
  

Sensors 2018, 18, 374; doi:10.3390/s18020374 www.mdpi.com/journal/sensors 

Article 

Vehicle Detection with Occlusion Handling, 
Tracking, and OC-SVM Classification: A High 
Performance Vision-Based System 
Roxana Velazquez-Pupo 1, Alberto Sierra-Romero 1, Deni Torres-Roman 1, Yuriy V. Shkvarko †,  
Jayro Santiago-Paz 1,*, David Gómez-Gutiérrez 2, Daniel Robles-Valdez 1,  
Fernando Hermosillo-Reynoso 1 and Misael Romero-Delgado 1 

1 Center for Advanced Research and Education of the National Polytechnic Institute of Mexico,  
CINVESTAV Guadalajara, Zapopan C.P. 45019, Mexico; rvelazquez@gdl.cinvestav.mx (R.V.-P.); 
asierra@gdl.cinvestav.mx (A.S.-R.); dtorres@gdl.cinvestav.mx (D.T.-R.); shkvarko@cts-design.com (Y.V.S.); 
drobles@gdl.cinvestav.mx (D.R.-V.); fhermosillo@gdl.cinvestav.mx (F.H.-R.); mromero@gdl.cinvestav.mx 
(M.R.-D.) 

2 Intel Labs, Intel Tecnología de México, Zapopan C.P. 45019, México; david.gomez.g@ieee.org 
† Died at August 2016. 
* Correspondence: jsantiago@gdl.cinvestav.mx; Tel.: +52-33-3777-3600 

Received: 30 November 2017; Accepted: 18 January 2018; Published: 27 January 2018 

Abstract: This paper presents a high performance vision-based system with a single static camera 
for traffic surveillance, for moving vehicle detection with occlusion handling, tracking, counting, 
and One Class Support Vector Machine (OC-SVM) classification. In this approach, moving objects 
are first segmented from the background using the adaptive Gaussian Mixture Model (GMM). After 
that, several geometric features are extracted, such as vehicle area, height, width, centroid, and 
bounding box. As occlusion is present, an algorithm was implemented to reduce it. The tracking is 
performed with adaptive Kalman filter. Finally, the selected geometric features: estimated area, 
height, and width are used by different classifiers in order to sort vehicles into three classes: small, 
midsize, and large. Extensive experimental results in eight real traffic videos with more than 4000 
ground truth vehicles have shown that the improved system can run in real time under an occlusion 
index of 0.312 and classify vehicles with a global detection rate or recall, precision, and F-measure of up 
to 98.190%, and an F-measure of up to 99.051% for midsize vehicles. 

Keywords: IoT vision system; vehicle classification; One Class Support Vector Machine; vehicle 
detection; vehicle occlusion index; adaptive Gaussian mixture model; adaptive Kalman filter 

 

1. Introduction 

The main goal of Intelligent Transportation Systems (ITS) for an Internet of Things (IoT) Smart 
City is to improve safety, efficiency, and coordination in transport infrastructure and vehicles by 
applying information and communication technologies. To this end, it is necessary to have systems 
capable of collecting road information and monitoring traffic. 

Video cameras are a good choice for these tasks, because they are non-intrusive, easy to install, 
and of moderate cost. In addition, advances in analytical techniques for processing video data, 
together with increased computing power, may now provide added value to cameras by 
automatically extracting relevant traffic information, such as volume, density, and vehicle velocity. 

According to the type of sensors (active or passive) and its location, different approaches for 
detecting and classifying vehicles has been developed, such as: on-road camera [1–4], rear and forward 
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looking cameras onboard [5], low-altitude airborne platforms with vision [6,7], and non-camera on the 
road [8–10]. 

Vehicle detection can use several sensors and has a different meaning in this area, e.g., from a 
moving camera for driver assistance, or from static camera for traffic surveillance, as in our case. 
Thus, vehicle detection is the first step of a vision-based traffic monitoring process with one static 
camera. Several vehicle detection techniques have been successfully used on highways, such as frame 
differencing [11,12], background subtraction [13,14], optical flow [15], GMM [16,17], and others. 

Usually, the next step in video processing is to track detected moving objects from one frame to 
another in an image sequence. Tracking over time typically involves matching objects in consecutive 
frames using features such as points, lines, or blobs [18], and from these track sequences, different 
object behaviors can be inferred. In [19], the authors present a real-time vision-based traffic flow 
monitoring system, where a flow model is used to count vehicles traveling on each lane and to produce 
traffic statistics. In the literature, the most widely used tracking algorithms are Kalman filter [20–22], 
adaptive Kalman filter [23,24], and particle filter [25]. 

After vehicle tracking and feature extraction, the final step is vehicle classification. Numerous 
techniques are available for automatic classification of vehicles, the most commonly used being 
deterministic methods [26,27], stochastic methods [20,28], artificial neural networks [29–31], and 
Support Vector Machine (SVM) [7,9,10,32]. 

Major contributions for vision-based traffic surveillance with static camera presented in this 
paper are: A very high performance vision-based system that improves the detection rate of moving 
vehicles through occlusion handling; the introduction of a metric Vehicle Occlusion Index (VOI) to 
measure and characterize vehicle occlusion; and the novel inclusion of OC-SVM with the Radial Basis 
Function (RBF) Kernel for the classification stage, where the input space of the classifier is 3D based 
on geometric features. 

This paper is organized as follows: in Section 2, an overview of the related work in the area of 
occlusion handling and vehicle classification is presented. In Section 3, the procedures for the 
proposed system are described: vehicle detection with occlusion handling, vehicle tracking, and 
vehicle classification based on K-means, SVM, and OC-SVM. Experimental results are provided in 
Section 4. Discussion of the paper is presented in Section 5. Finally, the conclusions are presented in 
Section 6. 

2. Related Works 

Although, our work is related to vision-based systems with static camera for traffic surveillance, some 
works related to other close area “on road vision-based systems” are overviewed. In [1], Sivaranan and 
Trivedi present a detailed survey about the advances in road vision-based vehicle detection, tracking, 
and behaviour analysis, particularly as regards to sensors for vehicle detection and representative 
works in vision-based vehicle detection and tracking. In addition to classification, aspects such as 
features and occlusion should be studied. Another paper of interest, for  
vehicle-mounted camera, is Arrospide, Salgado and Nieto [33], where “a new descriptor based on 
the analysis of gradient orientations in concentric rectangles is defined”, involving “a much smaller 
feature space compared to traditional descriptors, which are too costly for real-time applications. 
A new vehicle image database is generated to train the SVM”. On other hand, Huang in [34] shows 
a detailed study about the background and uses the entropy for a motion detection algorithm, 
although it is a very good paper, the accuracy achieved was relatively low (53.43%). 

Due to perspective effects, shadows, camera vibration, lighting changes, and other factors, 
multiple vehicles could be detected as a single vehicle, greatly affecting system performance. 
Therefore, occlusion handling is an important step after vehicle detection. There are several methods 
for reducing occlusions. For example, in [20], a line-based algorithm using a set of horizontal and 
vertical lines is proposed to eliminate all unwanted shadows; these lines are derived from the 
information of lane-dividing lines. In addition, fusion of the image frames acquired from multiple 
cameras is used in [35] to deal with the occlusion problem. Furthermore, an algorithm based on car 
windshield appearance is proposed in [21] to handle occlusions in dense traffic. In [36], occlusion is 
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detected through convex regions, if occlusion is detected, then it is removed with a cutting region.  
In [37] the vehicle corner was used as feature to solve partial occlusion. In [38], feature-based tracking 
is used in intersections to handle the problem caused by the disruption of the features. In [39], the 
vehicle counting with perspective view is performed using two-appearance-based classifiers. Table 1 
shows related works in the detection/counting stage.  

Table 1. Related works in the detection of vehicles. 

Reference GT Frames Scenarios 
Traffic 
Load DR or Recall Precision F-Measure 

Saunier, N.; Sayed, T. [38] (2006) 302 8360 3 - 88.4 - - 
Hsieh, J.-W.; Yu, S.-H.; Chen, Y.-
S.; Hu, W.-F. [20] (2006) 

20,443 16,400 3 - 82.16 - - 

Hu, Z.; Wang, C.; Uchimura, K. 
[35] (2007) 

1074 
Not 

indicated 
- - 99.3 - - 

Zhang, W.; Wu, Q. M. J.; Yang, 
X.; Fang, X. [36] (2008) 

427 
Not 

indicated 
- - 

93.87–84.43, 
100–83.8 

- - 

Fang, W.; Zhao, Y.; Yuan, Y.; 
Liu, K [37] (2011) 

226 3500 2 - 86.8, 100 - - 

Arróspide, J.; Salgado, L.; Nieto, 
M. [35] (2012) 

4000 NA - - 
96.14, 89.92, 

94.14 
- - 

Pham, H.V.; Lee, B.-R. [21] 
(2015) 

672 18,000 1 - 97.17 - - 

Shirazi, M.S.; Morris, B. [39] 
(2015) 

Not 
indicated 

1080 at 8 
fps 

3 - 94 - - 

Our System (2017) 4111 
92,160 at 

25 fps 
5 1.34 82.42–99.24 68.7–99.5 74.6–98.3 

 

From this table and the literature, we conclude that:  

• Only reference [20] has uses greater number of Ground Truth (GT) points in the detection than 
us, but they used only 3326 for the classification. Therefore, our work shows the greatest number 
of GT for classification. 

