
sensors

Article

A Dynamic Approach to Rebalancing
Bike-Sharing Systems

Federico Chiariotti 1 ID , Chiara Pielli 1 ID , Andrea Zanella 1,2,* ID and Michele Zorzi 1,2 ID

1 Department of Information Engineering, University of Padova, 35131 Padova PD, Italy;
chiariot@dei.unipd.it (F.C.); piellich@dei.unipd.it (C.P.); zorzi@dei.unipd.it (M.Z.)

2 Human Inspired Technologies (HIT) Research Center, University of Padova, 35131 Padova PD, Italy
* Correspondence: zanella@dei.unipd.it; Tel.: +39-049-827-7770

Received: 18 December 2017; Accepted: 30 January 2018; Published: 8 February 2018

Abstract: Bike-sharing services are flourishing in Smart Cities worldwide. They provide a low-cost
and environment-friendly transportation alternative and help reduce traffic congestion. However,
these new services are still under development, and several challenges need to be solved. A major
problem is the management of rebalancing trucks in order to ensure that bikes and stalls in the
docking stations are always available when needed, despite the fluctuations in the service demand.
In this work, we propose a dynamic rebalancing strategy that exploits historical data to predict
the network conditions and promptly act in case of necessity. We use Birth-Death Processes to
model the stations’ occupancy and decide when to redistribute bikes, and graph theory to select
the rebalancing path and the stations involved. We validate the proposed framework on the data
provided by New York City’s bike-sharing system. The numerical simulations show that a dynamic
strategy able to adapt to the fluctuating nature of the network outperforms rebalancing schemes
based on a static schedule.

Keywords: bike sharing; Smart Cities; dynamic rebalancing

1. Introduction

One of the most promising applications of the emerging Internet of Things (IoT) paradigm is
Smart Cities [1]: the myriad sensors and actuators deployed in a modern city can provide many novel
services to citizens and institutions and make the existing ones more efficient and user-friendly.

Bike sharing is a perfect example of a Smart City-enabled service. Although bike-sharing schemes
have existed since the 1960s [2], issues with theft, vandalism and wrongful usage prevented their
widespread adoption [3] until the arrival of smart biking systems. With the possibility of electronically
unlocking bicycles and identifying users, smart bike-sharing systems solved or mitigated these issues:
by requesting users’ credit card information before lending the bikes, bike-sharing companies can
charge users for damages or theft, with a strong deterrent effect. The use of technology also allowed
cities to provide a better service, embedding sensors to obtain real-time data, which can be used to
plan and manage the bike-sharing docking stations and adapt to the needs of the users. Many services
provide live maps of the available bikes, and ways to detect broken bikes remotely to quickly repair or
substitute them are being studied [4]. Over the past few years, bike-sharing schemes were implemented
in most major world cities, with almost universal success. Some of the biggest bike-sharing services in
the world are in Barcelona, Paris, London, Hangzhou, Taiyuan and Shanghai in China, New York City,
and Montreal. The usage data were easily recorded and used to improve the service and increase the
number of users [5,6], reducing traffic and pollution. The abundance of data, sometimes including
GPS tracking of the bikes’ trajectories, has led to new opportunities for Smart City management, such
as, for example, the planning of new bike lanes to cover the most common routes [7].

Sensors 2018, 18, 512; doi:10.3390/s18020512 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-7915-7275
https://orcid.org/0000-0002-8823-9328
https://orcid.org/0000-0003-3671-5190
https://orcid.org/0000-0003-2870-4678
http://dx.doi.org/10.3390/s18020512
http://www.mdpi.com/journal/sensors

Sensors 2018, 18, 512 2 of 22

In May 2013, New York City launched CitiBike, the largest bike-sharing system in North America.
The CitiBike bike-sharing network consists of more than 700 docking stations in Manhattan, Brooklyn
and Jersey City, with tens of thousands of rides every day. Despite such large numbers, the service
is not always satisfactory. For example, the massive use of the service by commuters results into the
quick depletion of the stations in residential areas in the morning hours, and the rapid exhaustion of
the available stalls in the docking stations in commercial areas, so that users cannot deposit more bikes.
In addition, stations at the top of slopes are more likely to be empty, as users are less keen on cycling
uphill. This disparity highlights the importance of finding smart ways to manage large bike-sharing
systems, and is reflected by the high rate of negative reviews of the service on TripAdvisor (36% of
users rate CitiBike as “average” or lower) and by competitors’ recent experiments with “dockless”
bikes that can be parked anywhere and unlocked with a smartphone app.

An effective way to improve bike-sharing systems consists of relocating bikes from overcrowded
stations to those with a shortage of bikes. This technique is commonly known as rebalancing. Operators
can, e.g., deploy a fleet of trucks to pick up and drop off bikes at different stations to balance the
network. The trucks can all depart from the same location, or be distributed in different depots,
depending on the size of the network and the operational costs of the service.

The design of an efficient rebalancing scheme, then, requires addressing two major challenges:
predicting the demand for bikes and stalls in the docking stations in the different locations covered
by the service, and selecting the most efficient way to relocate the bikes in order to best satisfy such a
demand. Rather than performing bike rebalancing based on a static scheme, as is common in practical
bikesharing services, in this study, we propose a dynamic rebalancing scheme that aims at increasing
the users’ satisfaction by minimizing the probability of service failures, i.e., the chance that a user
experiences an unsatisfactory service because of the unavailability of bikes or stalls in the docking
stations. We model the occupancy of each station as a Birth-Death Process (BDP), with time varying
birth and death rates (i.e., arrivals and departures, respectively). In this way, we are able to estimate
how long a station will be self-sufficient before running out of bikes or available stalls, knowing its
initial state. Periodically, we use the knowledge about such expected survival times to decide whether
rebalancing is necessary. Clearly, employing a fleet of vehicles to rebalance the system has a monetary
cost that counterbalances the improvement in the network conditions by moving bikes among stations.
This cost also depends on the covered distance, as this affects the fuel consumption and the time
required for the rebalancing operations. These are important factors that need to be tuned carefully
when designing a rebalancing strategy because they play a role in deciding when to perform the
bike relocation.

To gauge the performance of our scheme, we use three different metrics: the fraction of time the
system is out of service (empty or full stations), the number of daily rebalancing operations, and the
daily distance covered by the rebalancing trucks. Our scheme is compared with the benchmark case
in which no relocation is done, and a static rebalancing scheme from the literature that rebalances
bikes twice a day at preset times [8]. All the numerical evaluations are based on the dataset of the
CitiBike system. In particular, we use the data collected over the past four years, during which the
bike-sharing system grew in both number of stations and available bikes. The observed trips are a
lower bound for true demand, as empty or full stations prevent users from taking or returning bikes,
respectively. In addition, there may be unexpected events such as broken or stolen bikes that affect the
bike availability, or special events in the city that make the bike demand differ from its usual pattern.
Nonetheless, although the numerical results may be altered by the censoring problem, they are still
representative of the positive impact the rebalancing has on the bike-sharing system. Furthermore, the
framework we propose is general and can be readily adapted to new data. It is also an effective tool to
identify the critical stations and locations so as to improve the bike-sharing systems by adding bikes at
selected stations and increasing the station density in the critical areas. For a deeper analysis of the
dataset, with considerations on other patterns such as weather and distance from mass transit stops,

Sensors 2018, 18, 512 3 of 22

we refer the reader to our related work in [9], in which we compare the results from New York City
with another dataset from a smaller system.

The rest of this work is organized as follows. Section 2 gives an outline of the state of the art
on Smart Cities, bike sharing and rebalancing optimization. Section 3 presents our model of the
bike-sharing problem, while Section 4 introduces the CitiBike dataset and the processing to derive the
model parameters from it. Section 5 describes the performance of our dynamic rebalancing scheme.
Finally, Section 6 contains our conclusions and some possible avenues of future research on the subject.

2. Related Work

Over the last few years, bike-sharing systems have gained a lot of momentum and become an
active field of research, bolstered by the availability of real data from publicly open bike-sharing
services in many cities. A comprehensive survey on the state of the art literature about bike-sharing
systems can be found in [10], while [11] provides a history of bicycle sharing since 1965, when the
city of Amsterdam launched the first bike-sharing program. In this section, we first introduce the
possibilities of bike sharing as an integrated Smart City service. Then, we propose an overview of
the two major branches of the scientific literature on bike-sharing system optimization, namely, the
analysis of historical data to infer the demand, and rebalancing optimization techniques to limit system
failures and user dissatisfaction.

