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Abstract: This paper presents a new optimal data fusion methodology based on the adaptive fading
unscented Kalman filter for multi-sensor nonlinear stochastic systems. This methodology has a
two-level fusion structure: at the bottom level, an adaptive fading unscented Kalman filter based
on the Mahalanobis distance is developed and serves as local filters to improve the adaptability and
robustness of local state estimations against process-modeling error; at the top level, an unscented
transformation-based multi-sensor optimal data fusion for the case of N local filters is established
according to the principle of linear minimum variance to calculate globally optimal state estimation
by fusion of local estimations. The proposed methodology effectively refrains from the influence of
process-modeling error on the fusion solution, leading to improved adaptability and robustness of
data fusion for multi-sensor nonlinear stochastic systems. It also achieves globally optimal fusion
results based on the principle of linear minimum variance. Simulation and experimental results
demonstrate the efficacy of the proposed methodology for INS/GNSS/CNS (inertial navigation
system/global navigation satellite system/celestial navigation system) integrated navigation.

Keywords: multi-sensor data fusion; adaptive fading unscented Kalman filter; process-modeling
error; Mahalanobis distance; linear minimum variance

1. Introduction

With the rapid development of electronics technologies, various sensors have been developed and
applied to many engineering fields such as integrated navigation, target tracking, signal processing,
and networked communications [1–4]. Since the use of multiple sensors provides more accurate
and reliable information than that of a single sensor alone, multi-sensor data fusion has received
considerable attention in recent years. The basic idea of multi-sensor data fusion is to combine the
data obtained from multiple sensors and further associate them with database information to achieve
improved estimation accuracy compared to the use of a single sensor [5,6].

The existing studies on multi-sensor data fusion can be divided into two categories [4,6]. One
is the centralized fusion method, which can achieve a globally optimal state estimation by directly
combining local measurement models to form an augmented measurement model [7,8]. This method
has minimal information loss. However, it causes large computation and communication burdens in
the fusion center due to high-dimension computations and large data memories. Further, it has a poor
robustness and reliability when one sensor is faulty [1,9]. The other is the decentralized fusion method,
which can yield globally optimal or suboptimal state estimations according to certain criteria [9,10].
This method has small computation and communication burdens in the fusion center due to the
decentralized structure. Furthermore, the decentralized structure also enables easy fault detection and

Sensors 2018, 18, 488; doi:10.3390/s18020488 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-0105-9296
http://dx.doi.org/10.3390/s18020488
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 488 2 of 22

isolation. Due to its superiority over the centralized fusion method, the decentralized fusion method
has been extensively used in engineering fields.

The federated Kalman filter (FKF) is a typical example of the decentralized fusion method.
It employs the principle of information sharing for local and global filters, and eliminates the correlation
between local estimations by using the technique of covariance upper bound [11,12]. However, FKF
is only suitable for multi-sensor linear stochastic systems [13,14]. Its fusion accuracy is sharply
deteriorated when applied to multi-sensor nonlinear stochastic systems. In addition, due to the use of
process noise covariance’s upper bound rather than process noise covariance itself, the resultant local
state estimations are at suboptimal level, making the global state estimation also at suboptimal level.
Furthermore, FKF also requires the local estimations resulting from local filters to be independent
initially, which is difficult to implement in practical engineering [4,14,15].

The unscented Kalman filter (UKF) is a promising filtering method to estimate the state of a
nonlinear stochastic system [16,17]. This method can approximate the posterior mean and covariance
of any Gaussian random variable in third-order accuracy by using unscented transformation (UT).
It has advantages of high estimation accuracy, high convergence rate and simple implementation
compared to other nonlinear filtering methods [17,18]. Due to these merits, Hu and Huang [13]
presented an UKF-based FKF (UKF-FKF) by combining UKF with FKF to address the data fusion
problem in multi-sensor nonlinear stochastic systems. This method adopts UKFs as local filters to
calculate local state estimations, avoiding the linearization error of the system model involved in FKF
and improving the estimation accuracy of local filters. However, it still suffers from the problem due
to the use of covariance upper bound in FKF. Further, since UKF is designed based on the condition
that the nonlinear system can be exactly modeled [19–21], UKF-FKF also requires the system model to
be accurate. If the system model of a multi-sensor nonlinear stochastic system involves modeling error,
the performances of local filters in UKF-FKF will be degraded or even divergent, leading to the poor
fusion accuracy.

Currently, the existing multi-sensor data fusion methods are mainly dominated by inhibiting the
influence of covariance upper bound on the fusion accuracy. Chang et al. [22] studied an information
matrix-based distributed fusion Kalman filter. The authors’ group also reported a random weighting
estimation-based multi-sensor optimal data fusion approach and a matrix weighted multi-sensor
data fusion method [23,24]. However, the above studies are mainly focused on multi-sensor linear
stochastic systems. Just recently, the authors’ group reported a UKF-based multi-sensor optimal data
fusion method (UKF-MODF) for multi-sensor nonlinear stochastic systems to inhibit the influence of
covariance upper bound on the fusion solution [14]. This method develops an optimal data fusion
scheme according to the principle of linear minimum variance to overcome the problem due to the use
of covariance upper bound in FKF. It can achieve the globally optimal state estimation for multi-sensor
nonlinear stochastic systems. However, since UKF still serves as local filters to calculate local state
estimations, the estimation accuracy of UKF-MODF also relies on the accuracy of the system model.
Furthermore, the global state estimation process of UKF-MODF is only suitable for the case with two
local filters. It is necessary to provide a process of global state estimation for general cases with N
local filters.

The system model of a nonlinear stochastic system consists of process and measurement models.
In practical applications, the measurement model’s accuracy can be guaranteed by using high-precision
measurement equipment together with plenty of available measurement data [25,26]. However, since
the process model is a theoretical approximation to the real-world dynamic system [26], it inevitably
involves error. In some applications with the preference of computational simplicity and real-time
performance, such an approximation is intended given the complexity of the dynamic environment [25].
Therefore, the process-modeling error is generally considered to be the main source of model error for
a nonlinear stochastic system [25–28].

Adaptive UKF is a strategy to improve the UKF adaptability and robustness against
process-modeling error by adjusting the Kalman gain matrix for state estimation. Song and
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Han presented an adaptive UKF to inhibit the process-modeling error by updating the process
noise covariance via minimization of the difference between computed and actual innovation
covariances [29]. However, this method requires the calculation of partial derivatives, causing a
relatively large computation burden. Meng et al. reported a covariance matching-based adaptive
UKF to make online estimates of and adjust process noise covariance using innovation and residual
sequences [30]. However, this covariance matching technique yields a steady-state estimation error,
leading to a limited improvement in the filtering accuracy [20]. Compared to the above two adaptive
UKFs, the adaptive fading UKF (AFUKF) can effectively inhibit the influence of process-modeling
error on the filtering solution under a modest computation load [27,28]. In this method, when
process-modeling error is detected, an adaptive fading factor is constructed based on innovation vector
and its corresponding statistical information. By using the adaptive fading factor to scale process
noise covariance or predicted state covariance, historical information is less weighted while current
measurement information is more weighted to tune UKF recursively to alleviate the influence of
process-modeling error on the estimation solution [19,28]. Therefore, the introduction of AFUKF
into multi-sensor optimal data fusion provides a solution to improve the adaptability and robustness
of UKF-MODF.