• The detection rate DR or recall of 100% reported in [37] was achieved in a restricted scenario for 
only nine GT vehicles in 1000 frames; so, it’s not valid. 

• The most of papers don´t give information about videos, that can be downloaded and tested; or 
they are too short, or not show an easy replication. 

• Background models are addressed in the following highly cited articles [34,40–42], but all are 
based on assumptions that background pixel values show higher frequencies and less variance 
than any foreground pixel. Although the occlusion is not handled in these papers. 

• Background-foreground algorithms transform input videos or photos, with occlusion handling 
or not, into an output space that is used for the classification stage. 

• The output space delivered by the detection stage is the set of points or vectors modelling the 
moving vehicles.  

• It is important to keep a low dimensional output space of the detection algorithms and/or the 
use of low-computational complexity features to improve the performance of these real-time 
systems. 

• In [36] the occlusion is classified into partial and full visually, and convex regions were 
employed, reporting an improvement of the detection. However, a metric about the occlusion 
has not been presented. 

• In [39] the occlusion handling algorithm is based on SVM, using 11 videos for training and 
another three for the detection of occlusion. Although this technique is novel, it uses images as 
elements of the input space for the SVM classifier. Therefore, it has a greater computational 
complexity than other techniques that use elements of less complexity than those images.  

• All occlusion management algorithms should be tested with long-duration, high-frame-rate 
videos, 135-s videos and frame rates of 8 are relatively low. 
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• Vehicle ROI extraction based on GMM to reduce computational complexity is achieved in some 
works like [43]. 

• In our work assumptions such as (1) processing in the pixel domain, (2) tracking and decision at 
frame-level, (3) the use of low-computational complexity features and (4) processing of pixels in 
certain regions with high variability, are kept to reduce the computational complexity because 
these assumptions are crucial for a necessary future parallelization of these algorithms. 

• Our work has the largest number of different scenarios for detection and the largest number of 
frames. In addition, traffic load and other metrics are given. 

In the literature, there are many selected and extracted features [7,9,10,32,44–46] such as: wave 
length, mean, variance, peak, valley, acreage, acoustic signals, Histogram Oriented Gradients (HOG) 
features, the vehicle length, Grey-Level Co-occurrence matrix features, low level features, area, 
width, height, centroid, and bounding box. In the classification stage, these features are employed to 
classify the vehicles into several classes; the most used are small, medium, and large. Since 2006, SVM 
has been used for vehicle classification using other input spaces, and other different scenarios, such 
as static images [47], vehicles on road ramps [10], visual surveillance from low-altitude airborne 
platforms [7], on-road camera [32], static side-road camera [48], and laser intensity image without 
vehicle occlusion [46]. Also, in this work we focus on traffic surveillance with only a vision camera 
as sensor, the scenarios are multilane ways with a relative high traffic load, under different weather 
conditions and a variable occlusion index (see [49]). Table 2 shows important aspects of the related 
works in vehicle classification, including our results, and where TPR is the True Positive Rate or Recall, 
TNR is the True Negative Rate, FNR is the False Negative Rate. 

Table 2. Related works in the classification of vehicles. 

Reference Sensors Scenarios Input Space Result Reported Metrics 
Hsieh, J.-W.; Yu, S.-
H.; Chen, Y.-S.; Hu, 
W.-F. [20] (2006) 

Camera only 
Static side-road 

camera 

Size and the 
“linearity” of a 

vehicle 

Global TPR of up to 94.8% 
for cars, minivans, trucks, 
and van-trucks 

TPR 

Feng, Z.; Mingzhe, 
W. [9] (2009) 

Anisotropic 
magnetoresistive 

(AMR) sensor 

Vehicle passes 
through the sensor 

Features of wave 
length, mean, 

variance, peak, 
valley, and acreage 

86%, 80%, 81%, and 89% 
TPR for big truck, bus, 
van, and car 

TPR 

Changjun, Z.; 
Yuzong, C. [10] 
(2009) 

Acoustic signals 
Vehicles on the 

road ramp 
Set of frequency 
feature vectors 

95.12% accuracy for car, 
bus, truck, and container 
truck 

Accuracy 

Chen, Z.; Pears, N.; 
Freeman, M.; Austin, 
J. [48] (2014) 

Stationary 
roadside (CCTV) 

camera 

Static side-road 
camera 

Size and width of 
the blob 

88.35%, 69.07%, and 
73.47% TPR for car, van, 
and heavy goods vehicles 

TPR, TNR, FPR 

Moussa, G.S. [46] 
(2014) 

Laser sensor 

Top-down laser 
over road 

(different scenarios 
from those 

presented here.) 

Geometric-based 
features 

99.5%, 93.0%, and 97.5% 
TPR for small, midsize, 
and large 

TPR 

Liang, M.; Huang, 
X.; Chen, C.H.; 
Chen, X.; Tokuta, A. 
[45] (2015) 

Camera only 
Static side-road 

camera 
Low level features 

79.9%, 63.4%, and 92.7%, 
TPR for small, midsize, 
and large 

TPR 

Lamas-Seco, J.; 
Castro, P.; Dapena, 
A.; Vazquez-Araujo, 
F. [8] (2015) 

Inductive Loop 
detectors 

Vehicle passes 
through the sensor 

Fourier Transform 
of inductive 
signatures  

Global TPR of up to 
95.82% for small, midsize, 
and large 

TPR 

Kamkar, S.; 
Safabakhsh, R. [44] 
(2016) 

Camera only Static side-road 
camera 

Vehicle length and 
Grey-Level Co-

occurrence matrix 
features 

71.9% Global TPR for 
small, midsize, and large 

TPR 

Our System (2017) Camera only 
Static side-road 

camera 
3-D geometric-
based features 

Global TPR of up to 
98.190% for small, midsize, 
and large 

Recall or TPR,  
F-measure, 

Precision, and  
VOI-Index 
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From Table 2 and the here mentioned literature it can be seen that: 

• Several systems used in addition to the video camera, other sensors, then different input spaces 
were created. Consequently, the use of a single static camera helps to maintain a low cost 
hardware system, and we have demonstrated that it is possible to have a high performance 
system. 

• The test scenarios used in this work are richer than those presented in related papers. 
• For traffic monitoring in Smart City IoT with a static camera located on the road-side, our system 

showed the highest performance and we calculated more performance metrics. 

Motivation: For an IoT Smart City and particularly for video-based traffic surveillance, to have 
a very high-performance vision-based system that improves the detection rate of moving vehicles 
through geometric features and occlusion handling algorithms; the measurement of the occlusion by 
a metric here called VOI—Vehicle Occlusion Index— and the use of novel classifiers. 

3. The Proposed System 

In this paper, we present a system to detect, track, and classify vehicles from video sequences, 
with a higher performance than related methods in the literature. Figure 1 shows the block diagram 
of the system. In the training, the models for each class of vehicles are generated, for this, a training 
video is used. With the models, the classification is performed using OC-SVM. 

 
Figure 1. Block diagram of the proposed system. 

3.1. System Initialization 

The tasks related with the system initialization (see Figure 2) are the following: 

• Manual selection of the Region of Interest (ROI), which is the set of all pixels where moving 
objects or vehicles can be detected, tracked and classified. This concept helps to reduce the whole 
processing time. 

• Manual setting of the lane-dividing lines, detection line, and classification line. 

 
Figure 2. System initialization. 
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3.2. Vehicle Detection 

It is known that different techniques can be employed for vehicle detection, e.g., pixel-domain, 
photo-domain. Vehicle models are built from different sets of the features, which can be geometric, 
based on secondary sensors, or derived by certain mathematical transformations. We will work at 
pixel-domain because we observed that several algorithms achieve a high performance and useful 
for a necessary future parallelization of the algorithms. 