2.1. Bike Sharing as a Smart Service

Bike sharing is a key component of future Smart Cities: bike-sharing services offer more
flexibility than standard public transportation while also reducing both traffic and its impact on the
environment [12] and improving public health [13]. According to an American Planning Association
report [14], bike-sharing programs in North America significantly decreased subscribers’ car use, and
bike sharing in Hangzhou, China, reportedly decreased CO2 emissions by 70 thousand tons a year. Like
other mobility services, bike sharing provides a double benefit to Smart Cities: in addition to the direct
improvements caused by the service, the data that the system gathers can be used to build models of
citizens’ behavior and make more informed policy decisions, as well as providing a direction in which
the Smart City can grow organically. Since Smart Cities are “systems of systems” [15], mobility is a key
component and the integration of bike sharing in a Smart Mobility framework [16] can help achieve
the goals of both the transport system and the city as a whole. This integration between data, services
and communications has been proposed as the key idea of the SymbioCity paradigm [17].

An integrated approach to public transport, with car- and bike-sharing schemes supplementing
standard bus and light rail systems, can improve transit times and encourage the shift towards a more
sustainable urban mobility [18]. A study on two American cities [19] has found that bike-sharing
is an alternative to public transport in high-density areas where distances are short, while the
independence of these systems from fixed schedules and the higher density of stations can complement
the deficiencies of traditional mass transit systems in lower-density areas, creating the missing “last
mile” connection. The possibility of using e-bikes to increase the viable range of the system is also
being explored [20].

Bike sharing also has an impact on urban planning: the presence of bike lanes [21,22] and
urban zoning [23] has a strong effect on ridership, and future urban planning in Smart Cities should
take this into account, both using bike sharing as a sustainable and flexible way to connect citizens
and encouraging the transition from a car-oriented perspective to a more integrated approach to
transportation, zoning and urban design [24]. Although there are several trade-offs and political issues
that need to be tackled to shift towards a smart and sustainable mobility [25], research is focusing
on formulating principles to guide urban design and help in the transition [26]: a key component of
future mobility is the physical separation of fast, high mass vehicles such as cars and trucks from bikes,
pedestrians, and other slow, low mass vehicles, increasing both safety and efficiency.

Sensors 2018, 18, 512 4 of 22

2.2. Traffic Analysis and Rebalancing

Recently, researchers have put a lot of effort in analyzing bike-sharing usage data to build models
and frameworks that help improve the system. In [27], the bike demand at each station is modeled
as a queuing system with finite capacity, and the service level requirements are then found using the
transient distribution of the bikes’ availability and exploiting Kolmogorov forward equations [28].
This approach is similar to that proposed in this work. However, rather than determining a lower
and upper bound for the target inventory level, we compute the occupancy state that maximizes the
survival time of a station (i.e., the time before the stalls are either all empty or all full). Furthermore,
our model is more flexible, being able to accommodate non stationary demand patterns.

Another efficient tool to extrapolate valuable information from real datasets is represented by
machine learning. For example, Ref. [29] uses a neural network to learn the bike traffic pattern directly
from the observed data, and also includes information such as the weather conditions, which are often
troublesome to consider in an analytical model. The main drawback of this approach is that it requires
a customized neural network for each bike-sharing system, whereas parameterized analytical models
can be readily adapted to different bike-sharing systems.

Traffic analysis is also useful to construct clusters of stations with similar demand patterns [30],
which may help the rebalancing optimization.

Although the historical data analysis gives insights on the bike demand, the heterogeneous user
behavior and unexpected events make it challenging to accurately predict the traffic pattern [31].
Thus, external intervention is required to keep the system operational and limit failures due to the
unavailability of bikes or docks, as this would have a negative impact on the users. A possibility
consists in developing pricing strategies to incentivize users to return bikes to the least loaded
among the closest stations [32,33]. However, pricing mechanisms may not be sufficient to achieve
self-rebalancing of the system, while being annoying for the users. Hence, the majority of the existing
bike-sharing systems employ a fleet of vehicles that pick up and move bikes between stations.

The most common rebalancing approaches can be classified as static, where the rebalancing
is performed according to a predetermined schedule, likely when the system use is minimum
(e.g., at night); or dynamic, in which the rebalancing occurs during the daytime, when needed.

In the literature, static rebalancing problems are often tackled through Mixed Integer
Programming (MIP) techniques. For example, Ref. [34] uses a branch-and-cut algorithm on a
relaxed MIP model together with a taboo search to obtain upper bounds to the NP-hard problem
of redistributing bikes among stations with the minimum traveling distance. A similar method is
used by Ho and Szeto in [35] inside an iterative procedure, resulting in a better solution. Several MIP
techniques are used in [36], where a convex penalty objective function aims at minimizing both the user
dissatisfaction and the costs of moving the vehicle fleet. The numerical experiment shows significant
service quality improvements for networks with up to 100 stations with two repositioning vehicles.
The authors also take into account the time needed to load and unload bikes. Constraint programming
is used in [37], where a large neighborhood search approach is used to tackle the problem of balancing
the bike-sharing system. Ref. [38] proposes a three-step mathematical programming based heuristic,
which consists of clustering stations based on geographical and inventory considerations, and then
constructing an appropriate traversal route. Differently from other approaches, rebalancing is not
limited within clusters, but the routing vehicles can travel through a sequence of clusters. Similarly,
Ref. [27] proposes a static rebalancing scheme where each vehicle is assigned a ’self-sufficient’ cluster
of stations. Stations are in fact grouped in such a way that the target network configuration can
be achieved by performing only within-cluster pickups and deliveries. Clusterization is useful to
organize rebalancing paths more easily, but adopting such a technique in a dynamic rebalancing
context is not trivial, since each rebalancing operation may involve different stations and clusters
should continuously be identified. In [39], Dell’Amico et al. propose a metaheuristic that uses a destroy
and repair approach to solve the static rebalancing problem, improving on the simple branch-and-cut
approach that the same authors presented in [40], both in the quality of the solution and in the

Sensors 2018, 18, 512 5 of 22

convergence time. These works are particularly interesting, as they consider the variability of the
demand for bikes during the day and the different features of the stations, distinguishing between
three different types of stations with similar traffic patterns.

Static approaches, however, may not be sufficient to avoid network failures during the day. To
overcome this issue, dynamic rebalancing aims at redistributing bikes throughout the day according
to the current network state. Clearly, this is much more challenging, since it includes a scheduling
component based on the users’ activity during the rebalancing operation, and also a routing problem.

In [41], upper and lower bounds for the solution of a pickup-and-delivery problem are obtained
by using Dantzig–Wolfe [42] and Benders [43] decompositions, respectively, but the study does not deal
with a time-varying demand and, even in this simple scenario, the optimality gap of the approximation
is large. An exact solution to the static rebalancing problem using Benders’ cuts for given target levels
is instead provided in [44].

In [45], the loading instructions for the rebalancing vehicles are derived from an optimization
function that weighs the unfulfilled user demand with the target filling level. Furthermore, each truck
is assigned a capacity so that there is a maximum number of bikes it can load. An accurate simulation
model is proposed in [29]: it simulates the bike-sharing system in space and time to determine the
optimal repositioning flows and time intervals between relocation operations, by explicitly considering
the route choice for trucks among the stations. Some studies also determine the optimal size of
the rebalancing fleet [46]. A Markov Decision Process (MDP) is used in [47] to solve a stochastic
inventory routing problem for bike-sharing systems. The objective is to minimize the number of
expected violations of due dates, where a due date is the deadline within which a station has to be
served by a rebalancing vehicle in order to satisfy the requests and, hence, avoid failures. The paper
shows the importance of using both long-term and short-term relocation strategies. The former tries
to estimate the target level that can deal with predicted demand, while the latter assigns a priority
level to each station based on its urgency of being rebalanced. The short-term approach is similar
to the one proposed in this paper, since we dynamically serve only those stations that are going to
experience a failure in a short time horizon. An interesting framework is presented in [8], where
rebalancing comprises two different strategies to tackle the bike imbalance during night and day,
respectively: (i) static rebalancing overnight to move the network to an optimal configuration that
minimizes the probability of stations becoming either empty or full in the following day, and (ii)
clustering optimization to handle rush-hour usage and ensure that users are never too far from an
available bike or dock. The joint use of the two strategies brings a larger improvement than considering
the nightly rebalancing only. This result encouraged us in choosing a dynamic approach.

For a more detailed discussion on the rebalancing problem and other open research issues in
bike-sharing systems, we refer the reader to [10,48].

To the best of our knowledge, our work is the first to consider a dynamic rebalancing scheme that
can minimize the time during which stations are unable to meet user demand while considering the
full complexity of the time-varying demand. Most previous efforts in the literature concentrate on
finding the optimal route to rebalance bikes at fixed times, while we consider both whether the system
should be rebalanced and which stations need it most, avoiding unnecessary trips.

