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Abstract: A new methodology for the estimation of tyre-contact forces is presented. The new
procedure is an evolution of a previous method based on harmonic elimination techniques developed
with the aim of producing low cost dynamometric wheels. While the original method required
stress measurement in many rim radial lines and the fulfillment of some rigid conditions of
symmetry, the new methodology described in this article significantly reduces the number of
required measurement points and greatly relaxes symmetry constraints. This can be done without
compromising the estimation error level. The reduction of the number of measuring radial lines
increases the ripple of demodulated signals due to non-eliminated higher order harmonics. Therefore,
it is necessary to adapt the calibration procedure to this new scenario. A new calibration procedure
that takes into account angular position of the wheel is completely described. This new methodology
is tested on a standard commercial five-spoke car wheel. Obtained results are qualitatively compared
to those derived from the application of former methodology leading to the conclusion that the new
method is both simpler and more robust due to the reduction in the number of measuring points,
while contact forces’ estimation error remains at an acceptable level.

Keywords: measuring wheel; dynamometric wheel; wheel transducer; forces measurement;
tyre/road contact

1. Introduction

Tyres are an important element in road vehicles because of the influence they have on longitudinal
and lateral dynamics, damping of vibrations induced by road surface irregularities and in transmitting
the normal loads to the ground. Tyre-road contact forces and moments play an important role when
studying the dynamic behaviour of the vehicle and attempting to improve vehicle handling, riding
comfort and even vehicle safety.

Knowledge of the contact forces and moments could be used to validate the vehicle’s mathematical
models, checking their accuracy with respect to reality [1]. Another field where this knowledge would
be potentially advantageous is in improving current active safety systems such as ABS (Anti-lock Brake
System), ESP (Electronic Stability Program) and TCS (Traction Control System). These systems rely
on the indirect estimation of the contact forces and moments and other dynamic variables to detect,
prevent and minimize dangerous situations that can arise while driving the vehicle [2–8]. Consequently,
the direct measurement of the aforementioned tyre-road contact forces would allow a more direct and
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reliable approach to be taken, as well as reducing the degree of complexity of the electronic control
units, since it would be no longer necessary to use complicated estimation algorithms [9].

However, even though there are commercial dynamometric wheels (or wheel force transducers)
available for the direct measurement of the contact forces, their cost is sometimes higher than that of
the vehicle itself. This excessive cost effectively prevents their use in production vehicles, limiting
the possibility for further improvement of active vehicle safety systems [10,11]. These commercial
dynamometric wheels are modular for the sake of versatility and can be used with a wide range of hub
configurations. They are composed of an adaptor part (modified rim or hub adaptor) where the six-axis
wheel force transducer is mounted. Once assembled, it can be handled as a normal wheel.

However, this approach has a disadvantage that when the system where measurements are being
taken is modified in a non-negligible way, the wheel’s moments of inertia and the unsprung mass will
not be the same as those of the real system. Therefore, the contact forces measured by these commercial
systems can differ significantly from real working conditions.

In [12], a new method was proposed which worked around the disadvantages of most of the
existing commercial dynamometric wheels by instrumenting the standard wheels of vehicles. In this
case, although the unsprung mass is slightly increased, the dynamic behaviour is not significantly
altered. The method presented a linear combination of the strain signals obtained in different
radial lines of the same measurement circumference, with the aim of obtaining a ‘continuous’ signal
independent of the wheel rotation angle and proportional to the force applied. For the application of
the method, it is necessary that higher order non-eliminated harmonics are negligible compared to the
dominant one. The method was applied to a ten-spoke wheel and the previous condition was met.
However, it was also suggested that fewer measuring radial lines would reduce the number of higher
harmonics eliminated. Given that commercial rims do not usually have a high number of spokes,
the interest of studying a wheel with fewer radial lines became apparent.