This paper focuses on improvement of our previous work (UKF-MODF) for multi-sensor nonlinear
stochastic systems. It presents a novel multi-sensor optimal data fusion methodology based on
AFUKF to address the UKF-MODF problems, leading to improved adaptability and robustness of
data fusion for multi-sensor nonlinear stochastic systems. This methodology is in a two-level fusion
structure: at the bottom level, an AFUKF based on the Mahalanobis distance is developed and
serves as local filters to improve the adaptability and robustness of local state estimations against
process-modeling error; at the top level, an UT-based multi-sensor optimal data fusion for the case
of N local filters is established according to the principle of linear minimum variance to calculate
globally optimal state estimation via fusion of local estimations. The proposed methodology not only
improves the robustness of multi-sensor data fusion against process-modeling error, but it also achieves
globally optimal fusion results based on the principle of linear minimum variance. Simulations and
practical experiments as well as comparison analysis with FKF, UKF-FKF and UKF-MODF have
been conducted to comprehensively evaluate the performance of the proposed multi-sensor optimal
fusion methodology for INS/GNSS/CNS (inertial navigation system/global navigation satellite
system/celestial navigation system) integrated navigation system.

2. Adaptive Fading UKF Based Multi-Sensor Optimal Data Fusion

The framework of the proposed AFUKF-based multi-sensor optimal data fusion methodology
(AFUKF-MODF) is shown in Figure 1. It has a two-level fusion structure: at the bottom level, an
AFUKF based on the Mahalanobis distance is developed and serves as local filters to improve the
robustness of local state estimations against process-modeling error; at the top level, according to
the principle of linear minimum variance, the UT-based multi-sensor optimal data fusion for the
case of N local filters is established to calculate the globally optimal state estimation by fusion of
local estimations.
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Figure 1. The framework of the proposed AFUKF-based multi-sensor optimal data fusion.

2.1. Local State Estimation

Consider the ith (i = 1, 2, · · · , N) local filter with the following dynamic model{
x(k) = f (x(k− 1)) + w(k)
zi(k) = hi(x(k)) + vi(k)

(1)

where x(k) ∈ Rn is the system state vector; f (·) is the nonlinear state function; w(k) is the process
noise which is commonly assumed as a zero-mean Gaussian white noise with covariance Q ≥ 0;
zi(k) ∈ Rmi is the measurement of the ith local filter; hi(·) is the nonlinear measurement function of
the ith local filter; and vi(k) is the measurement noise of the ith local filter and is commonly assumed
as a zero-mean Gaussian white noise with covariance Ri > 0.

2.1.1. Classical UKF

In order to describe the Mahalanobis distance-based AFUKF clearly, let us briefly review the
classical UKF at first. For the nonlinear system model given by (1), the procedure of the classical UKF
can be summarized as:

Step 1: Initialization {
x̂i(0) = E[xi(0)]

Pi(0) = E
[
(xi(0)− x̂i(0))(xi(0)− x̂i(0))

T
] (2)

Step 2: Time Update

Assume that the state estimate x̂i(k− 1) and the corresponding error covariance matrix Pi(k− 1)
are given, the sigma points are selected as

χ
(i)
j,k−1 = x̂i(k− 1) j = 0

χ
(i)
j,k−1 = x̂i(k− 1) + a

(√
nPi(k− 1)

)
j

j = 1, 2, . . . , n

χ
(i)
j,k−1 = x̂i(k− 1)− a

(√
nPi(k− 1)

)
j−n

j = n + 1, n + 2, . . . , 2n

(3)

where a is a tuning parameter to determine the spread of the sigma points around x̂i(k− 1) and it is
commonly set to a small positive value; and

(√
nPi(k− 1)

)
j

denotes the jth column of the square root

of the matrix nPi(k− 1).
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Calculate the predicted state mean and covariance as

χ
(i)
j,k/k−1 = f (χ(i)

j,k−1) (j = 0, 1, . . . , 2n) (4)

x̂i(k/k− 1) =
2n

∑
j=0

ωjχ
(i)
j,k/k−1 (5)

Pi(k/k− 1) =
2n

∑
j=0

ωj(χ
(i)
j,k/k−1 − x̂i(k/k− 1))(χ(i)

j,k/k−1 − x̂i(k/k− 1))
T
+ Q (6)

where

{
ωj = 1− 1

a2 , j = 0
ωj =

1
2na2 , j = 1, 2, · · · , 2n

.

Step 3: Sigma Point Update

Select a set of new sigma points with the mean x̂i(k/k− 1) and the covariance Pi(k/k− 1)
χ′

(i)
j,k/k−1 = x̂i(k/k− 1), j = 0

χ′
(i)
j,k/k−1 = x̂i(k/k− 1) +

(
a
√

nPi(k/k− 1)
)

j
, j = 1, 2, . . . , n

χ′
(i)
j,k/k−1 = x̂i(k/k− 1)−

(
a
√

nPi(k/k− 1)
)

j−n
, j = n + 1, n + 2, . . . , 2n

(7)

Step 4: Measurement Update

The weighted mean and covariance of the predicted measurement are computed by

γ
(i)
j,k/k−1 = h(χ′(i)j,k/k−1) (8)

ẑi(k/k− 1) =
2n

∑
j=0

ωjγ
(i)
j,k/k−1 =

2n

∑
j=0

ωjh(χ′
(i)
j,k/k−1) (9)

Pi(ẑi(k/k− 1)) =
2n

∑
j=0

ωj

(
γ
(i)
j,k/k−1 − ẑi(k/k− 1)

)(
γ
(i)
j,k/k−1 − ẑi(k/k− 1)

)T
+ Ri (10)

Subsequently, the state estimate and associated error covariance matrix are updated as

Pi(x̂i(k/k− 1)ẑi(k/k− 1)) =
2n

∑
j=0

ωj

(
χ
(i)
j,k/k−1 − x̂i(k/k− 1)

)(
γ
(i)
j,k/k−1 − ẑi(k/k− 1)

)T
(11)

Ki(k) = Pi(x̂i(k/k− 1)ẑi(k/k− 1))P−1
i (ẑi(k/k− 1)) (12)

x̂i(k) = x̂i(k/k− 1) + Ki(k)(zi(k)− ẑi(k/k− 1)) (13)

Pi(k) = Pi(k/k− 1)−Ki(k)Pi(ẑi(k/k− 1))KT
i (k) (14)

Step 5: Get back to Step 2 for the next sample until all samples are processed.