3. System Model

We define the network of bike-sharing stations as a fully connected directed graph G = (V , E2),
where V , {1, . . . , V} is the set of stations, and E2 = (E , E) with E ⊆ V × V is the set of edges
between stations. Note that each link is counted twice to allow for different costs between two stations
according to the direction of the path. Each node v ∈ V is characterized by its capacity Mv ∈ N, i.e.,
the total number of bike stalls at the station, and its current occupancy mv(t) ∈ Mv , {0, 1, . . . , Mv},
i.e., the number of bikes available at time t. The edges are weighed by a distance metric between
stations, denoted as d(vi, vj). As the graph is fully connected, each station can be reached from any
other station.

Sensors 2018, 18, 512 6 of 22

Our goal is to determine a dynamic rebalancing scheme that minimizes the user dissatisfaction
while maintaining the rebalancing cost as low as possible. The dissatisfaction is related to the
probability that users experience service failures, i.e., find stations either empty (mv(t) = 0) or
full (mv(t) = Mv). (In this work, we do not distinguish between failures due to empty and full stations,
though this aspect will be studied in future work.) We assume that a fleet of vehicles with given
capacities is available for the rebalancing procedure and that the operating day is divided into discrete
time frames of length Tr. The rebalancing fleet can be deployed at the beginning of each frame.

The rebalancing problem is made up of two main components.

1. At each time frame k, we need to determine the desired state m?
v(kTr) for each station v ∈ V .

Since we would like to maximize the time until a station becomes either empty or full, m?
v(kTr) is

the inventory level that maximizes the survival time of the station. This is computed by analyzing
the historical user data.

2. The real rebalancing problem, which consists of identifying which stations are either
overcrowded or in shortage of bikes, according to their survival times, and designing the
truck routes to perform the bikes pickups and deliveries.

In the following, we first describe the procedure to determine the survival times based on the
historical data, and then the network-wide rebalancing optimization.

3.1. Survival Time

Modeling the network as a whole is not computationally tractable for a large number of stations.
However, we can model each station’s occupancy separately as a Markov-Modulated Poisson Process
(MMPP) [49]: the occupancy follows a finite Markov BDP mv(t), where the birth and death processes
are Poisson distributed with time-varying rates λv(t) and µv(t), respectively. We can reasonably
assume that the demand for bikes is not affected by the current occupancy of the station (unless it is
either empty or completely full(The censoring problem will be described in Section 4), and therefore
the birth and death rates are assumed to be independent of the current state. The BDP is limited by the
station’s capacity Mv.

In order to reduce the computational complexity [50,51] and accurately estimate λv(t) and µv(t)
from the historical data, we simplify the station behavior as a discrete-time BDP, with birth and death
rates that are piecewise constant during time frames of duration Tr, which is an integer multiple of the
BDP slot Tp. Basically, we map the continuos time t into its discrete counterpart

t → nTr + kTp with n = bt/Trc, k = b(t− nTr)/Tpc, (1)

where n is the index of the frame (which has duration Tr) and k is the index of the slot (which has
duration Tp). The two assumptions we have made (piecewise constant birth and death rates, and
discrete time) make it possible to have a simpler yet accurate model of the stations’ dynamics, and also
to derive the correct parameters of the arrival and departure processes for the available dataset. Once
Tr was defined, we verified that the empirical distribution of the inter-arrival times in a single time
frame Tr fits an exponential distribution, thus validating the short-term Poisson assumption.

As mentioned, a service failure occurs whenever a station is in state 0 or in state Mv: if the stalls are
all empty, bikes cannot be rented, while if they are all full, users cannot deposit more bikes. In order to
compute the first passage time to either of the two failure states, we can consider an equivalent process
in which 0 and Mv are absorbing states. Accordingly, we formally define the survival time Sv(t, m)

of node v as the smallest time τ after which the probability Pm,a(τ; t) of reaching state a ∈ {0, Mv},
starting from state m ∈ Mv at time t, exceeds a predefined threshold pth, i.e.:

Sv(t, m) = inf {τ : Pm,0(τ; t) + Pm,Mv(τ; t) ≥ pth} . (2)

Sensors 2018, 18, 512 7 of 22

Note that Sv(t, m) is time varying, reflecting the fluctuations of the arrival and departure rates. For
ease of writing, however, the parameter t will be omitted in the following, whenever possible. The
threshold pth makes it possible to tune the reactivity of the rebalancing system: lower values of pth
will yield shorter survival times and, in turn, more frequent rebalancing, which will reduce the service
failure risk but increase the operational costs of the service.

Since the birth and death rates vary from frame to frame, the transition probability Pi,j(t) needs
to be calculated by considering the state distribution at the end of the previous frame. Applying the
Markov property, we get:

Pi,j(t) = Pi,j(nTr + kTp) = ∑
l∈Mv

Pi,l(nTr) Pl,j(kTp), i, j ∈ Mv , (3)

where n and k are given by the time relation (1). The transition matrix after k < Tr/Tp steps is the
(k+ 1)-th power of the one-step transition matrix (note that the time slot index k starts from 0 according
to the time relation (1)), and then we use the Markov property as in Equation (3) to derive the transition
probabilities when the system is in frame n and slot k.

To compute Pm,0(t) and Pm,Mv(t) for a given station v, we need to evaluate the transition
probabilities starting from state m at every time step. In the following, we thus focus only on a
single slot of length Tp, with birth and death rates denoted as µv and λv, respectively. Let Dv and
Av be the random variables that describe the numbers of departures and arrivals at station v in the
considered slot, respectively. We model the demand for bikes (i.e., potential departures) and empty
stalls (i.e., potential arrivals) as Poisson variables, with mean µvTp and λvTp, respectively. We assume
that a sequence of events results in the same state regardless of the order of occurrence, so that the
next state of the station is given only by the total number of departures and arrivals in a time slot. This
is not strictly correct, as different orderings of the same events might bring the system in an absorbing
state. In general, however, the probability of this event is sufficiently low and does not significantly
affect the accuracy of the simplified model. The probability Pi,j of going from state i to state j in one
time step Tp is

Pi,j = Pr[Av − Dv = j− i] =
∞

∑
`=−∞

Pr[Av = j− i + `]Pr[Dv = `]

=
+∞

∑
`=max{0,j−i}

(λvTp)−(j−i+`) (µvTp)−`

`! (j− i + `)!
,

(4)

where the last equality follows from the Poisson distribution of Av and Dv. The result of the sum in
Equation (4) follows a truncated Skellam distribution [52]:

pSk(`; µ1, µ2) = e−(µ1+µ2)

(
µ1

µ2

)l/2
I|`|(2

√
µ1µ2) , (5)

with ` = j − i, µ1 = λvTp (the average of Av), and µ2 = µv(t)Tp (the average of Dv). Ik(z) is the
modified Bessel function of the first kind and order k [53]:

Iα(x) = lim
N→∞

N

∑
n=0

1
n!Γ(n + α + 1)

(x
2

)2n+α
, (6)

Γ(z) =
∫ ∞

0
xz−1e−xdx . (7)

Sensors 2018, 18, 512 8 of 22

The mass probability function given in Equation (5) is for the standard Skellam distribution, while
we need to truncate it over the finite range {0, . . . , Mv}. Thus, the transitions to the two absorbing
states 0 and Mv have the following probabilities:

Pi,0 =
0

∑
k=−∞

pSk(k− i; µ1, µ2) , i ∈ Mv\{0, Mv} , (8)

Pi,Mv =
+∞

∑
k=Mv

pSk(k− i; µ1, µ2) , i ∈ Mv\{0, Mv} . (9)

Since 0 and Mv are absorbing states, P0,0 = PMv ,Mv = 1, while P0,j = 0 ∀j 6= 0 and PMv ,j = 0 ∀j 6= Mv.
In practice, the transition probabilities at time instant t are computed in three steps with a time

hierarchical interrelation, which exploits the time equivalence of Equation (1):

1. We use the Markov property to separate the problem at a frame level; to calculate the transition
probabilities in frame n > 0, it is necessary to compute those at the end of each frame n′ < n.

2. Within a single frame n, the transition probabilities at slot k > 0 are derived by elevating the
single-step transition matrix of frame n to the power of k + 1 (since slot indices start from 0).

3. The transition probabilities at the beginning of a frame (i.e., for slot index k = 0) are then
computed using Equations (4), (8) and (9).