Although, the background modelling is not a target of this work, to have a reliable background 
model is a very important issue for detection of moving objects like vehicles. This problem was 
addressed and modelled by different authors. Stauffer and Grimson [40] developed the adaptive GMM 
model, while Power and Schoonees [50] revealed important practical details of this model. Mandellos, 
Keramitsoglou and Kiranoudis [41], and Huang [34] developed background models. Nevertheless, all 
of them rely on assumptions that the background pixel-values show higher frequencies and less 
variance than any foreground pixels. The algorithm in [41] behaves for the background as a  
GMM-Model, improving the foreground only working on Luv color-space that means that its 
computational complexity is three times that obtained in gray scale. And, as the Huang-Algorithm 
doesn’t show a high performance, we select the Stauffer-Grimson algorithm. 

To select a background-foreground algorithm, we assume: (1) processing in the pixel domain, 
(2) tracking and decision at frame-level, (3) the use of some techniques to reduce the computational 
complexity, e.g., low-complexity features, processing of pixels in certain regions with high variability. 
These issues are crucial for a necessary future parallelization of detection algorithms. 

Let 𝑽𝑽(𝜏𝜏)  be a video of a duration τ containing M ground truth vehicles. It can be considered as a 
sequence of K images or frames indexed by k = 1, 2,…, K. And each frame at time k can be seen as a 
matrix, 𝑰𝑰𝑘𝑘 of size (𝑚𝑚 𝑥𝑥 𝑛𝑛) where each element is a pixel value represented as 𝒙𝒙𝑘𝑘(𝑖𝑖, 𝑗𝑗), and where for 
the gray-space 𝒙𝒙𝑘𝑘(𝑖𝑖, 𝑗𝑗) 𝜖𝜖 ℝ𝐺𝐺

1  and ℝ𝐺𝐺
1  ⊂  ℝ1  and for a 3D color-space 𝒙𝒙𝑘𝑘(𝑖𝑖, 𝑗𝑗) 𝜖𝜖 ℝ𝐶𝐶

3  and ℝ𝐶𝐶
3  ⊂  ℝ3, for 

(1 ≤ 𝑖𝑖 ≤ 𝑚𝑚, 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛). In this work, we use only the grayscale, and then the image at frame k is 
expressed as: 

𝑰𝑰𝑘𝑘 =  {𝒙𝒙𝑘𝑘(𝑖𝑖, 𝑗𝑗)| 𝒙𝒙𝑘𝑘(𝑖𝑖, 𝑗𝑗) 𝜖𝜖 ℝ𝐺𝐺
1 }  

and the background as: 

𝑩𝑩𝑩𝑩𝑘𝑘 =  {𝒙𝒙𝑘𝑘(𝑖𝑖, 𝑗𝑗)| 𝒙𝒙𝑘𝑘(𝑖𝑖, 𝑗𝑗) 𝜖𝜖 ℝ𝐺𝐺
1  }  

which satisfies some mathematical background criteria. 
Based on the before mentioned assumptions, the Adaptive GMM [40] was selected to segment 

the vehicles from the background mask. Each pixel in the image is modeled through a mixture of 𝑍𝑍 
Gaussian distributions. The probability that a certain pixel has a value 𝒙𝒙 at time 𝑘𝑘 can be written as: 

𝑃𝑃(𝒙𝒙𝑘𝑘) = �𝜔𝜔𝑧𝑧,𝑘𝑘 ∙ 𝜂𝜂(𝒙𝒙𝑘𝑘,𝝁𝝁𝑧𝑧,𝑘𝑘,∑𝑧𝑧,𝑘𝑘

𝑍𝑍

𝑧𝑧=1

), (1) 

where 𝜔𝜔𝑧𝑧,𝑘𝑘  is an estimate of the weight of the 𝑧𝑧𝑡𝑡ℎ  Gaussian in the mixture at time 𝑘𝑘 and 𝜂𝜂 is an  
n-dimensional Gaussian probability density function, with a mean value 𝝁𝝁 and a covariance matrix ∑: 

𝜂𝜂�𝒙𝒙𝑡𝑡 ,𝝁𝝁𝑘𝑘,𝑡𝑡 ,∑𝒌𝒌,𝑡𝑡� =
1

(2𝜋𝜋)
𝑛𝑛
2�∑𝒌𝒌,𝑡𝑡�

1
2
𝑒𝑒−

1
2(𝒙𝒙𝑡𝑡−𝝁𝝁𝑘𝑘,𝑡𝑡)′∑𝒌𝒌,𝑡𝑡

−1(𝒙𝒙𝑡𝑡−𝝁𝝁𝑘𝑘,𝑡𝑡). (2) 

Each pixel value, 𝒙𝒙𝑘𝑘(𝑖𝑖, 𝑗𝑗) at position (𝑖𝑖, 𝑗𝑗) and frame k, that does not match the background, 
𝑩𝑩𝑩𝑩𝑘𝑘, is used to construct the foreground 𝑩𝑩𝑘𝑘, also: 

𝑩𝑩𝑘𝑘 = {𝒙𝒙𝑘𝑘(𝑖𝑖, 𝑗𝑗)| Difference |𝑰𝑰𝑘𝑘 −  𝑩𝑩𝑩𝑩𝑘𝑘| is significant}  

After that, a connected components analysis is performed to group those pixels that model 
possible vehicles embedded in the input video, and these groups are called blobs in the literature. If 
a frame k or image contains L groups of possible vehicles or blobs, 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑙𝑙𝑘𝑘, then:  
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𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑘𝑘𝑙𝑙 = �𝒙𝒙𝑘𝑘(𝑖𝑖, 𝑗𝑗)�pixel (𝑖𝑖, 𝑗𝑗) is connected to pixel (𝑟𝑟, 𝑠𝑠), and 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑘𝑘𝑙𝑙 ⊂ 𝑩𝑩𝑘𝑘� 𝑓𝑓𝑓𝑓𝑟𝑟 𝑙𝑙

= 1, … , 𝐿𝐿    
 

Note that, variable l is used to index a possible vehicle and index k for its temporal behavior or 
frame. Then, for the video 𝑽𝑽(𝜏𝜏), l = {1,2,…,N}, and where N = M for the ideal case. Any blob is denoted 
by 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃, specific blob indexed by l is denoted as 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃, and temporal instances as 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒌𝒌𝒃𝒃 . 

3.3. Feature Extraction 

In our case, the blobs are extracted from the foreground mask, and binary morphological 
operations (erosion and dilation) are performed to reduce noise and enhance the geometry and shape 
of the objects. Next, blob analysis is used to extract geometric features such as area (the sum of the 
connected pixels or spatial occupancy), height, width, and centroid of the bounding box, see Figure 3. 
Finally, if we select d features as explained in Section 3.6, each 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 is mapped to a new point or 
vector 𝑥𝑥 𝜖𝜖 ℝ𝐹𝐹,

𝑑𝑑  where ℝ𝐹𝐹
𝑑𝑑  ⊂  ℝ𝑑𝑑 is a new space before occlusion-handling where the vehicle models live.  

It is important to observe the following notation. Any moving vehicle is referred as 𝑥𝑥 𝜖𝜖 ℝ𝐹𝐹,
𝑑𝑑  and 

its temporal instances at time or frame k by 𝑥𝑥𝑘𝑘 𝜖𝜖 ℝ𝐹𝐹,
𝑑𝑑  specific vehicle indexed by l is denoted as 

𝑥𝑥𝑙𝑙 𝜖𝜖 ℝ𝐹𝐹,
𝑑𝑑  and its temporal instances by 𝑥𝑥𝑘𝑘𝑙𝑙  𝜖𝜖 ℝ𝐹𝐹

𝑑𝑑. 

   
(a) (b) (c) 

Figure 3. Vehicle detection: (a) actual image, green lines indicate the ROI, and blue line the detection 
line; (b) background and (c) foreground mask. 

3.4. Occlusion Handling 

Due to camera position and height, occlusion occurs, and several errors are generated during 
the detection stage. The major task of any occlusion-handling algorithm in these scenarios is to 
minimize effects of the occlusion caused by large vehicles due to the high variance of their feature 
values. Therefore, we propose a simple algorithm to reduce these occlusion effects. This algorithm is 
based on the following assumptions: 

1. The width of a vehicle cannot be greater than the width of one lane, except when it is a large 
vehicle that is completely inside the ROI (due to perspective effects), i.e.: 

if �
𝑤𝑤𝑏𝑏
𝑤𝑤𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙

>  𝑇𝑇ℎ1�  and ( 𝑎𝑎� < 𝑇𝑇ℎ𝑚𝑚) → Occlusion (3) 

2. The width of a vehicle that is before the detection line cannot be greater than the width of two 
lanes, even if it is a large vehicle, i.e.: 

if �
𝑤𝑤𝑏𝑏
𝑤𝑤𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙

> 𝑇𝑇ℎ2�  and (blob is before 𝑫𝑫) → Occlusion (4) 

where 𝑤𝑤𝑏𝑏 is the vehicle width (bounding box width), 𝑤𝑤𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙 is the lane width, 𝑎𝑎� is the normalized 
area, 𝑫𝑫 is the detection line, and 𝑇𝑇ℎ1, 𝑇𝑇ℎ2, and  𝑇𝑇ℎ𝑚𝑚  are the thresholds with values 1.22, 2.27, and 
0.12, respectively. The values of thresholds were selected using a training video with occluded 
vehicles; the values that increase the detection rate were selected. If at least one case is fulfilled 
(Figures 4a,c), then we use the lane-dividing lines to separate vehicles traveling side by side, which 
are detected as a single object. 
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(a) (c) 

  
(b) 
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Figure 4. Occlusion handling when cases 1 and 2 are fulfilled, green lines indicate the ROI, and blue 
line the detection line. Actual image and foreground mask, (a,c) before applying the algorithm and 
(b,d) after applying the algorithm. 