2.1.2. Mahalanobis Distance Based Adaptive Fading UKF

The Mahalanobis distance of innovation vector, which is based on hypothesis testing theory, is
commonly used as a measure to identify system modeling error for Gaussian systems [27,31]. This
paper adopts the Mahalanobis distance into AFUKF and further develop a Mahalanobis distance-based
AFUKF to improve the adaptability and robustness of the classical UKF against process-modeling
error for multi-sensor nonlinear stochastic systems.
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Define the innovation vector of the ith local filter as

z̃i(k) = zi(k)− ẑi(k/k− 1) (15)

For the nonlinear Gaussian system given by (1), z̃i(k) should obey the zero-mean Gaussian
distribution with the covariance

Pi(ẑi(k/k− 1)) =
2n

∑
j=0

ωj

(
γ
(i)
j,k/k−1 − ẑi(k/k− 1)

)(
γ
(i)
j,k/k−1 − ẑi(k/k− 1)

)T
+ Ri (16)

Thus, the square of the Mahalanobis Distance of the innovation vector should obey the chi-square
distribution with mi degrees of freedom [27,31], i.e.,

M2
i (k) = z̃T

i (k)(Pi(ẑi(k/k− 1)))−1z̃i(k) ∼ χ2
mi

(17)

where mi is the dimension of the measurement in the ith local filter.
According to the hypothesis testing theory, for a given significance level α, we have

P(M2
i (k) ≤ χ2

mi ,α) = 1− α (0 < α ≤ 1) (18)

where P(·) represents the probability of a random event.
If (18) holds, this means the system works under the optimal condition, i.e., the nonlinear

multi-sensor system described by (1) does not have process-modeling error. However, if (18) does
not hold, it can be concluded with high probability that there exists process-modeling error in the
multi-sensor system (1). In this case, AFUKF incorporates a time-varying adaptive fading factor into
the predicted state covariance matrix to refrain from the influence of prior knowledge of the current
state estimate. Thus, the predicted state covariance matrix in AFUKF is modified as

P∗i (k/k− 1) = λi
k

(
2n

∑
j=0

ωj(χ
(i)
j,k/k−1 − x̂i(k/k− 1))(χ(i)

j,k/k−1 − x̂i(k/k− 1))
T
+ Q

)
(19)

Introduce the adaptive fading factor λi
k to the predicted state covariance matrix such that (18)

holds. Thus, we have the following equation

gi(λ
i
k) = z̃T

i (k)(P
∗
i (ẑi(k/k− 1)))−1z̃i(k)− χ2

mi ,α = 0 (20)

where P∗i (ẑi(k/k − 1)) is the measurement prediction covariance matrix calculated by using
P∗i (k/k− 1).

It can be seen from (20) that the determination of the adaptive fading factor λi
k is a problem of

solving the nonlinear equation. Since the derivative of gi(λ
i
k) with respect to λi

k is difficult to calculate,
the traditional Newton’s method cannot be used to solve the nonlinear Equation (20). In this paper,
a chord secant method [32,33] is adopted to iteratively determine the adaptive fading factor λi

k by
solving the nonlinear Equation (20). Thus, we have

λi
k(t + 1) = λi

k(t)−
gi(λ

i
k(t))[λ

i
k(t)− λi

k(t− 1)]

gi(λ
i
k(t))− gi[λ

i
k(t− 1)]

, (t = 1, 2, · · · ) (21)

where t represents the iteration time.
Substituting (20) into (21) yields

λi
k(t + 1) = λi

k(t)−
[Mi

k(λ
i
k(t))− χ2

mi ,α][λ
i
k(t)− λi

k(t− 1)]

Mi
k(λ

i
k(t))−Mi

k(λ
i
k(t− 1))

, (t = 1, 2, · · · ) (22)
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where Mi
k(λ

i
k(t)) = z̃T

i (k)
(
P∗i (ẑi(k/k− 1))

)−1z̃i(k).
The above iterative process to determine the adaptive fading factor λi

k is initialized as λi
k(1) = 1

and λi
k(0) = 0. It will be terminated when the criterion Mi

k[λ
i
k(t)] ≤ χ2

mi ,α is satisfied. The calculation
process of the Mahalanobis distance-based AFUKF can be summarized as:

Step 1: Initialization

Initiate the Local filters by presetting the x̂i(0) and Pi(0) as (2).
Step 2: Local Filtering

(i) Conduct the classical UKF procedures (3)–(10) and calculate the Mi
k[λ

i
k(t)].

(ii) If Mi
k[λ

i
k(t)] ≤ χ2

mi ,α,

• Perform the classical UKF procedures (11)–(14) to compute the local state estimations.

Else,

• Determine the adaptive fading factor λi
k by iteratively computing (22) until the

criterion Mi
k[λ

i
k(t)] ≤ χ2

mi ,α is satisfied.

• Then, replace the predicted state covariance matrix Pi(k/k − 1) of the classical
UKF with the modified type P∗i (k/k− 1) as described by (19).

• Complete the classical UKF procedures (7)–(14) to update the local
state estimations.

(iii) Repeat Steps (i) and (ii) for the next sample.

Step 3: Complete the local state estimations until all samples are processed.

Each local filter is performed in a parallel manner to generate the local state estimation x̂i(k) and
the corresponding error covariance Pi(k) (i = 1, 2, · · · , N) by using the Mahalanobis distance-based
AFUKF. After this, these local state estimations will be further fused by the UT-based data fusion
method, which is to be described in the next section, to obtain the globally optimal state estimation.

2.2. Global State Estimation

Suppose that the local state estimation achieved by the ith (i = 1, 2, · · · , N) local filter is x̂i(k).
According to the linear weighting fusion criterion, the globally optimal state estimation can be
described as the following form

x̂∗(k) =
N

∑
i=1

αix̂i(k) (23)

N

∑
i=1

αi = In (24)

where αi (i = 1, 2, · · · , N) is the weighting matrix to be determined; and In represents an n-dimensional
identity matrix.

Based on the principle of linear minimum variance, the globally optimal state estimation x̂∗(k)
should satisfy the following conditions [14,24]:

Condition 1. x̂∗(k) must be the unbiased estimation of x(k), i.e., E{x̂∗(k)− x(k)} = 0.

Condition 2. x̂∗(k) makes tr{P∗(k)} minimum, where P∗(k) is the error covariance matrix of x̂∗(k), and
tr{·} is the trace operator.