Hence, for each time instant t and starting state m, we are able to compute the probability of
being in one of the failure states, 0 or Mv, and, consequently, the survival time Sv(t, m) of station v.
Intuitively, Sv(t, m) is first increasing and then decreasing in m (it is 0 for both m ≡ 0 and m ≡ Mv),
and there exists a state m?

v(t) that leads to the maximum survival time S?
v(t):

m?
v(t) = argmax

m∈Mv

Sv(t, m) and S?
v(t) = Sv(t, m?

v(t)), v ∈ V . (10)

Ideally, at time t, we would like to be in state m?
v(t) as it corresponds to the longest time for

which station v is self-sufficient (i.e., it does not need rebalancing). Next, we describe how to plan the
rebalancing operation by exploiting the knowledge of the survival times.

3.2. Network-Wide Optimization

We model the dynamic rebalancing problem as an optimization problem on the bike-sharing
network graph G. The number of deployed trucks is predefined and denoted as X, and we assume
that the subsets of stations visited by each vehicle are disjoint. Each truck has a given capacity, which
defines the maximum number of bikes it can transport concurrently. Then, we define a circular graph
H = (V ′,F), where V ′ ⊆ V ∪ {0} is the union of the set of stations that the fleet of trucks rebalances
(⊆ V) and the truck depot ({0}), while F is the set of edges that solves the Vehicle Routing Problem
(VRP) [54] on (V ′, E2).

We denote the station occupancy vector before rebalancing as m(∅)(t) , [m(∅)
1 (t), . . . , m(∅)

|V| (t)],

while the occupancy vector after rebalancing is m(H)(t).The obtained reward is measured as the time
gained before a system failure occurs, i.e., the difference between the minimum survival times among
all the stations after and before the rebalancing operation. Each rebalancing operation also implies a
fixed cost for each vehicle in the fleet, plus an additional cost that depends on the total length Dx(H)

of the route of each vehicle x ∈ [1, . . . , X]. The rebalancing optimization function f̃ (H, t) can thus be
modeled as

f̃ (H, t) =
(

min
v∈V

Sv(t, m(H)
v (t))−min

v∈V
Sv(t, m(∅)

v (t))
)
− αX− β

X

∑
x=1

Dx(H) , (11)

where and α ≥ 0 and β ≥ 0 are two weights (measured in time units and time units per kilometer,
respectively), and the survival times Sv(·, ·) are computed as described in Section 3.1.

Sensors 2018, 18, 512 9 of 22

We introduce a further parameter γ in the optimization function, which indicates the clipping
threshold for the survival time: this has the dual purpose of disregarding longer survival times, which
might have a larger estimation error, and avoiding useless rebalancing operations when the minimum
survival time of the system is already very long. The optimization function then becomes

f (H, t) =
(

min
{

min
v∈V

Sv(t, m(H)
v (t)), γ

}
−min

{
min
v∈V

Sv(t, m(∅)
v (t)), γ

})
− αX− β

X

∑
x=1

Dx(H). (12)

As discussed in the introduction of Section 3, the operating day is divided into discrete frames of
length Tr. The rebalancing problem is solved periodically, every Tr, and consists of defining V ′ and F ,
which means i) identifying which stations require rebalancing, and ii) determining the path for the
rebalancing truck. Note that, if at time t the optimization function f (H, t) is negative for any V ′ 6= 0,
the cost of moving the vehicle fleet is larger than the reward obtained for reallocating the bikes, and
thus no rebalancing is performed. In this case, V ′ = {0}.

Since the optimization function also depends on the distance covered by the rebalancing truck,
the set of stations to visit, V ′, and the vehicle route, F , should be jointly determined. For simplicity, we
first assume to know the minimum path length of the rebalancing route for a given set of nodes, so that
we can derive V ′ and then describe how to compute such distance. The computation is simplified by
the following theorem, which states that V ′ contains the nodes with the smallest survival times, so that
all subsets that do not satisfy the theorem can be safely discarded as suboptimal.

Theorem 1. If v ∈ V ′, then Sv(t, m(∅)
v (t)) < Su(t, m(∅)

u (t)) ∀u ∈ V \ V ′

Proof. Assuming the truck follows the optimal route F , adding a node to H cannot decrease
the distance Dx(H) because of the triangle inequality. It follows that, in order for v to be part
of the rebalancing set V ′, its presence needs to increase the first term of the function in (12), i.e.,
Sv(t, m(∅)

v (t)) < minu∈(V\V ′) Su(t, m(∅)
u (t)).

The procedure to determine V ′ is hence described in Algorithm 1. Intially, V ′ only contains the
deposit node 0 (Line 1); then, at each iteration i, we identify the node v(i) ∈ V\V ′ with the minimum
survival time (Line 9). We compute the reward obtained by adding v(i) to V ′, as if its survival time were
optimal, Sv(i)(t) ≡ S?

v(i)(t) (Line 10), and the cost to add it to the truck route (Line 14). In particular,
the reward is computed as the difference between the smallest survival time in set V ′ and the smallest
survival time before rebalancing (Lines 4 and 11), while the cost depends on the new route length (see
Equation (12)). If the optimization function increases (Line 15), node v(i) is indeed added to V ′. The
algorithm stops if either all nodes of V have been included in V ′, or the optimization function can
no longer be increased because the minimum of the optimal survival times among all visited nodes
w ∈ V ′ after rebalancing is smaller than the current survival time of any of the unvisited nodes (those
in V\V ′) (Line 18).

The solution of the dynamic rebalancing problem has two distinct parts: (i) determining the route
for the set of stations that need to be rebalanced (Line 12 in Algorithm 1) including possible additional
constraints given by vehicle capacity and travel times, and (ii) deciding whether to start the rebalancing
operation and, possibly, which stations to visit. The literature on the first part of the problem is already
extremely vast and well-developed. In particular, any of the solutions discussed in Section 2.2 can be
used to determine the rebalancing path. Instead, there are very few studies on the second problem, i.e.,
deciding which station to rebalance and when, which is the focus of our model. We remark that the
path-planning algorithm has an impact on the rebalancing strategy provided by our approach, since
the cost computed in Line 14 includes the covered distance that, in turn, depends on the chosen path.
However, our framework is general and can accomodate any path-planning strategy.

Sensors 2018, 18, 512 10 of 22

Algorithm 1 Rebalancing strategy

1: Initialize i = 0, V ′ = {0}, f (H, t) = 0, done = 0
2: Set parameters α, β, γ, X
3: Set S(t) = [S1(t, m(∅)

1), . . . , S|V|(t, m(∅)
|V||)] . Vector with survival times before rebalancing

4: Set σ = minw∈V S(t) . Smallest survival time before rebalancing
5: σ = min{σ, γ} . Set the survival time threshold
6: Set S?(t) = [S?

1(t), . . . , S?
|V|(t)] . Vector with optimal survival times for each station v ∈ V

7: while (i < V) and (done == 0) do . Until there are nodes to visit that can improve the net reward
8: i← i + 1
9: v(i)← argminw∈V\V ′ S(t) . Choose unvisited node with smallest survival time

10: [S(t)]v(i) ← [S?]v(i)(t) . Update survival time of node v(i)
11: reward ← min{min S(t), γ} − σ . Update reward
12: Determine rebalancing path F over V ′ ∪ v(i)
13: D ← compute path length of F . Compute distance to cover for rebalancing
14: cost← αX + βD . Update cost
15: if (reward − cost) > f (H, t) then . It is worth to include node v(i) in the rebalancing
16: V ′ ← V ′ ∪ v(i)
17: f (H, t)← reward − cost
18: if minw∈V ′{[S?(t)]w} < minw∈V\V ′{[S(t)]w} then
19: done← 1 . The optimization function f (H, t) can no longer be increased

The path-planning problem can be optimally solved by the well-known VRP, which yields the
lowest possible cost. However, the VRP is an NP-hard problem, so that several efficient optimization
algorithms have been defined in the literature for different scenarios and sets of assumptions, in order
to reduce the computational complexity. In our simulation, we made the following assumptions to
simplify the problem:

1. We use the Euclidean distance between stations as distance metric for the set of edges E2. This
implies that d(vi, vj) ≡ d(vj, vi) for any two stations i and j.

2. We consider a single rebalancing vehicle, i.e., X = 1, with infinite capacity. Notice that this
scenario reduces the VRP to the Traveling Salesman problem.