A scenario with a reduced number of radial lines was studied in [13] using the same ten-spoke
wheel but only considering strain signals from five of the ten radial lines. In addition, improvements to
the aforementioned method by relaxing the symmetry conditions needed in order to cancel out more
harmonics were presented. Even in [12], the strain signals measured were not completely equivalent,
mainly due to the difficulty of sticking the gauges in precise and exact locations. Not fulfilling the
symmetry requirements produces a higher ripple on the ‘continuous’ signals. This would also result in
an increase of the estimation error because the higher order harmonics would be less and less negligible.
In order to solve this problem and to reduce the estimation error of contact forces, an improvement
to the method consisting of using a calibration matrix dependent on the angle rotated by the wheel
instead of using one with constant values was proposed in [13].

Another improvement presented in [13] is the possibility to reduce the number of circumferences
from three to two without a significant change in the estimation error. This was possible by giving
more importance to the signals where the second order harmonic is dominant. These improvements
have been patented (Patent ES2566048).

In this paper, these improvements are explained in a simplified manner and applied to a five-spoke
commercial wheel.

2. Description of the Measurement System

2.1. Measurement Method

The relationship between the strain signal εij obtained at the measuring circumference i and
at the measuring radial line j (see Figure 1a) and the forces and moments is assumed to be linear.
The linear coefficients, or influence functions, are periodic over the angle rotated by the wheel and
thus can be expressed as a Fourier series expansion. This equation already presented in [12,13] has
been generalized assuming that the symmetry and antisymmetry conditions of the influence functions
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are no longer enforced, relaxing consequently the symmetry requirements of the rim and taking into
account the minimal displacements while sticking the gauges to the rim.

(a) (b)

Figure 1. Definition of the notation used. (a) definition of measuring circumference and measuring
radial line; (b) definition of angular coordinates.
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(1)

γij = αi + β j, (2)

where

• FX , FY and FZ are, respectively, the X, Y and Z components of the contact force.
• MX , MY and MZ are, respectively, the X, Y and Z components of the contact moment.
• εij is the strain measured at the circumference i and the measuring radial line j in the

radial direction.
• ϕX

ij , ϕY
ij and ϕZ

ij are the influence functions that account for the effect of the forces FX , FY and FZ on
the strain εij. The influence functions represent the physical concept of the strain generated by
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a unit force and therefore are an indirect measure of the stiffness of the rim. Its units are µε/N or
also µm/(m · N).

• ψX
ij , ψY

ij and ψZ
ij are the influence functions that show the effect of the moments MX , MY and MZ on

the strain εij. These influence functions are usually determined by means of a calibration process:
a set of static tests applying known forces and moments and registering the strains obtained at
the points of measurement. They may also be obtained by means of a finite element analysis if
a good enough model is available for the rim being studied.

• A f1
ijk is the amplitude of the k cosine term of the strain signal generated in the measuring radial

line j and the measuring circumference i by a FX unit force applied on the contact patch. Similarly,
A f2

ijk, A f3
ijk, A f4

ijk, A f5
ijk and A f6

ijk are the amplitudes of the k cosine term of the strain signals generated
at the measuring point ij by FY, FZ, MX , MY and MZ unit stresses, respectively.

• B f1
ijk is the amplitude of the k sine term of the strain signal generated in the measuring radial line j

and the measuring circumference i by a FX unit force applied on the contact area. Similarly, B f2
ijk,

B f3
ijk, B f4

ijk, B f5
ijk and B f6

ijk are the amplitudes of the k sine term of the strain signals generated at the
measuring point ij by FY, FZ, MX , MY and MZ unit stresses, respectively.

• γij is the angle between the line where the forces are applied and the radial line j.
• αi is the angle between the line where the forces are applied and the reference radial line.
• β j is the angle between the radial line j and the reference radial line (see Figure 1b for details).
• ζi comprehends all the factors that do not depend on the angular position γij such as temperature,

centrifugal forces and pressure.