Theorem 1. Denote the local state estimation achieved by the ith (i = 1, 2, · · · , N) local filter by x̂i(k),
and its corresponding error covariance matrix by Pii(k) (i.e., Pi(k), i = 1, 2, . . . , N in the local filters). The
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cross-covariance matrix between the state estimation errors of x̂i(k) and x̂j(k) is Pij(k) (i, j = 1, 2, . . . , N;
i 6= j). Define (Σ(k))ij = Pij(k) ∈ Rn×n (i, j = 1, 2, . . . , N), E = [In, In, . . . , In]

T ∈ RnN×n and α =

[α1, α2, . . . , αN ]
T ∈ RnN×n. Based on the principle of linear minimum variance, the globally optimal state

estimation x̂∗(k) is obtained as

x̂∗(k) =
N

∑
i=1

αix̂i(k) (25)

where αi (i = 1, 2, · · · , N) is given by

α = Σ−1(k)E
[
ET

Σ−1(k)E
]−1

(26)

Proof. As E{x̂i(k)− x(k)} = 0, taking the expectation of (25) and considering the relation
N
∑

i=1
αi = In,

we can obtain

E(x̂∗(k)) =
N

∑
i=1

αiE(x̂i(k)) = x(k) (27)

It can be seen from (27), x̂∗(k) obtained by (25) is the unbiased estimation of x(k).
Now let us consider Condition 2 to derive the globally optimal state estimation x̂∗(k). Define the

estimation error of the local state estimation x̂i(k) (i = 1, 2, . . . , N) as

x̃i(k) = x(k)− x̂i(k) (28)

Thus, the estimation error of x̂∗(k) is described as

x̃∗(k) = x(k)− x̂∗(k) =
N

∑
i=1

αix̃i(k) (29)

According to (29), the error covariance matrix of x̂∗(k) is

P∗(k) = αTΣ(k)α (30)

Applying the Lagrange multiplier to solve the minimum of tr{P∗(k)}, the Lagrange function is
defined as

L = tr{P∗(k)}+ tr
{

Λ
[
αTE− In

]}
(31)

where Λ ∈ Rn×n is the Lagrange multiplier.
Taking the partial derivative of (31) with respect to α and letting it to be zero, we have

Σ(k)α +
1
2

EΛ = 0 (32)

Combining
N
∑

i=1
αi = In with (32), we readily have

[
Σ(k) E
ET 0

][
α

1
2 Λ

]
=

[
0
In

]
(33)

By solving (33), it is verified that

[
α

1
2 Λ

]
=

[
Σ(k) E
ET 0

]−1[
0
In

]
=

 Σ−1(k)E
[
ET

Σ−1(k)E
]−1

−
[
ET

Σ−1(k)E
]−1

 (34)
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Form (34), we have

α = Σ−1(k)E
[
ET

Σ−1(k)E
]−1

(35)

The proof of Theorem 1 is completed.

It can be seen from (25) and (26), in order to calculate the global optimal state estimation x̂∗(k), it
is necessary to predetermine the matrix Σ(k). In the matrix Σ(k), Pii(k)(i = 1, 2, . . . , N) can be directly
determined by the error covariance matrix of the state estimation in the ith local filter. However, it is
difficult to calculate the cross-covariance matrix Pij(k) between the state estimation errors of x̂i(k) and
x̂j(k). This paper adopts the UT concept to approximate Pij(k), and the derivation process is shown in
Theorem 2.

Theorem 2. For the multi-sensor system given by (1), the cross-covariance matrix Pij(k) between the estimation
errors of local state estimations x̂i(k) and x̂j(k) (i, j = 1, 2, . . . , N; i 6= j) is computed as

Pij(k) =
2n
∑

s=0
ωs(χ

(i)
s,k/k−1 − x̂i(k/k− 1))(χ(j)

s,k/k−1 − x̂j(k/k− 1))
T

−
[

2n
∑

s=0
ωs(χ

(i)
s,k/k−1 − x̂i(k/k− 1))(γ(j)

s,k/k−1 − ẑj(k/k− 1))
T
]

KT
j (k)

−Ki(k)
[

2n
∑

s=0
ωs(γ

(i)
s,k/k−1 − ẑi(k/k− 1))(χ(j)

s,k/k−1 − x̂j(k/k− 1))
T
]

+Ki(k)
[

2n
∑

s=0
ωs(γ

(i)
s,k/k−1 − ẑi(k/k− 1))(γ(j)

s,k/k−1 − ẑj(k/k− 1))
T
]

KT
j (k)

(36)

where χ
(i)
s,k/k−1 denotes the sigma point transformed by the nonlinear function f (·) in (4) for the ith local filter;

γ
(i)
s,k/k−1 denotes the sigma point transformed by the nonlinear function hi(·) in (8) for the ith local filter; and

s = 0, 1, · · · , 2n represents the order of the transformed sigma points.

Proof. Define the estimation error of the ith local filter as

x(k) −x̂i(k)
= x(k)− [x̂i(k/k− 1) + Ki(k)(zi(k)− ẑi(k/k− 1))]
= (x(k)− x̂i(k/k− 1))−Ki(k)(zi(k)− ẑi(k/k− 1))

(37)

Then, it is verified from (37)

Pij(k) = E
{
[x(k)− x̂i(k)]

[
x(k)− x̂j(k)

]T}
= E{[(x(k)− x̂i(k/k− 1))−Ki(k)(zi(k)− ẑi(k/k− 1))][(

x(k)− x̂j(k/k− 1)
)
−Kj(k)

(
zj(k)− ẑj(k/k− 1)

)]T}
= E

{
[(x(k)− x̂i(k/k− 1))]

[(
x(k)− x̂j(k/k− 1)

)]T}
−E
{
[(x(k)− x̂i(k/k− 1))]

[(
zj(k)− ẑj(k/k− 1)

)]T}KT
j (k)

−Ki(k)E
{
[(zi(k)− ẑi(k/k− 1))]

[(
x(k)− x̂j(k/k− 1)

)]T}
+Ki(k)E

{
[(zi(k)− ẑi(k/k− 1))]

[(
zj(k)− ẑj(k/k− 1)

)]T}KT
j (k)

(38)
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Based on the tranformated sigma points χ
(i)
s,k/k−1 and γ

(i)
s,k/k−1 (i = 1, 2, · · · , N), Pij(k) can be

approximated by using UT

Pij(k) =
2n
∑

s=0
ωs(χ

(i)
s,k/k−1 − x̂i(k/k− 1))(χ(j)

s,k/k−1 − x̂j(k/k− 1))
T

−
[

2n
∑

s=0
ωs(χ

(i)
s,k/k−1 − x̂i(k/k− 1))(γ(j)

s,k/k−1 − ẑj(k/k− 1))
T
]

KT
j (k)

−Ki(k)
[

2n
∑

s=0
ωs(γ

(i)
s,k/k−1 − ẑi(k/k− 1))(χ(j)

s,k/k−1 − x̂j(k/k− 1))
T
]

+Ki(k)
[

2n
∑

s=0
ωs(γ

(i)
s,k/k−1 − ẑi(k/k− 1))(γ(j)

s,k/k−1 − ẑj(k/k− 1))
T
]

KT
j (k)

(39)

The proof of Theorem 2 is completed.