3.4.1. Algorithm for Occlusion Handling Based on Lane Division 

Inputs: 𝑫𝑫 , 𝑩𝑩𝑘𝑘,  {𝒄𝒄𝑚𝑚,𝑘𝑘;𝑚𝑚 = 1, … ,𝑀𝑀} , {𝑎𝑎𝑚𝑚,𝑘𝑘;𝑚𝑚 = 1, … ,𝑀𝑀} , {𝒃𝒃𝑚𝑚,𝑘𝑘;𝑚𝑚 = 1, … ,𝑀𝑀} , and �𝑳𝑳𝑗𝑗; 𝑗𝑗 = 1,
… , 𝐽𝐽� 

Outputs: 𝑩𝑩𝑘𝑘
′ , {𝒄𝒄𝑚𝑚,𝑘𝑘;𝑚𝑚 = 1, … ,𝑀𝑀}, {𝑎𝑎𝑚𝑚,𝑘𝑘;𝑚𝑚 = 1, … ,𝑀𝑀}, and {𝒃𝒃𝑚𝑚,𝑘𝑘;𝑚𝑚 = 1, … ,𝑀𝑀}, 

where 𝑫𝑫 is the detection line, 𝑩𝑩𝑘𝑘  is the foreground mask in frame 𝑘𝑘,𝑳𝑳𝑗𝑗  is the 𝑗𝑗𝑡𝑡ℎ  lane-dividing 
line, 𝒄𝒄𝑚𝑚,𝑘𝑘,  𝑎𝑎𝑚𝑚,𝑘𝑘 and 𝒃𝒃𝑚𝑚,𝑘𝑘 are the central point, area, and bounding box of vehicle 𝑚𝑚 in frame 𝑘𝑘, and 
𝑩𝑩𝑘𝑘
′ , is the updated foreground mask. 

For each blob 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑙𝑙𝑘𝑘 of 𝑩𝑩𝑘𝑘: 
Step 1: Find  𝑳𝑳𝑗𝑗 and 𝑳𝑳𝑗𝑗+1 for 𝒄𝒄𝑚𝑚,𝑘𝑘 (Figure 5).  
Step 2: Estimate the lane width at point 𝒄𝒄𝑚𝑚,𝑘𝑘, as follows: 

𝑤𝑤𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙𝑗𝑗,𝑘𝑘�𝒄𝒄𝑚𝑚,𝑘𝑘� = �𝑥𝑥𝐿𝐿𝑗𝑗(𝑦𝑦c) − 𝑥𝑥𝐿𝐿𝑗𝑗+1(𝑦𝑦c)�, (5) 

where 𝑥𝑥𝐿𝐿𝑗𝑗(𝑦𝑦c) is the abscissa of the point on the 𝑗𝑗𝑡𝑡ℎ  lane-dividing line with 𝑦𝑦c  as the ordinate 

(Figure 5). 
Step 3: Compute the normalized area as follows: 

𝑎𝑎�𝑚𝑚,𝑘𝑘  = 𝑎𝑎𝑚𝑚,𝑘𝑘
𝑤𝑤2

𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙𝑗𝑗,𝑘𝑘�𝒄𝒄𝑚𝑚,𝑘𝑘��  (6) 

Step 4: Check if there is occlusion using Equations (3) and (4). If at least one case is fulfilled, 
then draw: 

�
 𝑳𝑳𝑗𝑗+1         if   𝑑𝑑�𝒄𝒄𝑚𝑚,𝑘𝑘,𝑳𝑳𝑗𝑗� > 𝑑𝑑�𝒄𝒄𝑚𝑚,𝑘𝑘,𝑳𝑳𝑗𝑗+1�
𝑳𝑳𝑗𝑗              otherwise,                                    (7) 

where 𝑑𝑑�𝒄𝒄𝑚𝑚,𝑘𝑘,𝑳𝑳𝑗𝑗� and 𝑑𝑑�𝒄𝒄𝑚𝑚,𝑘𝑘,𝑳𝑳𝑗𝑗+1� can be defined as follows: 

𝑑𝑑�𝒄𝒄𝑚𝑚,𝑘𝑘,𝑳𝑳𝑗𝑗� = �𝑥𝑥𝐿𝐿𝑗𝑗(𝑦𝑦c) −   𝑥𝑥𝑐𝑐�, (8) 

𝑑𝑑�𝒄𝒄𝑚𝑚,𝑘𝑘,𝑳𝑳𝑗𝑗+1� = �𝑥𝑥𝐿𝐿𝑗𝑗+1(𝑦𝑦c) −   𝑥𝑥𝑐𝑐�. (9) 

Step 5: If all blobs have been analyzed and at least one lane-dividing line drawn, then extract the 
features, update the space 𝑩𝑩𝑘𝑘

′ , and end the algorithm. Otherwise, go to step 1. 
The algorithm for occlusion handling considers a static camera, and previous initialization of 

system, i.e., the lane-dividing lines must be defined. If the camera changes its position, it will be 
consider as another scenario, then the initialization of system is required. The vehicles are detected 
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in an area of approximately 5380 ft2, once an object is detected, the algorithm for handling occlusions 
begins to work. 

Challenge: The challenge of any occlusion-handling algorithm in these scenarios is to minimize 
the effects of occlusion caused by large vehicles due to the high variance of their feature values, 
delivering a uniform space, which will be the input space for the classification stage. 

At this point, we will have the new vehicle space 𝑩𝑩′𝑘𝑘 expressed as: 

𝑩𝑩′𝑘𝑘 = {𝒙𝒙𝑟𝑟𝑠𝑠| 𝒙𝒙𝑟𝑟𝑠𝑠𝜖𝜖 ℝ𝐹𝐹,
𝑑𝑑  and 𝒙𝒙𝑟𝑟𝑠𝑠 =  𝒙𝒙𝑘𝑘𝑙𝑙  when there is not occlusion } 

where index s = {1,2,….S} and S is the number of vehicles after occlusion, i.e., S ≥ N. 

 
Figure 5. Estimation of the lane width. 

3.4.2. Vehicle Occlusion Index 

Occlusion is an open issue in this area. Some authors classify it into total and partial and some 
measurements with the area are given. For vehicle traffic surveillance, under the assumption that the 
detection algorithm perform well, is important to know how frequent the occlusion is and how well 
the occlusion algorithm performs its function. As occlusion occurs in short time intervals, the 
measurements should be realized in the same intervals. For these purposes, we introduce here a 
Vehicle Occlusion Index (VOI). 

The VOI-Index is defined as the ratio of the number of new vehicles detected using the occlusion 
algorithm and the total number of new vehicles detected during a time interval: 

𝑉𝑉𝑉𝑉𝑉𝑉𝜏𝜏 = number of new detected vehicles by the occlusion algorithm
total number of new vehicles detected

, (10) 

where 𝜏𝜏 is the interval of time. A 𝑉𝑉𝑉𝑉𝑉𝑉𝜏𝜏 = 0  indicates that no new vehicles were detected by the 
algorithm or that the occlusion was not present in the time interval, while a 𝑉𝑉𝑉𝑉𝑉𝑉𝜏𝜏 = 1 indicates that 
the new vehicles detected by the algorithm were tracked and counted too. The VOI versus time is a 
measure of the frequency with which the occlusion is present. In Table 3 the average VOI-Index for 
the studied videos is given, while in Section 5 results of the occlusion handling algorithm and VOI-
Index are discussed.  

Occlusion handling algorithms and occlusion metrics should be studied taking into account: 
techniques or methods used e.g., convex regions, SVM classifiers, and geometric feature space, 
computational complexity, classic performance metrics. In addition, they should be tested with long-
duration videos and high frame rates, and should be compared with each other. 
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Table 3. Videos analyzed in this work. 