If the measuring point j of the measuring circumference i is placed exactly on a plane of symmetry
of the wheel, the terms A f1

ijk, A f5
ijk, A f6

ijk, B f2
ijk, B f3

ijk and B f4
ijk would be null. This is consistent with [12],

where there are certain forces and moments (FX, MY and MZ) that generate antisymmetric strain
signals and, as a result, only sine terms appear in the Fourier series expansion. Inversely, the forces and
moments MX , FY and FZ generate symmetric strain signals and only cosine terms appear in the Fourier
series expansion. Only in the case where all the strain gauges of the same measuring circumference are
bonded at the same radial distance can the same signals then be obtained but with a phase difference,
so that A fm

i1k = A fm
i2k = · · · = A fm

inrk and B fm
i1k = B fm

i2k = · · · = B fm
inrk for m = 1, 2, . . . , 6. Consequently, all

the strain signals of the same measuring circumference would have the same harmonic composition.
For the application of the measurement method, the strain signals of the same circumference i are

combined to annul the effect of γij. In [12], it is shown that the first harmonic is generally the dominant
one in the strain signals generated by the different forces and moments, except for the moment acting
on the y-axis, which generates strain signals in which the first harmonic is approximately null and the
second harmonic is the dominant one. Therefore, signals proportional to the amplitude of the first and
second harmonic of the strains are obtained.

It is proved in [13] that the optimal combinations of the strain signals obtained at the same
measuring circumference coincide with the ones presented in [12], with the difference being that these
signals will not be constant with respect to the rotation angle and a non-negligible ripple will appear.
The following combinations must be made to compute the signals where the first harmonic is the
dominant one, ESi and EAi:
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2
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nr denotes the number of measuring radial lines. nS and nA denote the number of circumferences
where signals ESi and EAi are computed. n′S and n′A are the number of circumferences where the
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signals whose dominant harmonic is the second one, E
′
Si and E

′
Ai, are calculated. The latter can be

obtained as follows:

E
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E
′
Ai (t) =

2
nr

nr

∑
j=1

(
εij
(
γij, t

)
· sin

(
2
(

αi + (j− 1)
2π

nr

)))
. (6)

2.2. Dependence of the Demodulated Signals E with the Wheel Rotation

The previous signals, ES, EA, E
′
Si and E

′
Ai, are theoretically continuous and therefore independent

of the rotation angle of the wheel. However, as explained in [12], these signals present some other
harmonics besides the first (for signals ESi and EAi) and the second one (for signals E

′
Si and E

′
Si).

This effect is increased when the measuring points are not located exactly on planes of symmetry,
either because these simply do not exist due to the bolt pattern, as shown in Figure 2, or because
the signals measured at different radial lines are not equivalent due to minor deviations introduced
during the rim manufacturing process or to the small random errors made when bonding the strain
gauges. Since this task is usually done manually, it is very difficult to place the sensors exactly at
the required position. Nonetheless, if the ratio between the non-eliminated higher order harmonics
and the dominant one from which the forces and moments will be computed is negligible, then these
signals could be assumed to be constant and the dependence on the rotation angle of the wheel would
be cancelled. This is the case of the wheel presented in the previous paper [12].

(a) (b)

Figure 2. Planes of symmetry on the rims. (a) case where the rim has only one plane of symmetry;
(b) case where the rim has five planes of symmetry.

However, in some cases, such a ratio cannot be considered negligible and, consequently, if these
signals were assumed to be independent of the angle of rotation, the error made in the estimation
of contact forces and moments would be large. The probability of such being the case will be higher
when using a lower number of measuring radial lines because, as it is shown in [13], the fewer radial
lines used for measurement, the fewer higher order harmonics that can be eliminated.

Therefore, an improvement in [13] was proposed: instead of using a constant calibration matrix,
each element of which is obtained as the ratio between the average value of the corresponding signal
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E and the force applied, as is explained in [12], the improved method uses a variable calibration matrix
dependent on the angular position of the wheel.