3. Performance Evaluation and Discussion

A prototype system of INS/GNSS/CNS integration was implemented using the proposed
AFUKF-MODF. Simulations and experiments as well as comparison analysis with FKF, UKF-FKF [13],
and UKF-MODF [14] were conducted to comprehensively evaluate the performance of the
proposed AFUKF-MODF.

3.1. System Model of INS/GNSS/CNS Integration

Fundamentally, INS/GNSS/CNS integration generates navigation solutions by utilizing the
high-precision GNSS position and velocity to correct the INS velocity and position errors and utilizing
the high-precision CNS attitude to correct the INS attitude error.

3.1.1. Process Model

The process model of the INS/GNSS/CNS integrated navigation system is established by
combining the INS error equations with the inertial measurement unit (IMU) error equations.

The navigation frame (n-frame) is selected as the E-N-U (East-North-Up) geography frame
(g-frame). Denote the inertial frame by i, the earth frame e, the body frame b and the INS simulated
actual platform frame n′. The system state vector is defined as

x(t) = [φE, φN , φU , δvE, δvN , δvU , δL, δλ, δh, εb
x, εb

y, εb
z,∇b

x,∇b
y,∇b

z]
T

(40)

where (φE, φN , φU) is the attitude error, (δvE, δvN , δvU) the velocity error, (δL, δλ, δh) the position error,(
εb

x, εb
y, εb

z

)
the gyro constant drift, and

(
∇b

x,∇b
y,∇b

z

)
the accelerometer zero-bias.

The nonlinear attitude and velocity error equations are given as [34,35]
.

φ = C−1
ω [(I− Cn′

n )ω̂n
in + Cn′

n δωn
in − Cn′

b δωb
ib]

δ
.
vn

= δgn + [I− (Cn′
n )

T
]Cn′

b f̂ b + Cn
b δfb−

(2ω̂n
ie + ω̂n

en)× δvn − (2δωn
ie + δωn

en)× vn

(41)

where φ = (φE, φN , φU)
T and δvn = (δvE, δvN , δvU)

T; vn = (vE, vN , vU)
T is the velocity of the vehicle

in n-frame; Cn′
n , Cn′

b and Cn
b are the rotation matrices; δgn is the gravity error; f̂b

is the measured specific
force in the b-frame, and it is composed of accelerometer zero-bias ∇b and its white noise ωb

a ; δfb is the
corresponding error; δωb

ib is the measurement error of the gyro, which is composed of gyro constant
drift εb and its white noise ωb

g; ωn
ie is the rotational angular velocity of the earth; ωn

en is the angular
velocity of the vehicle relative to the earth; ωn

in = ωn
ie + ωn

en is the relative rotational angular velocity
between the n-frame and i-frame; ω̂n

ie, ω̂n
en and ω̂n

in are the actual values of ωn
ie, ωn

en and ωn
in in the
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n′-frame; and δωn
ie, δωn

en and δωn
in represent the corresponding errors. The above parameters can be

calculated as 

ωn
ie =

[
0 ωie cos L ωie sin L

]T

δωn
ie =

[
0 −δLωie sin L δLωie cos L

]T

ωn
en =

[
− vN

RM+h
vE

RN+h
vE tan L
RN+h

]T

δωn
en =


− δvN

RM+h + δh vN
(RM+h)2

δvE
RN+h − δh vE

(RN+h)2

δvE tan L
RN+h + δLvx sec L2

RN+h − δh vE sec L
(RN+h)2


(42)

where L and h represent the latitude and altitude of the vehicle; and RM and RN are the median radius
and normal radius.

C−1
ω is computed as

C−1
ω =

1
cos φE

 cos φN cos φE 0 sin φN cos φE
sin φN sin φE cos φE − cos φN sin φE
− sin φN 0 cos φN

 (43)

The position error equation of INS is described by [36]
δ

.
L = δvN

RM+h − δh vN
(RM+h)2

δ
.
λ = δvE sec L

RN+h + δL vE tan L sec L
RN+h − δh vE sec L

(RN+h)2

δ
.
h = δvU

(44)

The gyro constant drift εb and accelerometer zero-bias ∇b are commonly described as random
constants [14,30], i.e.,

.
ε

b
i = 0 (i = x, y, z) (45)

.
∇

b
i = 0 (i = x, y, z) (46)

According to the selected system state vector, the process model of the INS/GNSS/CNS
integration can be established by combining (41)–(46)

.
x(t) = f (x(t)) + w(t) (47)

where f (·) is a nonlinear function describing the system state equation in continuous form; and

w(t) =
[(
−C−1

ω Cn′
b ωb

a

)T
,
(

Cn
b ωb

g

)T
, 01×9

]T
is the process noise vector.

By discretizing (47) with the improved Euler formulation [37], the discrete-time process model of
the INS/GNSS/CNS integration is obtained as

x(k) = f (x(k− 1)) + w(k) (48)

where f (·) is a nonlinear function describing the system state equation in discrete form; and w(k) is
the discrete-time process noise vector.

3.1.2. Measurement Model of INS/GNSS Subsystem

Take the difference between INS and GNSS in terms of velocity and position as the measurement
of the INS/GNSS subsystem, i.e.,



Sensors 2018, 18, 488 12 of 22

z1(k) =
[

vEI − vEG vNI − vNG vUI − vUG LI − LG λI − λG hI − hG

]T
(49)

where (vEI , vNI , vUI)
T and (LI , λI , hI)

T are the velocity and position output by INS; and
(vEG, vNG, vUG)

T and (LG, λG, hG)
T are the velocity and position achieved by GNSS.

Then, the measurement model of the INS/GNSS subsystem can be described as [11,24]

z1(k) = H1(k)x(k) + v1(k)

=

[
Hv(k)
HP(k)

]
x(k) +

[
vv(k)
vP(k)

]
(50)

where Hv(k) = [03×3, I3×3, 03×9], HP(k) = [03×6, diag(RM, RN cos L, 1), 03×6]; and vv(k) and vP(k) are
the measurement noises, which correspond to the velocity and position errors of GNSS, respectively.

3.1.3. Measurement Model of INS/CNS Subsystem

CNS provides high-precise attitude information for a vehicle through the star sensor. Take the
difference between INS and CNS in terms of attitude as the measurement of the INS/CNS
subsystem, i.e.,

z2(k) =
[

φEI − φEC φNI − φNC φUI − φUC

]
(51)

where (φEI , φNI , φUI)
T and (φEC, φNC, φUC)

T are the attitude information obtained by INS and
CNS, respectively.

Accordingly, the measurement model of the INS/CNS subsystem is constructed as [11,24]

z2(k) = H2(k)x(k) + v2(k) (52)

where H2(k) = [I3×3, 03×12], and v2(k) is the measurement noise corresponding to the measurement
error of the star sensor.