Video Frames Vehicles 
per Second 

Occlusion 
Index 

Recording Place Vehicle 
Direction 

Weather 

V1 16,925 1.24 0.312 
Ringroad, Guadalajara, 

Mexico 
Front Sunny 

V2 5400 1.05 0.189 
Ringroad, Guadalajara, 

Mexico 
Front Sunny 

V3 3875 0.75 0.124 
Ringroad, Guadalajara, 

Mexico 
Front 

0 to 20 s Sunny, 21 to 
140 s Cloudy 

V4 7520 0.88 0.000 M-30, Madrid, Spain Rear Sunny 
V5 9390 0.63 0.000 M-30, Madrid, Spain Rear Cloudy 
V6 15,050 1.32 0.249 M6 motorway, England Front Cloudy 
V7 14,875 1.21 0.203 M6 motorway, England Front Cloudy 
V8 19,125 1.18 0.202 M6 motorway, England Front Cloudy 

3.5. Vehicle Tracking 

As the Kalman filter (KF) is an efficient and well known recursive filter that estimates the internal 
state of a linear dynamic system from a series of Gaussian noisy measurements. In mathematical 
terms, a linear discrete-time dynamical system embodies the following pair of equations [51]: 

(1) Process equation 

𝒙𝒙𝑘𝑘 = 𝑭𝑭𝒙𝒙𝑘𝑘−1 + 𝝎𝝎𝑘𝑘−1, (11) 

where 𝒙𝒙  is the state vector, 𝑭𝑭 is the transition matrix, and 𝝎𝝎 is the process noise; the subscript 𝑘𝑘 
denotes discrete time instant. The process noise is assumed to be additive, white, and Gaussian, with 
zero mean and the covariance matrix defined by: 

𝐸𝐸[𝝎𝝎𝑛𝑛𝝎𝝎𝑘𝑘
′ ] = �𝑸𝑸𝑘𝑘  𝑓𝑓 or  𝑛𝑛 = 𝑘𝑘

0   𝑓𝑓 or  𝑛𝑛 ≠ 𝑘𝑘 , (12) 

where the superscript ′ denotes matrix transposition. 

(2) Measurement equation 

𝒛𝒛𝑘𝑘 = 𝑯𝑯𝒙𝒙𝑘𝑘 + 𝒗𝒗𝑘𝑘,                                     (13) 

where 𝒛𝒛 is the measurement vector,  𝑯𝑯 is the measurement matrix, and 𝒗𝒗  is the measurement 
noise, which is assumed to be additive, white, and Gaussian, with zero mean and the covariance 
matrix defined by: 

𝐸𝐸[𝒗𝒗𝑛𝑛𝒗𝒗𝑘𝑘′ ] = �𝑹𝑹𝑘𝑘  𝑓𝑓 or   𝑛𝑛 = 𝑘𝑘
0   𝑓𝑓 or  𝑛𝑛 ≠ 𝑘𝑘  (14) 

Since the time of the frame interval is very short, it is assumed that the moving object is in 
constant velocity within a frame interval. The state in frame 𝑘𝑘 can be represented by the vector: 

𝒙𝒙𝑘𝑘 = [𝑥𝑥𝑐𝑐,𝑘𝑘,  𝑣𝑣𝑥𝑥,𝑘𝑘,  𝑦𝑦𝑐𝑐,𝑘𝑘,  𝑣𝑣𝑦𝑦,𝑘𝑘]′, (15) 

where 𝑥𝑥𝑐𝑐,𝑘𝑘 , 𝑦𝑦𝑐𝑐,𝑘𝑘  are the centroid coordinates and 𝑣𝑣𝑥𝑥,𝑘𝑘 ,  𝑣𝑣𝑦𝑦,𝑘𝑘  are the velocity components. The 
measurement vector of the system can be represented as: 

𝒛𝒛𝑘𝑘 = [𝑥𝑥𝑐𝑐,𝑘𝑘,   𝑦𝑦𝑐𝑐,𝑘𝑘]′. (16) 

For the whole video and frame by frame the blobs 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑘𝑘𝑙𝑙  represented as vector 𝒙𝒙𝑘𝑘𝑙𝑙  𝝐𝝐 𝑩𝑩𝑘𝑘
′  are 

tracked by the corresponding Kalman filters, resulting vehicle tracking sequences  
𝑻𝑻𝑻𝑻(𝒙𝒙) =  {𝒙𝒙1,𝒙𝒙2 … , 𝒙𝒙𝑘𝑘}  as output space, where 𝒙𝒙  represent any moving vehicle and 𝒙𝒙𝑖𝑖  are its 
instances.  
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3.6. Feature Selection and Environment for Classification 

The detection stage delivers the whole space of tracked objects, i.e., detected vehicles or moving 
objects, to the classification stage. Also, all object tracking sequences, Ts(x), belong to the input space 
of the classification stage. As each sequence Ts(x) includes geometric and cinematic features and their 
temporal behaviors, it is necessary to decide where and/or when the instances are taken for 
classification. Also, for each moving vehicle x corresponds a temporal sequence  
𝑻𝑻𝑻𝑻(𝒙𝒙) =  {𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑐𝑐 , … , 𝒙𝒙𝑘𝑘} where 𝒙𝒙𝑐𝑐 should be a well-defined instance of its class. 

As these moving objects or vehicles are detected in different points of the ROI, the behaviors of 
the features are highly variable, and the most significant geometric feature—the area—is not 
sufficient for a good classification (see later Section 4.3). Studying other geometric features, such as 
the width and height of the bounding box, we observed that these showed a lower variance than the 
area (spatial occupancy). Particularly, these three features presented a very high variance for large 
vehicles, but a relatively low variance for midsize and small vehicles, see Figure 6. 

As a class is a subspace of the input space, and inside of each class there are several points, and 
each point has several instances, is necessary to reduce these intra-class differences. Therefore, we 
propose for classification: 
1. Instead of 1D geometric feature space, the use of a 3-D geometric feature space, ℝ3  ⊂  ℝ𝑑𝑑. Then, 

for the detected vehicles or 𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝑻𝑻  are used the input points 𝒙𝒙 𝜖𝜖 ℝ3, 𝒙𝒙 = (Area, Width,
Width/Height).  

2. Classification is performed in a specific line of the ROI, called here classification line, to reduce 
intra-class differences of the space of tracking sequences Ts(x) (see Figure 7). 

3. Reduction in the variation of the feature values of any input point by using the average of feature 
values of the last three instances—detected at k-th frame after the classification line—and 
projecting them to the classification line, i.e., Proj(x). 

  
(a) (b) 

 
(c) 

Figure 6. Behavior of the selected geometric features of the detected vehicles, (a) area of the detected 
objects; (b) width of the detected objects, and (c) height of the detected objects. 
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Figure 7. Projection of the vehicles into a classification line (yellow), green lines indicates the ROI. 

Challenge: The challenge is to find and select significant and/or invariant features for a very high 
detection rate and precision under different weather conditions and for several scenarios. 

3.7. Vehicle Classification 

Classification is carried out here based on input space and classifiers: 

1. 1D feature input space and thresholds.  
2. 3D feature input space and K-means. 
3. 3D feature input space and SVM. 
4. 3D feature input space and OC-SVM. 

For case 1, once the estimated area has been computed, the vehicles are classified. The decision 
rule for classification is defined as: 

�
 small vehicle    if   𝑎𝑎�𝑛𝑛  ≤ 𝑇𝑇ℎ𝑠𝑠,             

midsize vehicle   if   𝑇𝑇ℎ𝑠𝑠 ≤  𝑎𝑎�𝑛𝑛  ≤ 𝑇𝑇ℎ𝑚𝑚,
large vehicle    otherwise,               

  

where 𝑇𝑇ℎ𝑠𝑠 and 𝑇𝑇ℎ𝑚𝑚 are the thresholds for every class with values of 0.12 and 1.2, respectively.  
For cases 2, 3, and 4, the vehicles are represented by vectors 𝒙𝒙 ∈  ℝ3, which will be classified 

through K-means, SVM, and OC-SVM. In the classification employing the OC-SVM algorithm, a 
model for each class was defined. OC-SVM allows considering different behaviors of the detected 
blobs belonging to the same class. 