2.3. Computation of the Calibration Matrices

The method of computation of the calibration matrices is very similar to that explained in [12].
A set of static tests is carried out, where the forces applied are known and the strains in the measuring
points are recorded for various different equidistant angular positions for a complete rotation of the
wheel. Employing (1) with sufficient data, the influence functions, ϕX

ij , ϕY
ij , ϕZ

ij , ψX
ij , ψY

ij and ψZ
ij , can be

obtained (usually, more data is available than the minimum necessary to solve the system of equations
and therefore the system is solved by minimizing the square-root error). These influence functions
describe the strain field of the rim when the corresponding unit force is applied and they depend on
the angle rotated by the wheel.

The problem to be solved is finding the linear application, which relates the demodulated signals
E with the forces actuating on the wheel:

f (t) = B (α) e (α, t) , (7)

where f (t) is the vector containing the contact forces and moments. Due to the distinction between
symmetric and antisymmetric stress introduced in [12], the order of the elements is the following:

f (t) =
[

MX (t) FY (t) FZ (t) FX (t) MY (t) MZ (t)
]T

, (8)

and

e (α, t) =[ES1 (α, t) EA1 (α, t) · · · ESn1 (α, t) EAn1 (α, t)

E
′
S1 (α, t) E

′
A1 (α, t) · · · E

′
Sn2

(α, t) E
′
An2

(α, t)]T ,
(9)

where n1 is the number of measuring circumferences where the first harmonic dependent signals ESi
and EAi are computed and n2, the number of measuring circumferences where the second harmonic
dependent signals, E

′
Si and E

′
Ai are computed. ne = 2n1 + 2n2 will denote the number of elements in

vector e.
Bearing in mind that the influence functions previously obtained are in fact the unit strain per

unit force applied, it is possible to calculate the demodulated signals associated with each of these
strains. For example, if the influence function ϕZ

ij corresponding to the FZ force were considered,
the corresponding f (t) vector would be:

f (t) =
[

0 0 1 0 0 0
]T

. (10)

Hence, all the influence functions can be collected in the following matrix equation:

B (α)6×ne
A (α) = I6, (11)

where A (α) represents the matrix composed of the vectors e (α) of each influence function arranged
by columns and I is the 6× 6 identity matrix. It should be noted that the influence functions are not
time dependent. Time dependence is a consequence of the variation of the force, f (t), but since the
influence functions represent the strain per unit force, dependence on time no longer applies.

Finally, the calibration matrix B (α) is obtained as the Moore–Penrose pseudoinverse of A (α).
The procedure explained here is the same as that used in [12]. Previously, matrix A in Equation (11)

was composed of the average values of e (α) over α because the signals were considered constant
and independent of the rotation of the wheel, considering the ripple negligible. In [13], it was
proposed solving (11) for every angular position α considered in the static calibration tests. For angular
positions in-between, the elements of the intermediate matrix can be obtained through an interpolation
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process based on Newton’s divided differences interpolation polynomial. This step introduces little
computational complexity because the angular position is already known, since it was also needed to
compute the signals e.

2.4. Relationship between the Influence Functions

In [12], it was stated that, in order to obtain the symmetric strains, FZ, FY and MX , at least three
measuring circumferences were needed to compute signal ESi. It was further explained that, if the
calibration matrix had a conditioning problem, at least one signal dependent on the second harmonic,
E
′
Si, would be necessary. A more detailed study of the finite element models presented in [12] showed

that the conditioning problem will always exist, as explained in [13]. Figure 3 shows the proportional
relationship between the first harmonic of the influence functions produced by FY and MX, ϕY

ij and

ψX
ij , respectively, in both models, lorry and car wheels. This proportionality has been demonstrated for

the first harmonic, but it will also apply to higher order harmonics. A physical explanation of this is
that when the force FY is applied at a point different from the real one, for the system to be equivalent,
a moment MX needs to be introduced.

Figure 3. Ratio between the amplitudes of the first harmonic of the strain signals generated by
a 150 N m MX moment and a force FY of 5000 N

Similarly, there will be a proportionality between the strains FX and MY.