The Traveling Salesman problem is still NP-hard. Since the focus of this work is on the dynamic
algorithm and not on the solution to the routing problem, we opted for a simple heuristic that
greedily chooses the closest unvisited node at each step. Let Ui ⊆ V ′ be the set of nodes visited up to
iteration i. Since the truck deposit is the first node to be visited, we set U0 = u(0) ≡ {0}, while for
i ∈ {1, . . . , |V ′| − 1} (Note that the last iteration is i = |V ′| − 1 because V ′ includes also the deposit
node {0}.), we have Ui = Ui−1 ∪ {ui}, where ui is the node visited at iteration i, such that

ui = argmin
w∈V ′\Ui−1

d(w, ui−1) , (13)

where, as mentioned, d(x, y) is the Euclidean distance between nodes x and y. This rule implements
the well-known nearest-neighbor heuristic, which has often been used as a benchmark for Traveling
Salesman heuristic solutions [55]. The total path distance covered by the rebalancing truck is

D(H) =
|V ′ |−1

∑
i=1

d(ui, ui−1) + d(u|U |−1, 0), (14)

Sensors 2018, 18, 512 11 of 22

where the last term is the distance the vehicle covers to go back to the deposit after the rebalancing
operations. This heuristic can be computed in O(|V ′|2) time. The total running time of the heuristic
algorithm is O(|V|3), since |V ′| ≤ |V|. Although using a greedy heuristic may not give the optimal
routing solution, solving an NP-hard problem might not be practical for large instances.

4. Data Analysis

In this work, we used the publicly available dataset (https://www.citibikenyc.com/system-data)
from New York City’s CitiBike network, which we briefly described in Section 1. A map of the city,
with the positions of the docking stations, is shown in Figure 1.

-74.1 -74.08 -74.06 -74.04 -74.02 -74 -73.98 -73.96 -73.94 -73.92 -73.9

40.64

40.66

40.68

40.7

40.72

40.74

40.76

40.78

40.8

40.82

Figure 1. Map of the bike-sharing stations: red points identify the stations considered in our study.

The service publishes monthly reports with all the recorded rides, the start and destination times
and stations, the unique identifiers of the bikes, and some records about the service subscribers, such
as year of birth and gender. In this study, we use the data from July 2013 (the earliest available period)
to July 2017. Since several stations were added during the considered time frame, we limit ourselves to
the 280 stations that were present for a sufficiently long time to extract the demand data. (By discarding
some of the stations, the system is not closed; bikes enter and exit it as they travel to other stations.
We clarify how we deal with this issue in Section 5.)

Traffic Analysis and Simulation

The traffic pattern intuitively depends on several factors, such as the time of the year (fewer
people tend to use bikes in winter than in summer), whether it is a weekday or weekend (people may
tend to use bikes at more regular times on weekdays and for shorter periods), and the position of the
considered station (and the facilities nearby), as shown in Figure 2, which reports the traffic pattern for
a station close to CUNY Baruch College during the month of July 2015. On weekdays, the rush hours
around 8 a.m. and 5 p.m. can be identified by the spikes in the demand for bikes; since the station is
probably used by many students and workers, there are more arrivals than departures in the morning
and more departures than arrivals in the evening. On Fridays, there is a more homogeneous pattern in
the afternoon, likely because many people leave work early, and the demand is much lower during the
weekend. These patterns highlight that both the day of the week and the hour need to be considered
when calculating the arrival and departure rates. Another important factor is the weather: the summer
months have the highest demand for bikes, while the service is used far less during colder months.

https://www.citibikenyc.com/system-data

Sensors 2018, 18, 512 12 of 22

0 6 12 18 24
0

10

20

30

40

Ev
en

ts
pe

r
ho

ur

0 6 12 18 24
0

10

20

30

40

0 6 12 18 24
0

10

20

30

40

0 6 12 18 24
0

10

20

30

40

0 6 12 18 24
0

10

20

30

40

hour

Ev
en

ts
pe

r
ho

ur

0 6 12 18 24
0

10

20

30

40

hour

0 6 12 18 24
0

10

20

30

40

hour

arrivals
departures

Monday Tuesday Wednesday Thursday

Friday Saturday Sunday

Figure 2. Traffic patterns for the month of July 2015 at station 537 (Lexington Ave. and East 24th St.)

This fits with the simplifying assumptions in Section 3. We assume that the Poisson rates λv(·)
and µv(·) for the arrival and departure process, respectively, are piecewise constant at steps of duration
Tr equal to one hour. Hence, we can extract the value of the arrival and departure rates for each period
Ω, defined as the hour, day, and month of the year, for all the stations in the network. Since the dataset
contains four years of data, we calculate λv(Ω) and µv(Ω), v ∈ V as the mean arrival rate in the first
three years, from July 2013 to June 2016. The test set on which we perform the optimization is the
last year of data, from July 2016 to June 2017. This provides a sizeable amount of data, though the
increasing of the number of stations and subscribers affects the accuracy of the estimates, which is
unavoidable when using past data for future optimization.

There are some other issues that need to be mentioned. Stations that are empty or full prevent
customers from taking or returning bikes, so that the observed trip data may actually differ from the
true demand and rather represent a lower bound for it. In addition, the bike demand may increase
thanks to the rebalancing operations, as people would see that the system is becoming more efficient.
Unfortunately, we have no way to gauge the real demand from the available data, and the effect of the
current rebalancing operations prevents the extrapolation of the real state of the system at any given
time. However, the framework we propose is general and can be easily adapted to different datasets.
Thus, although the numerical evaluation could be affected by the censoring issue, the model and the
proposed solution have general validity.

5. Results

In order to validate our optimization scheme, we compare its performance with two other
scenarios: a system with no rebalancing and one with static rebalancing. In the first case, we just let
the bike-sharing system evolve without intervening. In the second one, we bring the whole network to
the optimal state twice a day, at 3 a.m. and 3 p.m., as in [8]. In our simulations, we make the following
assumptions.

• The CitiBike data accurately represent the demand for bikes. As discussed in Section 4, this
may not be strictly true because of the censoring effect, so that the demand patterns in the data
represent a lower bound for the real demand.

• Bikes coming from or going to stations that are not considered in the optimization framework
because of lack of data are assumed to be new bikes entering the system, or broken bikes exiting
it, respectively.

• If a user does not find a bike at their desired station, they simply exit the system and the trip
does not happen. If they find a bike at their departure station but do not find a free spot at the
arrival station, the bike exits the system.

Sensors 2018, 18, 512 13 of 22

• At the beginning of every month, the state of each station is reset to the optimal value. Since the
dataset does not provide the state of each station, this assumption was necessary to define the
initial state of the system.

Naturally, the optimization schemes themselves are not affected by these assumptions, but the
numerical results of the simulation may change when choosing different assumptions. The simulations
were run for a whole year of data, from July 2016 to June 2017, and the results are presented on a
month-by-month basis. We set the cost of taking a rebalancing trip, α, to 2700 s (45 min); since the
duration of a slot Tp is 15 min, this means that the minimum survival time must improve by at least an
hour for the system to consider a rebalancing operation. The parameter β, which represents the cost of
moving the rebalancing truck, was set to four different values, namely 0.02, 0.04, 0.08, and 0.12 s/m.

We used the data without any optimization scheme to test the assumptions of our model. First,
we verified the accuracy of the Poisson model for the interarrival times by considering the data
of several randomly chosen stations, which exhibited an extremely good fit with the exponential
distribution, despite the relatively small sample.

The second test was intended to check the validity of the survival time formula, for which we
run the prediction without implementing any rebalancing strategy, in order not to perturb the system
evolution. This test was performed for two randomly chosen weeks in September 2016 and January
2017, and the results were extremely good, since the empirical distribution of the survival time obtained
from the dataset was almost overlapping with our model, with a relative error on the survival time
lower than 1.5%. The slight discrepancy can be explained by time-dependent factors such as the yearly
increase in the demand for bikes, which causes the model to slightly underestimate the demand in late
2016 and early 2017 since we computed the survival time using the data from July 2013 to June 2016.

Service improvement. Figure 3 shows the fraction of time that the bike-sharing system spends in
a failure state, i.e., either completely full or empty, averaged for each station and for each month of the
year. We used this metric instead of the number of service failures because it is less affected by the
censoring problem we described in Section 4, as requests that could not be fulfilled are not shown and
would not be counted in the results.

The unoptimized system has a failure probability of about 14%, which means that, without any
rebalancing intervention, stations cannot satisfy the users’ needs for about 14% of the time. The static
rebalancing strategy from [8], which optimizes the whole system twice a day at preset times, can
improve this to about 11% during the summer and 6% during the winter. This discrepancy is due to
the far lower demand during colder months, which makes rebalancing actions more effective. The
dynamic system can improve the service even further: with low values of β, the failure time can be
as low as 3% during the summer and 0.4% during the winter. This obviously comes at a cost, as an
aggressive rebalancing strategy will result in more daily trips and a higher cost to move the trucks.
However, the framework we propose makes it possible to tune the dynamic scheme to the specific
requirements of the system, in order to balance the operational costs and quality of the service as
desired. For example, setting β = 0.12, we can approximately replicate the performance of the static
scheme, as shown in Figure 3.