OC-SVM [52–55] maps input data 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁  ∈ 𝐴𝐴 into a high dimensional space 𝐹𝐹 (via Kernel 
k(x,y)) and finds the maximal margin hyperplane that best separates the training data from the origin. 
To do this, the following quadratic program must be solved [52]: 

min
𝑤𝑤 ∈𝐹𝐹,𝑏𝑏 ∈ℝ,𝜉𝜉 ∈ℝ𝑁𝑁

1
2
‖𝑤𝑤‖2 +

1
𝜐𝜐𝜐𝜐

�𝜉𝜉𝑖𝑖 − 𝑏𝑏
𝑁𝑁

𝑖𝑖

, (17) 

Subject to (𝑤𝑤𝑤𝑤(𝑥𝑥𝑖𝑖)) ≥ 𝑏𝑏 − 𝜉𝜉𝑖𝑖;  𝜉𝜉𝑖𝑖 ≥ 0, 𝜐𝜐 ∈ (0,1],  where 𝑤𝑤  is the normal vector, 𝑤𝑤  is a map 
function 𝐴𝐴 → 𝐹𝐹, 𝑏𝑏 is the bias, 𝜉𝜉𝑖𝑖   are nonzero slack variables, 𝜐𝜐 is the outlier parameter control, and 
𝑘𝑘(𝑥𝑥,𝑦𝑦) =< 𝑤𝑤(𝑥𝑥),𝑤𝑤(𝑦𝑦) > . The equation is solved through a kernel function and Lagrangian 
multipliers ∝𝑖𝑖, and the solution returns a decision function of: 

𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑛𝑛 ��𝛼𝛼𝑖𝑖𝑘𝑘(𝑥𝑥𝑖𝑖 , 𝑥𝑥) − 𝑏𝑏
𝑁𝑁

𝑖𝑖

� (18) 

where 𝑤𝑤 = ∑ 𝛼𝛼𝑖𝑖𝑖𝑖 𝑤𝑤(𝑥𝑥𝑖𝑖) and ∑ 𝛼𝛼𝑖𝑖𝑖𝑖 = 1. The kernel function used in this paper is the RBF, 𝑘𝑘(𝑥𝑥,𝑦𝑦) =
ℯ−𝜂𝜂‖𝑥𝑥−𝑦𝑦‖. 

Challenge: The challenge in the classification is to find mathematical classifiers of the hypothesis 
set that allow mapping every point of the input space to the corresponding classes of the output space 
with minimal error. 



Sensors 2018, 18, 374  13 of 23 

 

4. Experimental Results 

4.1. Video Processing: Test Environment 

In this work, the performance of the proposed system was tested on real traffic videos: three 
videos, V1, V2, and V3, recorded in Guadalajara, Mexico; two videos (V4, V5) obtained from the 
GRAM Road-Traffic Monitoring (GRAM-RTM) dataset [56,57] (the video named V4 corresponds to 
video M-30, and the video named V5 is video M-30-HD); and video (V6, V7, and V8) recorded in 
Britain’s M6 motorway (see [58]).  

The resolution of all videos was reduced to 420 × 240 pixels at 25 frames per second and 
downsampling was performed to decrease the computation time. The camera’s field of view was 
directly ahead of the vehicles. Videos V1, V2, and V3 were recorded with a cell phone at a height of 
19.5 ft on the road. This video contains double trailer traffic, which is not present in the other videos. 
In addition, there is quite a bit of vibration. All image frames were visually inspected to provide the 
ground truth (GT) dataset for evaluation purposes. 

Table 3 shows the number of frames in each video, the traffic load, and the place and weather 
conditions. In addition, more than 61 min of video, 4111 ground truth vehicles, three places in 
different countries and weather conditions, a traffic load of up to 1.32 vehicles/s with traffic load 
peaks from 2 to 4 vehicles/s (see Figure 8), and a vehicle occlusion index—VOI—from 0.00 to 0.312. 

 
Figure 8. Traffic load (vehicles per second). 

The system was implemented in MATLAB and tested on an Intel Core i7 PC, with a 3.40 GHz 
CPU and 16 GB RAM. The metrics used to characterize the system performance in different stages 
are the same, i.e.: 

𝐷𝐷𝑒𝑒𝐷𝐷𝑒𝑒𝐷𝐷𝐷𝐷𝑖𝑖𝑓𝑓𝑛𝑛 𝑟𝑟𝑎𝑎𝐷𝐷𝑒𝑒 𝑓𝑓𝑟𝑟 𝑅𝑅𝑒𝑒𝐷𝐷𝑎𝑎𝑙𝑙𝑙𝑙 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝜐𝜐
 (19) 

𝑃𝑃𝑟𝑟𝑒𝑒𝐷𝐷𝑖𝑖𝑠𝑠𝑖𝑖𝑓𝑓𝑛𝑛 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 (20) 

𝐹𝐹 𝑚𝑚𝑒𝑒𝑎𝑎𝑠𝑠𝑚𝑚𝑟𝑟𝑒𝑒 = 2 ×
𝑅𝑅𝑒𝑒𝐷𝐷𝑎𝑎𝑙𝑙𝑙𝑙 × 𝑃𝑃𝑟𝑟𝑒𝑒𝐷𝐷𝑖𝑖𝑠𝑠𝑖𝑖𝑓𝑓𝑛𝑛
𝑅𝑅𝑒𝑒𝐷𝐷𝑎𝑎𝑙𝑙𝑙𝑙 + 𝑃𝑃𝑟𝑟𝑒𝑒𝐷𝐷𝑖𝑖𝑠𝑠𝑖𝑖𝑓𝑓𝑛𝑛

 (21) 

where TP, FP and FN have different interpretations depending on the stage where they are used. In 
the detection stage: 

• GT in the video is the ground truth or input space, 
• TP is the number of vehicles successfully detected, 
• FP is the number of false vehicles detected as vehicles, 
• FN is the number of vehicles not detected, 
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• GT’ is the output space or the set of all points detected as moving vehicle, then GT’ is greater 
than GT. 

In the classification stage, for the classes S small, M midsize and L large vehicles: 

• 𝐺𝐺𝑇𝑇′ is now the new input space for classification, 
• 𝑇𝑇𝑃𝑃(𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻 𝒊𝒊) is the number of vehicles classified into the correct class 𝒊𝒊, 
• 𝐹𝐹𝑃𝑃(𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻 𝒊𝒊) is the number of vehicles classified into class 𝑖𝑖 that belong to another class 𝑗𝑗, 𝑗𝑗 ≠ 𝑖𝑖, 
• 𝐹𝐹𝜐𝜐(𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻 𝒊𝒊) is the number of vehicles of class i classified into another class 𝒋𝒋, 𝑗𝑗 ≠ 𝑖𝑖. 

For M classes 

𝐺𝐺𝑇𝑇′(𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻 𝒊𝒊) = 𝑇𝑇𝑃𝑃(𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻 𝒊𝒊) + 𝐹𝐹𝜐𝜐(𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻 𝒊𝒊) (22) 

Any point 𝑥𝑥 ∈ 𝐹𝐹𝜐𝜐(𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻 𝒊𝒊) will be classified into another class 𝒋𝒋, 𝑗𝑗 ≠ 𝑖𝑖; then this point will be 
seen as 𝐹𝐹𝑃𝑃(𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻 𝒋𝒋), and consequently:  

𝐹𝐹𝜐𝜐(𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻 𝒊𝒊) = �𝐹𝐹𝑃𝑃𝑖𝑖(𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻 𝒋𝒋),
𝑀𝑀

𝑗𝑗=1
𝑗𝑗 ≠𝑖𝑖

 (23) 

where 𝐹𝐹𝑃𝑃𝑖𝑖(𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻 𝒋𝒋) are the elements of class i classified as belonging to class j, 𝑗𝑗 ≠ 𝑖𝑖: 

�𝐹𝐹𝜐𝜐(𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻 𝒊𝒊)
𝑀𝑀

𝑖𝑖=1

= ��𝐹𝐹𝑃𝑃𝑖𝑖(𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻 𝒋𝒋)
𝑀𝑀

𝑗𝑗=1
𝑗𝑗 ≠𝑖𝑖

𝑀𝑀

𝑖𝑖=1

 (24) 

Consequently, for each class i, we will have their associated metrics e.g., DR(class i), Precision 
(class i) and F-measure (class i), which have generally different numerical values from one to another 
class, see Table 4, class S, M or L of any video: 

𝐷𝐷𝑅𝑅(𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻 𝒊𝒊) ≠ 𝑃𝑃𝑟𝑟𝑒𝑒𝐷𝐷𝑖𝑖𝑠𝑠𝑖𝑖𝑓𝑓𝑛𝑛(𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻 𝒊𝒊) ≠ 𝐹𝐹 −𝑚𝑚𝑒𝑒𝑎𝑎𝑠𝑠𝑚𝑚𝑟𝑟𝑒𝑒(𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻 𝒊𝒊). (25) 

But, for the classifier with all classes we have:  

𝑇𝑇𝑃𝑃(𝒄𝒄𝒃𝒃𝒃𝒃 𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻𝒄𝒄𝑻𝑻) = �𝑇𝑇𝑃𝑃(𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻 𝒊𝒊)
𝑀𝑀

𝑖𝑖=1

 (26) 

