

 , D =

 2
1
1

 , F̄ = F̃ =

 3
2
1

 (54)

where xk =
[

V1
k V2

k V3
k

]
and Vi

k are the terminal voltage of each cell of the ith cell. Control

input of this batter system uk =
[

Z 1 Cu

]
in which Z is state of charge and the current Cu = 3A.
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Considering the main technical specifications of voltage sensors, the following parameters are chosen
as Qw = 0.2915 and Rv = 0.3606. For k = 0, 1, . . . N − 1 and N = 100, the unknown disturbances dk
are supposed to be a random noise uniformly distributed in [−0.32, 0.32].

In order to transform the original system, the following transform matrices S and T are used as

S = T =

 1 0 −2
0 1 −2
0 0 1

 (55)

Then, we have

TAT−1 =

 −0.6026 0 0
0 −0.6026 0
0 0 −0.6026

 , TB =

 −0.1795 −5.2484 −0.0225
−0.1795 −5.2484 −0.0225
0.1795 5.2484 0.0225

 (56)

TW =

 −1
3
−1

 , TD =

 0
−1
1

 , TF̃ = SF̄ =

 1
0
1

 , SCT−1 =

 1 0 0
0 1 0
0 0 1

 , SV =

 −2
−1
1

 (57)

The probability of deception attacks, the upper bound of fault difference item and the
event-triggered transmission threshold are selected respectively as: α = 2%, bd = 0.45 and δe = 0.017.
Furthermore, τj (j = 1, ..., 15) are chosen as 1, β and ρj (j = 1, ..., 12) are determined as 0.15.

5.2. Experimental Results

The experiment consisting of four parts are designed to verify the effectiveness of the
obtained theoretical results: (A) the performance on the remote state estimation without faults and
fault-detection strategy; (B) the accuracy on the remote fault estimation and comparsion between a
learning observer [11,34] and our proposed algorithm; (C) the analysis on the energy-saving trend of a
50 mAh polymer lithium-ion battery and (D) the effect on remote event-triggered fault estimator with
the increased probabilities of deception attacks.

Experiment 1. In the first experiment, the information sent by attacker is βk =
[

0.1e−0.5k 0.13 sin k 0
]T

,
which is also applied to the subsequent experiments. The performance on remote state estimation with fault-free
condition and fault-alarming strategy are verified in Figures 4–7. As shown in Figures 4–6, the estimated
voltages by an event-triggered state estimator (ETSE) approximately closes to the measured trajectories and the
estimated voltages by a time-driven state estimator (TDSE), leading to a accurate state estimation result. Next,
assume that a unknown fault is created as follows:

fk =

{
0 k < 19

0.1k otherwise
(58)

In Figure 7, the red line at 0.5 V is the threshold δ f that we selected for fault alarming. When a
fault occurs at 20 s, fault-detection residual rk is quickly diverging. Comparatively, the residual rk with
no fault still remains a convergence status. It is clear that fault can be detected immediately via the
proposed fault-alarming strategy.
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Figure 4. Estimated and measured voltages for the 1st battery cell.

Figure 5. Estimated and measured voltages for the 2nd battery cell.

Figure 6. Estimated and measured voltages for the 3rd battery cell.
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Figure 7. Fault-detection residual of the 1st subsystem.

Experiment 2. Here, the effectiveness of event-triggered fault estimator (11) is evaluated in the presence of
randomly occurring deception attacks. Let us consider a constant fault and a time-varying fault are respectively
supposed as

fk =

{
5 k < 50
−5 otherwise

and fk =

{
0.7 sin (0.5k) k < 50
− sin (0.5k)− 0.5 otherwise

(59)

The estimation trajectories of constant and time-varying faults using the presented event-triggered
fault estimator (ETFE) and time-driven fault estimator (TDFE) are depicted in Figures 8 and 9. It is
observed that the proposed estimation algorithm has the ability to robustly construct constant and
time-varying faults. Further, to compare the fault estimation performance clearly, the square error(

fd,k − f̂k

)T
×
(

fd,k − f̂k

)
on actual time-varying fault described in (59), the estimated fault computed

by a periodic learning observer (LO) and our fault estimation algorithm over 1000 Monte Carlo runs
are demonstrated in Figure 10. The corresponding communication behaviors of event-triggered sensor
transmission scheme are also presented in Figure 10. It is indicated that the square error using the
proposed estimation algorithm is slightly larger than the learning observer. From these figures, it can
be concluded that the estimation performance is not decreased obviously although the obtained
event-triggered strategy reduces the transmission times relatively.

Figure 8. Fault estimation of the constant fault.
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Figure 9. Fault estimation of the time-varying fault.

Figure 10. The evolution of square error and the corresponding event-triggered communication behaviors.

Experiment 3. In order to investigate the proposed event-triggered transmission scheme which influences the
battery life, we use a 50 mAh Polymer Lithium-Ion battery to complete our third experiment. As shown in
Figure 11, the batteries have been fully charged when we get ready to run the procedure, while the wireless sensor
nodes have not worked in Figure 12 since the batteries were run out. The relationship between time and 50 mAh
battery voltages is given in Figure 13, which is shown to compare with periodic data transmission mechanism,
the proposed event-triggered sensor data transmission scheme can prolong about 11.8% battery life.
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Figure 11. The initial voltages of Polymer Lithium-Ion batteries.

Figure 12. The final voltages of Polymer Lithium-Ion batteries.
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Figure 13. The relationship between time and voltages.

Experiment 4. In the final experiment, the effect on remote fault estimator accuracy is examined in the presence
of the increased probabilities of deception attacks. Similar to the second experiment, the square estimation error(

fd,k − f̂k

)T
×
(

fd,k − f̂k

)
on actual time-varying fault borrowed from (59), the estimated fault calculated by

the proposed fault estimation algorithm are given in Figure 14. It can be found that a bigger attack probability
results in a bigger error bound, which implies that estimation performance degrades slightly as the attack
probability increases.

Figure 14. The evolution of square estimation error with the increased probabilities of deception attacks.

6. Conclusions and Future Work

This paper presented a synthesized design of two types of estimators to simultaneously
event-triggered fault detection and fault estimation for a class of discrete-time stochastic systems
subject to subject to unknown disturbances and randomly occurring deception attacks. The unknown
disturbances were removed from the 1st subsystem using a coordinate transformation approach
so as to ensure the sensitivity of fault detection. An upper bound of fault-detection filtering error
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covariance matrix was recursively calculated by a Riccati-type difference equation. The explicit form
of the fault-detection filtering gain was obtained to minimize such upper bound through a recursive
algorithm. In order to achieve real-time capacity of fault-detection, a novel fault-alarming framework
was considered which could effectively solve a time-delay issue of fault alarming when an event
condition was triggered. Similar to the design of fault-detection filter, fault estimator was designed so
as to derive the upper bounds of state and fault estimation error covariance matrices and minimize
them at each time step. At the end of paper, a simulation platform, where the terminal voltages of
a three-cell battery string was estimated over a wireless channel, was verified to the feasibility and
effectiveness of the proposed theoretical results. In the future, the proposed results will be extended to
some more practical cases including more general time-varying nonlinear systems and multi-sensor
scheduling problems.
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