In order to have a full picture of the effectiveness of the scheme, we need to consider not only the
total failure time but also the kinds of failures, as the two failure modes have a different impact on the
behavior of the users and on the future planning of the system. Figure 4 shows the ratio of the time the
stations spend completely full over the total failure time. The unoptimized system has a very skewed
failure mode, with almost 90% of failures due to empty stations. The static rebalancing scheme has a
full station ratio of about 35%, which is almost constant throughout the year. The dynamic rebalancing
schemes show a higher ratio of full stations during the winter months, mirroring the overall pattern
from Figure 3: since most of the failures during the summer months are due to empty stations, the
improvement during the winter comes from the stations being empty less often, while the time they
spend full does not decrease as much. This effect is particularly significant for β = 0.12, which shows

Sensors 2018, 18, 512 14 of 22

a variation from 15% in summer to over 30% in winter, while the other settings of the dynamic scheme
are more similar to the static case.

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun
0

0.03

0.06

0.09

0.12

0.15

0.18

Month

Fr
ac

ti
on

of
ti

m
e

in
a

fa
ilu

re
st

at
e

Figure 3. Monthly average probability of being in a failure state, over a year.

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

0.1

0.2

0.3

0.4

0.5

0.6

Month

Ti
m

e
in

fu
ll

st
at

e
/

ti
m

e
in

fa
ilu

re
st

at
e

β = 0.02 β = 0.04 β = 0.08
β = 0.12 static unoptimized

Figure 4. Fraction of failures due to full stations, over a year.

Rebalancing costs. The improvement in the service obviously comes at a cost: the fleet of
rebalancing trucks must be deployed several times a day, and a more aggressive rebalancing strategy
increases both the number of trips and the total distance that needs to be covered, with higher fuel and
personnel costs.

Figure 5 shows the number of trips the rebalancing truck has to take every day, averaged over
each month; the unoptimized system is not shown in this figure, since no trips are taken at all. The
static scheme has a constant number of trips per day, since it explicitly requires the truck to take two
trips at predetermined times. As for the dynamic schemes, the large difference between the summer
and winter months might be counterintuitive, as one would expect a lower demand to correspond
to a lower number of trips. However, when demand is lower survival times are larger in general;
stations that are not in their optimal state might therefore benefit more from a rebalancing, increasing
the potential reward. Since the cost of rebalancing the system is constant, rebalancing the system is
often more rewarding during the winter, resulting in a higher number of trips and a better service, as
Figures 3 and 5 show. This issue is exacerbated by time-dependent factors: as described in Section 5,
most of the anomaly disappears if we use the real demand data instead of the estimate based on
historical patterns, and this can be explained by weather patterns, as 2017 was a particularly warm
and dry winter.

Sensors 2018, 18, 512 15 of 22

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun
0

2

4

6

8

10

12

14

16

18

Month

A
ve

ra
ge

nu
m

be
r

of
tr

ip
s

pe
r

da
y β = 0.02

β = 0.04
β = 0.08
β = 0.12
static

Figure 5. Average number of rebalancing trips per day, over a year.

The dynamic schemes need a higher number of trips to get the performance improvement, but
the distance the trucks cover on each trip is far lower: while the static scheme rebalances the whole
system and covers every station that needs rebalancing, the dynamic schemes only target the stations
that need it most. As Figure 6 shows, the dynamic schemes need between 30 and 40 km per trip, while
the static scheme can need more than 90 km during the summer. Figure 7 shows the average distance
the truck covers during a day: even if the dynamic scheme with β = 0.04 takes more than twice as
many trips as the static scheme, with a corresponding performance benefit, the total distance it covers
is similar during the summer. The scheme with β = 0.12 reaches a service quality similar to the static
scheme’s while taking fewer trips in the summer and covering a smaller distance during most of the
year. The parameter α, which we kept at a constant value of 2500 s throughout these simulations, can
be used to change the preference of the system from frequent short trips to fewer and longer ones.

In general, the dynamic schemes can take shorter trips, potentially deploying a smaller fleet.
(We remark that we only consider one rebalancing truck in this work; future developments are going
to address this issue, as the model and optimization function we propose are fully general.) The
dynamic nature of our solution allows us to tune the rebalancing to the needs of the system, giving
system controllers the freedom to choose the optimal point in the trade-off between service quality
and rebalancing costs by changing α and β.

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun
20

30

40

50

60

70

80

90

100

Month

A
ve

ra
ge

di
st

an
ce

pe
r

tr
ip

[k
m

]

β = 0.02
β = 0.04
β = 0.08
β = 0.12
static

Figure 6. Average distance per rebalancing trip, plotted over 12 months.

Sensors 2018, 18, 512 16 of 22

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun
0

100

200

300

400

500

600

700

Month

A
ve

ra
ge

di
st

an
ce

pe
r

da
y

[k
m

]

Figure 7. Average distance covered by rebalancing trucks per day, plotted over 12 months.

Figures 8 and 9 show the average failure rate and average daily distance covered by the
rebalancing trucks for different values of α and β, considering the full year. The plots clearly show
the trade-off between rebalancing costs and service performance: using lower values of β results in a
lower failure rate, but the rebalancing trucks need to be deployed more often and, consequently, cover
far more distance every day. The dynamic scheme with β = 0.12 results in a slightly higher failure rate
than the static scheme, but requires less than half the rebalancing distance. The parameter β is the key
to choose the operating point in the trade-off, as it has a significant impact on the performance of the
scheme. The value of α has a limited effect over the considered range, so it can be used for fine-tuning
the system after β has been selected.

α = 1800 s α = 2700 s α = 3600 s

0

2

4

6

8

10

1.7 1.8 2

3 3.1 3.2

5 5.1
5.5

9.7 9.8 9.8
9.4

Fr
ac

ti
on

of
ti

m
e

in
a

fa
ilu

re
st

at
e

β = 0.02 s/m β = 0.04 s/m

β = 0.08 s/m β = 0.12 s/m

Static

Figure 8. Average fraction of time in a failure state (completely empty or full station) for different
values of α and β.

Evolution of the system over time. Figure 10 shows the average fraction of time that a station
spends in a failure state for 13 September (Tuesday) and 17 September (Saturday) 2016. As shown in
Figure 2, the difference between a weekday and a holiday is striking: in the first plot, the two intense
demand periods starting around 7 a.m. and 5 p.m. are evident from the steep increase of the failure rate,
which is almost entirely absent in the other one. The limitations of the static approach to rebalancing
can be clearly seen in the first plot: while the rebalancing operation at 3 p.m. brings the failure rate
very close to 0 in the following hour, the system is left to itself during rush hour, and the failure rate
quickly rises to match that of the unoptimized system. Even though the dynamic approach also has a
peak failure rate at rush hour, it quickly recovers and keeps the system in a better state throughout

Sensors 2018, 18, 512 17 of 22

the day; the bike-sharing system is probably underdimensioned for the peak demand, so it is hard
for any rebalancing scheme to avoid failure during rush hour, but the dynamic system still yields
a significant improvement. The weekend plot shows a similar pattern for the static approach, with
perfect functioning right after rebalancing and a steadily increasing failure rate afterwards. However,
the lower and more homogeneous demand makes rebalancing less urgent and decreases the gain of
using a dynamic approach.

α = 1800 s α = 2700 s α = 3600 s

0

100

200

300

400

500

600
614 601 588

488 477 468

302 296 287

85 83 83

180

D
ai

ly
co

ve
re

d
di

st
an

ce
[k

m
]

β = 0.02 s/m β = 0.04 s/m

β = 0.08 s/m β = 0.12 s/m

Static

Figure 9. Average daily distance covered by rebalancing trucks for different values of α and β.

1 6 12 18 24
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

hour

Fr
ac

ti
on

of
ti

m
e

in
a

fa
ilu

re
st

at
e

Tuesday, September 13, 2016

1 6 12 18 24
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

hour

Saturday, September 17, 2016

α = 2700, β = 0.02
static
unoptimized

Figure 10. Average fraction of time in a failure state, plotted over the course of the day.

Effects of the demand estimation error. Figure 11 shows the effects of the estimation error in the
demand data: we ran the simulations again, giving the system a perfect estimate of the demand for
each hour, and used the performance as a benchmark. During the winter months (from November to
February), the estimation error leads the system to take far more rebalancing trips (the distance covered
on each trip was similar); a quick analysis of historical weather data suggests that the 2016–2017 winter
was both considerably warmer and less snowy than previous years; this is the most plausible cause
for the difference between the actual demand patterns and the estimates, which relied on data from
previous years.