𝐹𝐹𝜐𝜐(𝒄𝒄𝒃𝒃𝒃𝒃 𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻𝒄𝒄𝑻𝑻) = �𝐹𝐹𝜐𝜐(𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻 𝒊𝒊)
𝑀𝑀

𝑖𝑖=1

 (27) 

𝐹𝐹𝑃𝑃(𝒄𝒄𝒃𝒃𝒃𝒃 𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻𝒄𝒄𝑻𝑻) = �𝐹𝐹𝑃𝑃(𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻 𝒊𝒊)
𝑀𝑀

𝑖𝑖=1

 (28) 

and from Equations (23) and (24):  

𝐹𝐹𝜐𝜐(𝒄𝒄𝒃𝒃𝒃𝒃 𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻𝒄𝒄𝑻𝑻) = 𝐹𝐹𝑃𝑃(𝒄𝒄𝒃𝒃𝒃𝒃 𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻𝒄𝒄𝑻𝑻), (29) 

Then, the following metrics, although with different physical meanings, are numerically equal 
each other, i.e., (Equations (19), (20) and (21), and see Table 5, for all classes of any video:  

𝐷𝐷𝑅𝑅(𝒄𝒄𝒃𝒃𝒃𝒃 𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻𝒄𝒄𝑻𝑻) = 𝑃𝑃𝑟𝑟𝑒𝑒𝐷𝐷𝑖𝑖𝑠𝑠𝑖𝑖𝑓𝑓𝑛𝑛 (𝒄𝒄𝒃𝒃𝒃𝒃 𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻𝒄𝒄𝑻𝑻) = 𝐹𝐹 −𝑚𝑚𝑒𝑒𝑎𝑎𝑠𝑠𝑚𝑚𝑟𝑟𝑒𝑒 (𝒄𝒄𝒃𝒃𝒃𝒃 𝒄𝒄𝒃𝒃𝒄𝒄𝑻𝑻𝑻𝑻𝒄𝒄𝑻𝑻) (30) 

The most significant metrics are detection rate or recall for the detection stage and F-measure for 
the classification stage, because it works on the complete input space for these scenarios, i.e., the space 
including TP, FP and FN—see Equations (19), (20) and (21). 
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Table 4. Experimental results of the detection stage with occlusion handling. 

Video GT TP FP FN Detection Rate Precision F-Measure 
V1 842 694 324 148 82.422 68.172 74.623 
V2 228 202 104 26 88.596 66.013 75.655 
V3 116 103 30 13 88.793 77.44 82.730 
V4 264 262 7 2 99.242 97.397 98.311 
V5 236 228 1 8 96.610 99.563 98.064 
V6 797 761 53 36 95.483 93.488 94.475 
V7 725 686 43 39 94.620 94.101 94.360 
V8 903 862 82 41 95.459 91.313 93.340 

4.2. Vehicle Detection Results 

Table 4 shows the experimental results of the detection stage using the occlusion algorithm. 
Experimental results show that the detection stage without the occlusion-handling algorithm has a 
detection rate of 83.793% (see Table A1), while that using the occlusion-handling algorithm in the 
detection stage improves the detection rate by 11.423%, and the number of vehicles detected increased 
to 95.216%. During the detection stage of these videos, a very strong correlation was found between 
F-measure and the measured VOI index.  

FP are produced by various conditions: camera locations with high vibration, camera angle, 
certain morphological operations embedded in the detection algorithm and because the occlusion 
algorithm divides large blobs into two or smaller ones, and some of them are not vehicles, i.e., FP. 
Particularly, videos V1, V2, and V3 were recorded in Mexico, where very large vehicles can transit, 
and the locations of the cameras showed a high vibration. The V4 and V5 videos were recorded in 
Madrid, Spain, showing a VOI index equal to 0 and the lowest FP numbers. While V6, V7, and V8 
with a VOI index close to 0.2 showed results considered normal. These results show that it is 
necessary to improve the implemented occlusion handling algorithm, using other methods such as 
the convexity of the blobs and techniques such as K-means and SVM. 

4.3. Vehicle Classification Results 

The LIBSVM library [59] was used to implement the OC-SVM—and SVM—classification with a 
RBF Kernel. Additionally, for comparison purposes, K-means algorithm was implemented. Figure 9 
shows one example for every vehicle class.  

   
(a) (b) (c) 

Figure 9. Vehicle examples for every class: (a) small; (b) midsize and (c) large. 

Table 5 shows the experimental results of the classification stage (with occlusion handling in the 
detection stage) using OC-SVM and the three selected features (area, width, relHW), where S, M, and 
L denote small, midsize, and large vehicles, respectively. 

Table 6 shows the experimental results of videos V6, V7, and V8 in the classification stage (with 
occlusion handling in the detection stage) using the thresholds, K-means, SVM and OC-SVM and the 
three selected features (area, width, relHW), where S, M, and L are small, midsize and large vehicles, 
respectively. 
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Table 5. Experimental results of the classification stage. 

Video Class Input Space TP FP FN Recall Precision F-Measure 

V1 

S 179 179 132 0 100.000 57.556 73.061 
M 789 669 20 120 84.790 97.097 90.527 
L 50 16 2 34 32.000 88.888 47.058 
T 1018 864 154 154 84.872 84.872 84.872 

V2 

S 35 34 26 1 97.142 56.666 71.578 
M 210 177 5 33 84.285 97.252 90.306 
L 61 55 9 6 90.163 85.937 88.000 
T 306 266 40 40 86.928 86.928 86.928 

V3 

S 11 10 1 1 90.909 90.909 90.909- 
M 97 95 8 2 97.938 92.233 95.000 
L 25 18 1 7 72.000 94.736 81.818 
T 133 123 10 10 92.481 92.481 92.481 

V4 

S 16 15 12 1 93.750 55.555 69.767 
M 233 222 4 11 95.279 98.230 96.732 
L 20 14 2 6 70.000 87.500 77.777 
T 269 251 18 18 93.308 93.308 93.308 

V5 

S 3 3 6 0 100.00 33.333 50.000 
M 220 211 0 9 95.909 100.000 97.911 
L 6 4 5 2 66.666 44.444 53.333 
T 229 218 11 11 95.196 95.196 95.196 

V6 

S 3 2 2 1 66.667 50.000 57.142 
M 766 755 1 11 98.564 99.867 99.211 
L 45 45 9 0 100.000 83.333 90.909 
T 814 802 12 12 98.525 98.525 98.525 

V7 

S 2 1 3 1 50.000 25.000 33.333 
M 688 676 2 12 98.255 99.705 98.975 
L 39 37 10 2 94.871 78.723 86.046 
T 729 714 15 15 97.942 97.942 97.942 

V8 

S 5 4 9 1 80.000 30.769 44.444 
M 882 867 3 15 98.299 99.655 98.972 
L 57 55 6 2 96.491 90.163 93.220 
T 944 926 18 18 98.093 98.093 98.093 

Table 6. Experimental results of the classification stage of videos V6, V7, and V8 using different input 
spaces and classifiers. 

 Classification with the Thresholds and 1D Feature Input Space 
Test Class Input Space TP FP FN Recall Precision F-Measure 

With 
occlusion 
handling 

S 10 9 474 1 90.000 1.863 3.651 
M 2336 1875 63 461 80.265 96.749 87.739 
L 141 39 27 102 27.659 59.090 37.681 

Total 2487 1923 564 564 77.322 77.322 77.322 
 Classification with K-Means and 3D Feature Input Space 

Test Class Input Space TP FP FN Recall Precision F-Measure 

With 
occlusion 
handling 

S 10 10 247 0 100.00 3.891 7.490 
M 2336 2079 23 257 88.998 98.905 93.690 
L 141 117 11 24 82.978 91.406 86.988 

Total 2487 2206 281 281 88.701 88.701 88.701 
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Table 6. Cont. 

 Classification with SVM and 3D Feature Input Space 
Test Class Input Space TP FP FN Recall Precision F-Measure 

With 
occlusion 
handling 

S 16 16 100 0 100.000 13.793 24.242 
M 2333 2214 4 119 94.899 99.819 97.736 
L 138 133 20 5 96.376 86.928 91.408 

Total 2487 2363 124 124 95.014 95.014 95.014 
 Classification with OC-SVM and 3D Feature Input Space 

Test Class Input Space TP FP FN Recall Precision F-Measure 

With 
occlusion 
handling 

S 10 7 14 3 70.000 33.333 45.161 
M 2336 2298 6 38 98.373 99.739 99.051 
L 141 137 25 4 97.163 84.567 90.429 

Total 2487 2442 45 45 98.190 98.190 98.190 
 
Experimental results show that the performance of the classifiers increases when using three 

geometric features. In addition, SVM and OC-SVM classifiers have better performance than K-means. 
By using a single geometric feature, e.g., area, the recall and particularly the F-measure were 77.322%. 
However, using 3D feature input space and OC-SVM, the F-measure achieved a value of 98.190%. 