The INS/GNSS/CNS integrated navigation system is a multi-sensor nonlinear system with
2 local filters (N = 2). The nonlinear system model, which is generally described by (1), is now specified
by (48), (50) and (52) for the specific INS/GNSS/CNS integrated navigation system. The system
models of the INS/GNSS and INS/CNS subsystems are described by (48) and (50), and (48) and (52),
respectively. Based on these, the AFUKF based on Mahalanobis distance described in Section 2.1.2
serves as the local filters to calculate the local state estimations of the INS/GNSS and INS/CNS
subsystems. Subsequently, both local state estimations of the INS/GNSS and INS/CNS subsystems
are fused by the UT-based multi-sensor optimal data fusion described in Section 2.2 to calculate the
globally optimal state estimation for the INS/GNSS/CNS integration.

3.2. Simulations and Analysis

Monte Carlo simulations were conducted to comprehensively evaluate the performance of the
proposed AFUKF-MODF for the dynamic flight of an unmanned aerial vehicle (UAV) using the
INS/GNSS/CNS integration for navigation and positioning. The flight trajectory, which involves
various maneuvers such as climbing, pitching, rolling and turning, is shown in Figure 2. The simulation
parameters are listed in Table 1. Both filtering period and fusion period were 1 s. The Monte Carlo
simulations were carried out 100 times.
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Figure 2. Flight trajectory of the UAV.

Table 1. Simulation parameters.

Parameters Values

Initial parameters
Initial position (longitude-latitude-altitude) (108.997◦, 34.246◦, 5000 m)
Initial velocity (east-north-up) (0 m/s, 150 m/s, 0 m/s)
Initial attitude (pitch-roll-yaw) (0◦, 0◦, 0◦)

Initial parameter errors
Initial position error (longitude-latitude-altitude) (10 m, 10 m, 15 m)
Initial velocity error (east-north-up) (0.4 m/s, 0.4 m/s, 0.4 m/s)
Initial attitude error (pitch-roll-yaw) (1′, 1′, 1.5′)

INS parameters

Gyro parameters
Constant drift 0.1 ◦/h
Random walk coefficient 0.05 ◦/√h
Sampling frequency 20 Hz

Accelerometer parameters
Zero-bias 1 × 10−3 g
Random walk coefficient 1 × 10−4 g×√s
Sampling frequency 20 Hz

GNSS parameters

Horizontal position error (RMS) 5 m
Altitude error (RMS) 8 m
Velocity error (RMS) 0.05 m/s
Data update rate 1 Hz

CNS parameters Attitude error (RMS) 5”
Data update rate 1 Hz

Simulation time 1000 s

The initial state error covariances and process noise covariance for the local filters are set as

Pi(0) = diag
[
(1′)2, (1′)2, (1.5′)2, (0.4 m/s)2I3×3, (10 m)2, (10 m)2, (15 m)2, (0.1◦/h)2I3×3,

(1× 10−3 g)2I3×3

]
(i = 1, 2)

(53)

Q = diag
[(

0.05◦/
√

h
)2

I3×3,
(

1× 10−4 g ·
√

s
)2

I3×3, 09×9

]
(54)

However, Pi(0) (i = 1, 2) and Q were enlarged to the twice of their initial values for both FKF and
UKF-FKF to eliminate the correlation between the two local state estimations by the use of covariance
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upper bound. Moreover, the process model of the INS/GNSS/CNS integration should be linearized in
local fitering processes for the FKF.

The measurement noise covariances are set as

R1 = diag
[
(0.05 m/s)2I3×3, (5 m)2, (5 m)2, (8 m)2

]
(55)

R2 = (5′′ )2I3×3 (56)

In order to evaluate the performance of the proposed AFUKF-MODF in terms of process-modeling
error, the following process-modeling error is introduced to the process model of the INS/GNSS/CNS
integration during the time interval from 400 s to 600 s

∆x = [01×3, 0.02 m/s, 0.02 m/s, 0.02 m/s,
(

2× 10−6
)′

,
(

2× 10−6
)′

, 5 m, 01×6]
T

(57)

Accordingly, the process model used in the local filters is{
x(k) = f (x(k− 1)) + w(k) , other time intervals
x(k) = f (x(k− 1)) + ∆x + w(k) , (400 s, 600 s)

(58)

To identify the above process-modeling error, χ2
m1,α and χ2

m2,α used in the proposed AFUKF-MODF
for the INS/GNSS subsystem and INS/CNS subsystem were chosen as 12.592 and 7.815, respectively.
These values are resulted from the χ2 distribution when the reliability level is 95% (α = 0.05) and the
degrees of freedom are 6 and 3, respectively.

For comparison analysis, simulation trials were conducted at the same conditions by using FKF,
UKF-FKF, UKF-MODF and AFUKF-MODF, respectively. Moreover, the overall estimation error is
adopted to evaluate the navigation accuracy in the simulation analysis for the four fusion methods.
It is defined as the norm of the navigation parameters estimation error [38]

‖∆x‖ =
√

∆x2
E + ∆x2

N + ∆x2
U (59)

where ∆xE, ∆xN and ∆xU are the components of ∆x in East, North and Up, respectively.
Figures 3–5 depict the root mean squared errors (RMSEs) of overall attitude errors, velocity errors

and position errors by the above four fusion methods, respectively. During the time intervals (0 s, 400
s) and (600 s, 1000 s) without process-modeling error involved, FKF has poor navigation accuracy
compared to UKF-FKF, UKF-MODF and AFUKF-MODF. Its estimation RMSEs in attitude, velocity
and position are around 0.2010′, 0.2084 m/s and 15.1129 m. This is because the use of covariance upper
bound and the linearization of the system model cause suboptimal fusion performance. UKF-FKF
adopts UKF to calculate the local state estimations, thus effectively refraining from the error caused by
the linearization of system model and leading to the improved fusion accuracy. Its estimation RMSEs in
attitude, velocity and position are around 0.1844′, 0.1647 m/s and 13.1980 m. However, due to the use
of covariance upper bound, the fusion results of UKF-FKF are still suboptimal. Different to FKF and
UKF-FKF, both UKF-MODF and AFUKF-MODF are directly derived based on the principle of linear
minimum variance, avoiding the use of covariance upper bound in the local filters. Thus, the fusion
results obtained by both UKF-MODF and AFUKF-MODF are globally optimal, which are much more
accurate than those by FKF and UKF-FKF. The estimation RMSEs in attitude, velocity and position
are around 0.1612′, 0.1155 m/s and 10.6099 m for UKF-MODF, and 0.1643′, 0.1176 m/s and 10.7212 m
for AFUKF-MODF. Moreover, since there is no process-modeling error identified, the proposed
AFUKF-MODF does not incorporate the adaptive fading factor into the local estimation processes.
Accordingly, its navigation accuracy is close to that of UKF-MODF during these time intervals.
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Figure 4. The RMSEs of overall velocity errors obtained by FKF, UKF-FKF, UKF-MODF and
AFUKF-MODF for the simulation case.