Sensors 2018, 18, 512 18 of 22

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun
0

3

6

9

12

15

18

Month

A
ve

ra
ge

nu
m

be
r

of
tr

ip
s

pe
r

da
y

Figure 11. Average number of rebalancing trips per day with perfect and imperfect demand
information, plotted over 12 months.

Figure 12 shows the effect that estimation errors have on the service quality. The system
with perfect knowledge tends to rebalance far less because of its better knowledge of the demand;
consequently, its failure rate is slightly higher (although still significantly lower than that of the static
approach), but it needs half as many trips. We remind the reader that the trips taken by the dynamic
systems, which do not rebalance the whole bike-sharing system at once, are far shorter than those
in the static system; as such, the system with perfect knowledge gets a performance improvement
over the static system while keeping the same rebalancing costs. A more aggressive setting of the
α and β parameters would bring the failure rate closer to that of the imperfect information system,
while presumably still limiting the rebalancing costs. An adaptive system that actively corrects the
estimates based on a combination of current usage patterns, weather predictions and extraordinary
events instead of relying on data from previous years would definitely improve the performance of the
system. This is perfectly in line with the Smart City paradigm, which advocates a tighter integration
of city services to exploit correlations in the data they generate. The remaining seasonal variations
can either be accepted or smoothed out by adapting the parameters α and β to the seasonal behavior
patterns of the system.

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun
0

0.03

0.06

0.09

0.12

0.15

Month

Fr
ac

ti
on

of
ti

m
e

in
a

fa
ilu

re
st

at
e β = 0.02 β = 0.02, perfect static

Figure 12. Average fraction of time in a failure state with perfect and imperfect demand information,
plotted over 12 months.

Critical stations and consequences for system planning. Figure 13 shows a map of the optimized
stations, color-coded based on their failure rate. Green stations have a lower than average failure rate,
while the orange ones have an extremely high failure rate. The only red station is the one with the
highest failure rate, almost four times the average. The map clearly shows two clusters of congested

Sensors 2018, 18, 512 19 of 22

stations in the Midtown and East Village neighborhoods; although the map was based on the results of
the dynamic algorithm with β = 0.04, the same pattern can be seen across all the considered schemes.

Although CitiBike is mostly focusing on expanding throughout Upper Manhattan and to the
other boroughs, increasing either the number of stations or the capacity of the existing ones in these
two congested areas would greatly increase the quality of the offered service. The presence of stations
that are often empty or completely full also contributes to further skew the data from the real demand,
exacerbating the censoring problem we discussed in Section 4. A more thorough analysis of stations’
criticality, including time-dependent patterns and correlations with public transport schedules, would
be extremely useful to improve both the bike-sharing and mass transit systems.

-74.03 -74.02 -74.01 -74 -73.99 -73.98 -73.97 -73.96 -73.95

40.68

40.69

40.7

40.71

40.72

40.73

40.74

40.75

40.76

40.77

Figure 13. Map of the bike-sharing stations, color-coded from green (zero failure rate) to red (maximum
failure rate).

6. Conclusions

In this paper, we proposed a general framework for the dynamic rebalancing of a bike-sharing
system, in order to improve the availability of the service, i.e., to prevent stations from becoming either
completely full or completely empty. A periodical scan of the network can identify overcrowded or
almost empty stations, which will not be able to support the expected bike demand without human
intervention to balance the system. Bike-sharing usage is estimated by analyzing the historical data,
which makes it possible to identify traffic patterns over time. In particular, we extrapolated bike arrival
and departure rates for each station that depend on the hour, the day of the week, and the month. This
information is used to model each bike station through a BDP. In this way, we are able to estimate the
time until the station becomes either empty or full with a high probability. Rebalancing is performed if
the gain obtained by reallocating bikes exceeds the cost of moving the rebalancing truck. We identify
the stations to visit and a greedy rebalancing path.

The results we obtained show that the model we defined is realistic and flexible, and that a
dynamic approach to rebalancing can outperform static ones and allow system controllers to decide
whether to prioritize maintenance costs or service quality. The dynamic approach can also reduce the
rush hour problem during the weekdays, keeping the quality of the service more stable and avoiding
high failure rates during times of peak demand. The data from the system can also be used for future
planning, as critical stations and areas are easy to identify. Finally, the results show that some of the
issues of rebalancing systems are due to an inaccurate estimation of the demand patterns; in order to

Sensors 2018, 18, 512 20 of 22

be more effective, the system should not just take into account historical data, but also current trends
and weather data.

We would like to stress that, although we made some simplifications for the sake of mathematical
tractability, the model we proposed is of general validity. In particular, the rebalancing optimization
function of Section 3.2 can readily accommodate different costs and rewards by appropriately tuning
its parameters. Furthermore, although we specifically provided a simple heuristic to compute the
rebalancing path for a single vehicle, the rebalancing algorithm (1) considers a fleet with an arbitrary
number of trucks. Similarly, we focused on a scenario where the cost between two stations is
independent of the link direction and is only defined by the Euclidean distance between the nodes,
but our model envisages a directed graph with different costs, so as to model the presence of one-way
streets or other differences in the two directed links between two stations. The simplified framework we
proposed already improves the bike-sharing system, and this encourages us to relax some assumptions
and adopt a more accurate model to obtain further performance enhancements. We plan to consider
multiple vehicles in charge of rebalancing bikes, since in big cities it is unrealistic and probably
inefficient to use a single vehicle; the trip time and the limited capacity of rebalancing trucks should
also be taken into account in the optimization model. The extension to a fleet of vehicles requires that
stations be grouped into almost independent clusters; then, each vehicle will perform rebalancing
only within its associated cluster. This would also allow us to consider the time it takes to perform
rebalancing, resulting in a more accurate modeling of the rebalancing costs. Finally, it would be
interesting to model the user satisfaction and use more complex behavior patterns, e.g., users taking a
bike from a nearby station if the one they choose is empty.

Author Contributions: The mathematical model has developed by F. Chiariotti, C. Pielli, and A. Zanella, and
validated by M. Zorzi. The performance analysis has been carried out by F. Chiariotti and, C. Pielli. The paper has
been written by F. Chiariotti and C. Pielli, and revised by A. Zanella and M. Zorzi.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for smart cities. IEEE Int.
Things J. 2014, 1, 22–32.

2. Shaheen, S.; Guzman, S.; Zhang, H. Bikesharing in Europe, the Americas, and Asia: Past, present, and
future. Transp. Res. Record J. Transp. Res. Board 2010, 2143, 159–167.

3. Midgley, P. The role of smart bike-sharing systems in urban mobility. Journeys 2009, 2, 23–31.
4. Kaspi, M.; Raviv, T.; Tzur, M. Detection of unusable bicycles in bike-sharing systems. Omega 2016,

65, 10–16.
5. Ahillen, M.; Mateo-Babiano, D.; Corcoran, J. Dynamics of bike sharing in Washington, DC and Brisbane,

Australia: Implications for policy and planning. Int. J. Sustain. Transp. 2016, 10, 441–454.
6. Jiménez, P.; Nogal, M.; Caulfield, B.; Pilla, F. Perceptually important points of mobility patterns to

characterise bike sharing systems: The Dublin case. J. Transp. Geogr. 2016, 54, 228–239.
7. Bao, J.; He, T.; Ruan, S.; Li, Y.; Zheng, Y. Planning Bike Lanes based on Sharing-Bikes’ Trajectories. In

Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Halifax, NS, Canada, 13–17 August 2017; pp. 1377–1386.

8. O’Mahony, E.; Shmoys, D.B. Data Analysis and Optimization for (Citi) Bike Sharing. In Proceedings of the
29th AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; pp. 687–694.

9. Chiariotti, F.; Pielli, C.; Cenedese, A.; Zanella, A.; Zorzi, M. Bike Sharing as a Key Smart City Service.
In Proceedings of the International Conference on Modern Circuits and System Technologies (MOCAST),
Thessaloniki, Greece, 7–9 May 2018.

10. Laporte, G.; Meunier, F.; Calvo, R.W. Shared mobility systems. Q. J. Oper. Res. (4OR) 2015, 13, 341–360.
11. DeMaio, P. Bike-sharing: History, impacts, models of provision, and future. J. Public Transp. 2009, 12, 41–56.
12. Fishman, E.; Washington, S.; Haworth, N. Bike share’s impact on car use: Evidence from the United States,

Great Britain, and Australia. Transp. Res. Part D 2014, 31, 13–20.

Sensors 2018, 18, 512 21 of 22

13. Rojas-Rueda, D.; de Nazelle, A.; Tainio, M.; Nieuwenhuijsen, M.J. The health risks and benefits of cycling in
urban environments compared with car use: Health impact assessment study. Br. Med. J. 2011, 343, d4521.