5. Discussion 

5.1. Test environment  

Eight videos with 4111 manually labelled ground truth vehicles and a duration of more than 61 
min, three places in different countries and under different weather conditions, a mean traffic load of 
up to 1.32 vehicles/s with traffic load peaks from 2 to 4 vehicles/s (see Figure 8), and a vehicle 
occlusion index of up to 0.312. The system performs well and in real time under all these scenarios.  

5.2. Occlusion Handling Algorithm and VOI-Index  

As multiple vehicles will be detected as one due to perspective effects or shadows, an algorithm 
to reduce this occlusion was implemented. This algorithm allows improving the detection rate from 
83.793% to 95.216% (see details in Table A1). FP are produced by various conditions: camera locations 
with high vibration, camera angle, certain morphological operations embedded in the detection 
algorithm and because the occlusion algorithm divides large blobs into two or smaller ones, and some 
of them are not vehicles, see Section 4.2, for details about videos V1–V7. From Tables 3 and 4 we can 
conclude that a VOI-Index = 0 doesn’t mean that the number of FN is equal to 0, but indicates us that 
the algorithm for detection of moving vehicles should be improved.  

5.3. Clustering analysis  

Clustering analysis, e.g., K-means, SVM, OC-SVM, was employed to classify the vehicles into 
three classes: small, midsize, and large. The use of these algorithms in the classification stage allows 
considering all variations in the geometric vehicle features observed in the training data. 

5.4. SVM and OC-SVM  

SVM and OC-SVM were the classifiers with the best performance; OC-SVM achieved a global 
recall and an F-measure of up to 98.525%, and a F-measure of 99.211% for medium size vehicles of video 
V6. The authors consider that the performance differences between SVM and OC-SVM are due to the 
parameters selected. In this work, the values of parameter C and 𝜂𝜂 used to evaluate the SVM classifier 
are {1, 5, 36}  and {0.5, 0.65, 0.95} , respectively. The parameter values for evaluating  
OC-SVM, i.e., 𝜂𝜂  and 𝜐𝜐 , are {1, 10.5, 15}  and {0.001, 0.01, 0.1} , respectively. The misclassification 
cases were due to unsolved occlusions in the detection stage, particularly in those cases where the 
vehicles move bumper-to-bumper. In future work, we will consider improving detection with a more 
efficient occlusion algorithm and other methods for background formation. 
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Behaviors with variations in the perspective views can be observed in video V2 and V3, where 
although the camera position changed 20 ft, only the models generated from video V2 were used for 
the classification stage of both videos, indicating that for certain lateral displacement of the camera, the 
algorithm is robust. In the K-means algorithm, the value of K = 3. Due to the short length of the training 
data for small vehicles, the K-means centroids may be biased; thus, the mean of each geometric feature 
was computed previously, and this information was passed as input to the K-means algorithm.  

5.5 3-D geometric feature space  

With the use of Area, Width, and Width/Height ratio of the bounding box—the classification 
performance was improved with respect to that using only one feature: the area (see Table 6.) The 
geometric features are extracted directly of detected blobs; therefore, the computational cost is lower 
than those achieved with other features proposed in the state-of-the-art, like grey-level co-ocurrence 
matrix, texture coarseness, or Histogram of Oriented Gradients. 

5.6. Real time processing  

The average time to process one image frame in our system is less than 30 ms, which proves that 
our approach can run in real time for videos at 25 fps, and with an average-traffic load of 1.32 vehicles 
per second and peaks of 4 vehicles per second. In general, the higher the traffic load—particularly 
with large size vehicles—the higher the measured congestion is the vehicle occlusion index. 

In this paper, a high-performance computer vision system is proposed for vehicle detection, 
tracking, and OC-SVM classification, which has the following advantages:  

1. For the GMM based detection stage, the system does not require sample training and camera 
calibration. 

2. Except for ROI, lane-dividing lines, the detection line, and the classification line, it requires no 
other initialization. 

3. A proposed simple algorithm reduces occlusions, particularly in those cases where vehicles 
move side by side. 

4. The use of OC-SVM and a 3D geometric feature space for the classification stage. 

6. Conclusions 

A very high-performance vision system with a single static camera, suitable for an IoT Smart 
City, for front- and rear-view moving vehicle detection, tracking, counting, and classification was 
achieved, implemented, and tested. The number and quality of employed metrics outperforms those 
used in most comparable papers.  

The vehicle occlusion index defined here is a measure of how frequent the occlusion is, and how 
well the occlusion-handling algorithm performs its function. Our results support that the lower the 
VOI-Index, the better the performance of the algorithms for detection and classification.  

Experimental results showed that our system performs well in real time with an average traffic 
flow of 1.32 vehicles per second and traffic load peaks from 2 to 4 vehicles/s on a three-lane road. A 
mean processing time of about 75% between two consecutive frames was achieved. The best 
classifiers were with SVM, where OC-SVM with a RBF Kernel successfully classified the vehicles with 
a high performance, e.g., recall, precision, and F-measure of up to 98.190%; and up to 99.051% for the 
midsize class.  

The high performance of this system is due to the use of a 3D geometric feature space with  
side-occlusion handling as an output space of the detection stage (input feature space for the 
classification), the use of OC-SVM with a RBF Kernel in the classification stage, and the classification 
is performed in a specific line of the ROI to reduce intra-class differences of the input space. 

Finally, an extensive test environment is available for researchers. It has eight videos with 4111 
manually labelled ground truth vehicles and a duration of more than 61 min, three places in different 
countries and under different weather conditions, a mean traffic load of up to 1.32 vehicles/s with 
traffic load peaks from 2 to 4 vehicles/s (see Figure 8), and a vehicle occlusion index of up to 0.312.  
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Open Issues remaining after this study include: 

• Develop algorithms for the formation of background with different color spaces and updating 
is crucial for the different stages of traffic surveillance. 

• Develop algorithms for automatic detection of the ROI and the lane-dividing lines. 
• Improve algorithms for occlusion caused by high traffic loads, particularly for large vehicles, to 

increase the detection rate and, consequently, decrease variance of the values of points belonging 
to the input space for tracking and classification, and to characterize the occlusion by metrics. 

• Due to the number of features associated with this problem and the variance of intra-class and 
interclass feature values, the determination of the optimal number of classes for classification 
remains an open issue. 
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Appendix A 

Links to the video processing files uploaded at YouTube. 

V1 https://youtu.be/va0M-2-bobA  
V2 https://youtu.be/SeEhrogzXec  
V3 https://youtu.be/BDGyB7XDV_E  
V4 https://youtu.be/L8rEPmMO4x4  
V5 https://youtu.be/csdjk7hhtcE  
V6 https://youtu.be/FMLTJGlOs1w  
V7 https://youtu.be/CBJ30IUo2x0  
V8 https://youtu.be/XGzb8VbpG2E  

Appendix B 

Table A1 shows the comparison between the results using an occlusion algorithm in the 
detection stage or not for videos V6, V7, and V8. 

Table A1. Experimental results of the detection stage of videos V6, V7, and V8. 

Test Video GT TP FP FN Detection Rate Precision F-Measure 

Without 
occlusion 
handling 

V6 797 653 6 144 81.932 99.089 89.697 
V7 725 624 12 101 86.069 98.113 91.697 
V8 903 755 16 148 83.610 97.924 90.203 

Total 2425 2032 34 393 83.793 98.354 90.492 

https://www.youtube.com/channel/UCxRSnyUEw0BGACo5aPruXng
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Table A1. Cont. 

With occlusion 
handling 

V6 797 761 53 36 95.483 93.488 94.475 
V7 725 686 43 39 94.620 94.101 94.360 
V8 903 862 82 41 95.459 91.313 93.340 

Total 2425 2309 178 116 95.216 92.842 94.014 

Table A2 shows the confusion matrix obtained in the classification stage of videos V6, V7, and 
V8; (a–d) are the confusion matrix of the threshold, K-means, SVM, and OC-SVM methods, 
respectively. 

Table A2. Matrix confusion of the classification stage of videos V6, V7, and V8. 

Threshold K-Means 
 S M L T  S M L T 

S 9 1 0 10 S 10 0 0 10 
M 434 1875 27 2336 M 246 2079 11 2336 
L 40 62 39 141 L 1 23 117 141 
T  2487 T  2487 

(a) (b) 
SVM OC-SVM 

 S M L T  S M L T 
S 16 0 0 16 S 7 3 0 10 
M 99 2214 20 2333 M 13 2298 25 2336 
L 1 4 133 138 L 1 3 137 141 
T  2487 T  2487 

(c) (d) 
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