During the time interval (400 s, 600 s), due to the influence of the introduced process-modeling
error, the navigation accuracy of FKF, UKF-FKF and UKF-MODF degrades seriously. This is because
these three methods do not have the ability to resist the influence of process-modeling error on the
fusion solution. The estimation RMSEs in attitude, velocity and position are around 0.2319′, 0.2471 m/s
and 17.8467 m for FKF; 0.2078′, 0.1917 m/s and 15.2703 m for UKF-FKF; and 0.1887′, 0.1472 m/s and
13.1225 m for UKF-MODF. In contrast, the proposed AFUKF-MODF has higher navigation accuracy
than FKF, UKF-FKF and UKF-MODF during this time interval. Its estimation RMSEs in attitude,
velocity and position are around 0.1702′, 0.1280 m/s and 11.5798 m. This is because the proposed
AFUKF-MODF can identify the process-modeling error according to the hypothesis testing theory and
effectively refrain from the influence of process-modeling error on the fusion solution by adjusting the
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time-varying adaptive fading factor incorporated in the predicted state covariance matrix, leading to a
strong adaptability and robustness.
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Figure 5. The RMSEs of overall position errors obtained by FKF, UKF-FKF, UKF-MODF and
AFUKF-MODF for the simulation case.

The mean RMSEs of the over attitude errors, velocity errors and position errors obtained by
FKF, UKF-FKF, UKF-MODF and AFUKF-MODF for the time interval (400 s, 600 s) and the other time
intervals are listed in Table 2. The results in Table 2 also verify that the proposed AFUKF-MODF has
a better adaptability and robustness than the other methods, thus leading to improved navigation
accuracy for the INS/GNSS/CNS integration.

Table 2. Mean RMSEs of the overall estimation errors obtained by FKF, UKF-FKF, UKF-MODF and
AFUKF-MODF for the simulation case.

Data fusion Methods Navigation Errors
Mean RMSE

(400 s, 600 s) The Other Time Intervals

FKF
Attitude error (′) 0.2319 0.2010

Velocity error (m/s) 0.2471 0.2084
Position error (m) 17.8467 15.1129

UKF-FKF
Attitude error (′) 0.2078 0.1844

Velocity error (m/s) 0.1917 0.1647
Position error (m) 15.2703 13.1980

UKF-MODF
Attitude error (′) 0.1887 0.1612

Velocity error (m/s) 0.1472 0.1155
Position error (m) 13.1225 10.6099

AFUKF-MODF
Attitude error (′) 0.1702 0.1643

Velocity error (m/s) 0.1280 0.1176
Position error (m) 11.5798 10.7212

The above simulations and analysis demonstrate that the proposed AFUKF-MODF can overcome
the limitation of using covariance upper bound and provide globally optimal fusion results. It can also
enhance the adaptability and robustness against process-modeling error to overcome the limitation of
UKF-MODF, thus leading to higher navigation accuracy than FKF, UKF-FKF and UKF-MODF in the
presence of process-modeling error.
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3.3. Experiments and Analysis

Practical experiments were also conducted to evaluate the performance of the proposed
AFUKF-MODF by observing the flight of an UAV. As shown in Figure 6, the UAV uses an
INS/GNSS/CNS integration system for navigation. This navigation system includes a MTi-100
IMU, a Hemisphere P307 BDS/GNSS receiver and a SODERN SED26 star sensor. The main parameters
of the above three devices are listed in Tables 3–5. Moreover, another Hemisphere P370 BDS/GNSS
receiver, which was placed at a local reference station (around 1km from the initial UAV position),
was used along with the one mounted on the UAV to provide the differential GPS (DGPS) data. The
maximal distance between the UAV and local reference station was less than 60 km to achieve the
position accuracy of less than 0.1 m from the DGPS via post difference processing. The DGPS data were
used as the reference values to evaluate the positioning error of the INS/GNSS/CNS integrated system.

Sensors 2018, 18, x FOR PEER REVIEW  17 of 21 

 

Table 4. Main parameters of Hemisphere P307 BDS/GNSS receiver. 

Feature Parameters Values
Satellite signals BDS(B1, B2, B3), GPS(L1, L2), GLONASS(G1, G2) 

Horizontal position error (RMS) 1.2 m 
Altitude error (RMS) 3 m 
Velocity error (RMS) 0.02 m/s 

Data update rate 20 Hz 

Table 5. Main parameters of SODERN SED26 star sensor. 

Feature Parameters Values
Field of view (FOV) 15.437° × 15.437° (Wide FOV) 

Observable star number  6 
Attitude error (RMS) 5  

Data update rate 10 Hz 

 

Figure 6. Navigation setup of the UAV. 

The UAV flight test was conducted at the City of Yanliang in Shaanxi, China. The experimental 
navigation data were selected from the UAV flight test within a continuous time period of 1000 s, 
where different maneuvers were involved. Within the selected UAV flight test, the UAV initial 
position was at East longitude 109.217 , North latitude 34.647  and altitude 3525 m. The UAV initial 
velocity was 180 m/s, 150 m/s and 50 m/s in East, North and Up, respectively. The other initial 
parameters were set identically to those in the simulation case. The filtering periods of the local filters, 
i.e., the INS/GNSS and INS/CNS subsystems, were 1 s. The period for fusion of local state estimations 
was also 1 s. 

Due to the complexity of the dynamic flight environment, the process model of the 
INS/GNSS/CNS integration involves modeling error during the UAV flight process. Figure 7 
illustrates the UAV position errors obtained by FKF, UKF-FKF, UKF-MODF and AFUKF-MODF, 
respectively. As shown in Figure 7, the position error achieved by FKF is relatively large due to the 
influence of process-modeling error, the use of the covariance upper bound and the linearization of 
the process model. During the time period (100 s, 1000 s), the position errors in longitude, latitude 
and altitude for FKF are within (−23.0174 m, 20.7557 m), (−21.7712 m, 20.6464 m) and (−26.7975 m, 
27.7306 m), respectively. UKF-FKF improves the fusion accuracy of FKF by adopting UKF to calculate 
the local state estimations, leading to the longitude, latitude and altitude errors within (−15.1817 m, 
16.5516 m), (−16.5740 m, 15.9417 m) and (−21.8423 m, 24.0462 m). UKF-MODF can provide globally 
optimal fusion results based on the principle of linear minimum variance. Thus, it has higher 
navigation accuracy than FKF and UKF-FKF, leading to the longitude, latitude and altitude errors 
within (−12.0942 m, 11.8042 m), (−12.0311 m, 12.2480 m) and (−16.9458 m, 15.9384 m). However, its 
position error curve still has pronounced oscillations due to the influence of the process-modeling 

Figure 6. Navigation setup of the UAV.

Table 3. Noise parameters of MTi-100 IMU.