14. Cohen, A.; Shaheen, S. Planning for Shared Mobility; American Planning Association: Chicago, IL, USA, 2016.
15. Townsend, A.M. Smart Cities: Big Data, Civic Hackers, and the Quest for a New Utopia; WW Norton &

Company: New York, NY, USA, 2013.
16. Benevolo, C.; Dameri, R.P.; D’Auria, B. Smart mobility in smart city. In Empowering Organizations; Springer:

Berlin, Germany, 2016; pp. 13–28.
17. Chiariotti, F.; Condoluci, M.; Mahmoodi, T.; Zanella, A. SymbioCity: Smart cities for smarter networks.

Trans. Emerg. Telecommun. Technol. 2018, 29, e3206.
18. Jäppinen, S.; Toivonen, T.; Salonen, M. Modelling the potential effect of shared bicycles on public transport

travel times in Greater Helsinki: An open data approach. Appl. Geogr. 2013, 43, 13–24.
19. Martin, E.W.; Shaheen, S.A. Evaluating public transit modal shift dynamics in response to bikesharing: A

tale of two US cities. J. Transp. Geogr. 2014, 41, 315–324.
20. Boshoff, D.G. Sustainable Transport Calls for Sustainable Infrastructure. In QUAESTI-Virtual

Multidisciplinary Conference, EDIS-Publishing Institution of the University of Zilina: Zilina, Slovakia,
2016; Volume 1, pp. 153–159.

21. Faghih-Imani, A.; Eluru, N.; El-Geneidy, A.M.; Rabbat, M.; Haq, U. How land-use and urban form
impact bicycle flows: Evidence from the bicycle-sharing system (BIXI) in Montreal. J. Transp. Geogr. 2014,
41, 306–314.

22. Buck, D.; Buehler, R. Bike lanes and other determinants of Capital bikeshare trips. In Proceedings of the
91st Transportation research board annual meeting, Washington, DC, USA, 22–26 January 2012; Volume 12,
pp. 3539–3550.

23. Mateo-Babiano, I.; Bean, R.; Corcoran, J.; Pojani, D. How does our natural and built environment affect the
use of bicycle sharing? Transp. Res. Part A 2016, 94, 295–307.

24. Kumar, A.; Teo, K.M. A Systems Perspective to Commuter Cycling in Urban Mobility. In INCOSE
International Symposium; Wiley Online Library: Hoboken, NJ, USA, 2013; Volume 23, pp. 1282–1294.

25. Johnson, B.J.; White, S.S. Promoting sustainability through transportation infrastructure? Innovation and
inertia in the Kansas City metropolitan area. J. Urban Plan. Dev. 2010, 136, 303–313.

26. Delucchi, M.; Kurani, K.S. How to have sustainable transportation without making people drive less or
give up suburban living. J. Urban Plan. Dev. 2013, 140, 04014008.

27. Schuijbroek, J.; Hampshire, R.C.; Van Hoeve, W.J. Inventory rebalancing and vehicle routing in bike
sharing systems. Eur. J. Oper. Res. 2017, 257, 992–1004.

28. Morse, P.M. Queues, Inventories and Maintenance: The Analysis of Operational Systems with Variable Demand
and Supply; Courier Corporation: North Chelmsford, MA, USA, 2004.

29. Caggiani, L.; Ottomanelli, M. A dynamic simulation based model for optimal fleet repositioning in
bike-sharing systems. Procedia-Soc. Behav. Sci. 2013, 87, 203–210.

30. Vogel, P.; Greiser, T.; Mattfeld, D.C. Understanding bike-sharing systems using data mining: Exploring
activity patterns. Procedia-Soc. Behav. Sci. 2011, 20, 514–523.

31. Faghih-Imani, A.; Eluru, N. Incorporating the impact of spatio-temporal interactions on bicycle sharing
system demand: A case study of New York CitiBike system. J. Transp. Geogr. 2016, 54, 218–227.

32. Fricker, C.; Gast, N. Incentives and redistribution in homogeneous bike-sharing systems with stations of
finite capacity. EURO J. Transp. Logist. 2016, 5, 261–291.

33. Waserhole, A.; Jost, V. Pricing in vehicle sharing systems: Optimization in queuing networks with product
forms. EURO J. Transp. Logist. 2016, 5, 293–320.

34. Chemla, D.; Meunier, F.; Calvo, R.W. Bike sharing systems: Solving the static rebalancing problem.
Discret. Optim. 2013, 10, 120–146.

35. Ho, S.C.; Szeto, W. Solving a static repositioning problem in bike-sharing systems using iterated tabu
search. Transp. Res. Part E 2014, 69, 180–198.

36. Raviv, T.; Tzur, M.; Forma, I.A. Static repositioning in a bike-sharing system: Models and solution
approaches. EURO J. Transp. Logist. 2013, 2, 187–229.

37. Di Gaspero, L.; Rendl, A.; Urli, T. Balancing bike sharing systems with constraint programming. Constraints
2016, 21, 318–348.

Sensors 2018, 18, 512 22 of 22

38. Forma, I.A.; Raviv, T.; Tzur, M. A 3-step math heuristic for the static repositioning problem in bike-sharing
systems. Transp. Res. Part B 2015, 71, 230–247.

39. Dell’Amico, M.; Iori, M.; Novellani, S.; Stützle, T. A destroy and repair algorithm for the bike sharing
rebalancing problem. Comput. Oper. Res. 2016, 71, 149–162.

40. Dell’Amico, M.; Hadjicostantinou, E.; Iori, M.; Novellani, S. The bike sharing rebalancing problem:
Mathematical formulations and benchmark instances. Omega 2014, 45, 7–19.

41. Contardo, C.; Morency, C.; Rousseau, L.M. Balancing a Dynamic Public Bike-Sharing System; CIRRELT:
Montreal, QC, Canada, 2012; Volume 4.

42. Dantzig, G.B.; Wolfe, P. Decomposition principle for linear programs. Oper. Res. 1960, 8, 101–111.
43. Benders, J.F. Partitioning procedures for solving mixed-variables programming problems. Numer. Math.

1962, 4, 238–252.
44. Erdoğan, G.; Battarra, M.; Calvo, R.W. An exact algorithm for the static rebalancing problem arising in

bicycle sharing systems. Eur. J. Oper. Res. 2015, 245, 667–679.
45. Kloimüllner, C.; Papazek, P.; Hu, B.; Raidl, G.R. Balancing bicycle sharing systems: An approach for the

dynamic case. In Proceedings of the European Conference on Evolutionary Computation in Combinatorial
Optimization, Granada, Spain, 23–25 April 2014; pp. 73–84.

46. Lu, C.C. Robust multi-period fleet allocation models for bike-sharing systems. Netw. Spat. Econ. 2016,
16, 61–82.

47. Brinkmann, J.; Ulmer, M.W.; Mattfeld, D.C. Short-term strategies for stochastic inventory routing in bike
sharing systems. Transp. Res. Procedia 2015, 10, 364–373.

48. Espegren, H.M.; Kristianslund, J.; Andersson, H.; Fagerholt, K. The Static Bicycle Repositioning
Problem-Literature Survey and New Formulation. In Proceedings of the International Conference
on Computational Logistics, Lisbon, Portugal, 7–9 September 2016; pp. 337–351.

49. Fischer, W.; Meier-Hellstern, K. The Markov-modulated Poisson process (MMPP) cookbook. Perform. Eval.
1993, 18, 149–171.

50. Krinik, A.; Mortensen, C. Transient probability functions of finite birth-death processes with catastrophes.
J. Stat. Plan. Inference 2007, 137, 1530–1543.

51. Crawford, F.W.; Suchard, M.A. Transition probabilities for general birth-death processes with applications
in ecology, genetics, and evolution. J. Math. Biol. 2012, 65, 553–580.

52. Skellam, J.G. The frequency distribution of the difference between two Poisson variates belonging to
different populations. J. R. Stat. Soc. Ser. A 1946, 109, 296.

53. Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Applied Mathematics Series; U.S.
Government Printing Office: Washington, DC, USA, 1966; Volume 55.

54. Laporte, G. The vehicle routing problem: An overview of exact and approximate algorithms. Eur. J.
Oper. Res. 1992, 59, 345–358.

55. Bellmore, M.; Nemhauser, G.L. The traveling salesman problem: A survey. Oper. Res. 1968, 16, 538–558.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Bike Sharing as a Smart Service
	Traffic Analysis and Rebalancing

	System Model
	Survival Time
	Network-Wide Optimization

	Data Analysis
	Results
	Conclusions