Noise Parameters Values

Gyro Constant drift 10◦/h
Random walk coefficient 0.6◦/

√
h

Accelerometer
Zero-bias 40 µg

Random walk coefficient 80 µg×
√

s

Table 4. Main parameters of Hemisphere P307 BDS/GNSS receiver.

Feature Parameters Values

Satellite signals BDS(B1, B2, B3), GPS(L1, L2), GLONASS(G1, G2)
Horizontal position error (RMS) 1.2 m

Altitude error (RMS) 3 m
Velocity error (RMS) 0.02 m/s

Data update rate 20 Hz

Table 5. Main parameters of SODERN SED26 star sensor.

Feature Parameters Values

Field of view (FOV) 15.437◦ × 15.437◦ (Wide FOV)
Observable star number ≥6

Attitude error (RMS) 5′′

Data update rate 10 Hz
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The UAV flight test was conducted at the City of Yanliang in Shaanxi, China. The experimental
navigation data were selected from the UAV flight test within a continuous time period of 1000 s,
where different maneuvers were involved. Within the selected UAV flight test, the UAV initial position
was at East longitude 109.217◦, North latitude 34.647◦ and altitude 3525 m. The UAV initial velocity was
180 m/s, 150 m/s and 50 m/s in East, North and Up, respectively. The other initial parameters were set
identically to those in the simulation case. The filtering periods of the local filters, i.e., the INS/GNSS and
INS/CNS subsystems, were 1 s. The period for fusion of local state estimations was also 1 s.

Due to the complexity of the dynamic flight environment, the process model of the
INS/GNSS/CNS integration involves modeling error during the UAV flight process. Figure 7
illustrates the UAV position errors obtained by FKF, UKF-FKF, UKF-MODF and AFUKF-MODF,
respectively. As shown in Figure 7, the position error achieved by FKF is relatively large due to the
influence of process-modeling error, the use of the covariance upper bound and the linearization
of the process model. During the time period (100 s, 1000 s), the position errors in longitude,
latitude and altitude for FKF are within (−23.0174 m, 20.7557 m), (−21.7712 m, 20.6464 m) and
(−26.7975 m, 27.7306 m), respectively. UKF-FKF improves the fusion accuracy of FKF by adopting
UKF to calculate the local state estimations, leading to the longitude, latitude and altitude errors within
(−15.1817 m, 16.5516 m), (−16.5740 m, 15.9417 m) and (−21.8423 m, 24.0462 m). UKF-MODF can
provide globally optimal fusion results based on the principle of linear minimum variance. Thus, it
has higher navigation accuracy than FKF and UKF-FKF, leading to the longitude, latitude and altitude
errors within (−12.0942 m, 11.8042 m), (−12.0311 m, 12.2480 m) and (−16.9458 m, 15.9384 m). However,
its position error curve still has pronounced oscillations due to the influence of the process-modeling
error. In contrast, the position errors in longitude, latitude and altitude for the proposed AFUKF-MODF
are within (−7.1247 m, 7.8715 m), (−7.0576 m, 7.5495 m) and (−11.8677 m, 11.2610 m), which are much
smaller than those by FKF, UKF-FKF and UKF-MODF. This is because the proposed AFUKF-MODF
has the capability to inhibit the disturbances of process-modeling error.

Table 6 lists the mean absolute errors (MAEs) and standard deviations (STDs) of the position
errors achieved by FKF, UKF-FKF, UKF-MODF and AFUKF-MODF. It can be seen that the MAE and
STD of the position errors by the proposed AFUKF-MODF are also much smaller than those of the
other three methods.
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Figure 7. The position errors obtained by FKF, UKF-FKF, UKF-MODF and AFUKF-MODF for the UAV
experiment test: (a) Longitude error; (b) Latitude error; (c) Altitude error.

Table 6. MAEs and STDs of the position errors obtained by FKF, UKF-FKF, UKF-MODF and
AFUKF-MODF for the UAV experiment test.

Data Fusion Methods
Position

Longitude Latitude Altitude

FKF
MAE (m) 7.2719 7.3707 9.0803
STD (m) 8.8325 8.9150 11.1273

UKF-FKF
MAE (m) 5.4530 5.5924 8.0972
STD (m) 6.5879 6.8447 9.8784

UKF-MODF
MAE (m) 3.8872 3.8996 6.1051
STD (m) 4.8051 4.8142 7.3485

AFUKF-MODF
MAE (m) 2.3503 2.3610 4.0656
STD (m) 2.9015 2.9225 4.9706



Sensors 2018, 18, 488 20 of 22

The above experimental results and analysis demonstrate that the proposed AFUKF-MODF
enhances the adaptability and robustness of multi-sensor data fusion in presence of process-modeling
errors, leading to improved navigation accuracy for INS/GNSS/CNS integration in comparison with
FKF, UKF-FKF and UKF-MODF.

4. Conclusions

This paper presents a novel AFUKF-MODF to improve the fusion adaptability and robustness
for multi-sensor nonlinear stochastic systems against process-modeling error. The contributions
of this paper are: (i) an AFUKF based on the Mahalanobis distance is developed to improve the
adaptability and robustness of local state estimations against process-modeling error; and (ii) an
UT-based multi-sensor optimal data fusion for the case of N local filters is also established to achieve
the globally optimal state estimation via fusion of local state estimations. Simulations and practical
experiments as well as comparison analysis demonstrate that the proposed AFUKF-MODF not
only resists the disturbance of process-modeling error on the fusion solution, leading to improved
adaptability and robustness for multi-sensor data fusion, but it also provides globally optimal data
fusion results in the sense of linear minimum variance. The achieved fusion accuracy is much higher
than that of FKF, UKF-FKF and UKF-MODF for INS/GNSS/CNS integration.

Future research work will focus on two aspects. One is the improvement of the proposed
AFUKF-MODF. It is expected to combine the proposed AFUKF-MODF with artificial intelligence
technologies such as machine learning, pattern recognition and neural networking to intelligently
identify and compensate for system modeling error. The other is on the applications of the proposed
AFUKF-MODF to address the multi-sensor data fusion problems in other fields such as target tracking,
fault diagnosis and signal processing.
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Abbreviations

FKF Federated Kalman filter
UKF Unscented Kalman filter
UT Unscented transformation
UKF-FKF Unscented Kalman filter-based federated Kalman filter
UKF-MODF Unscented Kalman filter-based multi-sensor optimal data fusion
AFUKF Adaptive fading unscented Kalman filter
AFUKF-MODF Adaptive fading unscented Kalman filter-based multi-sensor optimal data fusion
INS Inertial navigation system
GNSS Global navigation Satellite System
CNS Celestial navigation system
IMU Inertial measurement unit
E-N-U East-north-up
UAV Unmanned aerial vehicle
RMS/RMSE Root mean squared error
BDS Beidou system
GPS Global positioning system
DGPS Differential global positioning system
FOV Field of view
MAE Mean absolute error
STD Standard deviation
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