2.5. Final System of Equations

In order to measure the three forces and three moments on the tyre-road contact area, it is
necessary to compute a set of at least three different signals ESi or E

′
Si and another set of three different

signals EAi or E
′
Ai so that the system of Equation (7) is determined. Therefore, nS + n

′
S ≥ 3 and

nA + n
′
A ≥ 3.

Additionally, it is necessary to compute a signal E
′
Ai depending on the second harmonic at least in

one circumference because, as explained in [12], the MY strain signal has a second harmonic dominance.
Furthermore, as it has been explained in 2.4, due to the relationship between the influence functions ϕY

ij

and ψX
ij , it is necessary to compute at least a signal E

′
Si to ensure that the system (11) is well-conditioned.

Therefore, ideally, nS ≥ 2, n
′
S ≥ 1, nA ≥ 2 and n

′
A ≥ 1. This is another improvement with respect to

the original method presented in [12] because it allows for the number of measuring circumferences to
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be reduced from three to two, thus increasing the robustness of the system since fewer strain gauges
are needed.

3. Static Calibration

3.1. Semi-Automated Workbench

In order to obtain the calibration matrices, B (α), for measuring the forces and the moments, a set
of static experimental tests has to be carried out. For this purpose, a workbench was designed and
presented on [12]. In parallel with the work presented in this paper, a new, semi-automated workbench
has been designed and built as shown in Figure 4. Nonetheless, for the tests carried out and presented
on this paper, the previous workbench has been used because the new one was not still operational.

Figure 4. Semi-automatic workbench.

The semi-automated workbench has three electro-mechanical actuators—100 kN in the vertical
axis and 50kN in the horizontal ones—and a servomotor that controls the angle turned by the wheel
relative to the reference radius, with an accuracy of 0.01 degrees. The main advantages with regards to
the older workbench are:

• Substitution of the hydraulic cylinders for electro-mechanical systems that are more accurate,
easier to control both in position and force, and therefore with better repeatability.

• Increase in the load capacity of the workbench allowing for testing both car and bus/truck wheels.
• Automation of some of the tasks needed to perform the tests: loading and unloading, rotation of

the wheel, braking, etc.

The test procedure is basically the same explained in [12].
The automation of the calibration tests requires the use of both an embedded electronic system

and a telemetry system. The previous workbench used wires to connect the strain gauges directly
with the data acquisition system but the automatic rotation of the wheel in the new semi-automated
workbench does not permit their use.

3.2. Embedded Electronics

The embedded electronics are responsible for the acquisition and processing of gauge signals,
the computation of forces and the transmission of results to wherever they are going to be used outside
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of the rim. Due to the specific requirements of the acquisition/computing device, a bespoke design
had to be built and tested.

For standard application in a vehicle, rims are built for strength to ensure that they can withstand
high load conditions such as bumps or collisions with kerbs. As a result, rims will only suffer very
small deformations under normal driving conditions and gauge signals will be weak. For this reason,
one of the requirements of the embedded system is that it must be sensitive enough to accurately detect
and process such weak strain gauge signals. Furthermore, the quarter bridge gauge configuration,
which is often used, has the least possible signal gain. In fact, to detect strain variations of 1µε, which
is necessary to accurately determine the tyre-road contact forces, the electronics must be capable of
measuring voltage differences in the order of µV. To work with such weak signals, a very sensitive set
of A/D converters should be used.

In order to estimate tyre-road contact forces, the numerical method presented in 2.1
mathematically combines the frequency characteristics of measured strains, both in their amplitude
and phase (vid. Equations (3)–(6)). For this reason, it is crucial that all strain signals be obtained
simultaneously for every sample. This means that all the gauges need to be well synchronized. For this
reason, electronic solutions based on time multiplexing of channels being sampled were discarded.
Such approaches would introduce time lapses between individual channels in the same sample.

It should also be considered that the electronic board will be located in a real vehicle rim and
will operate while it is spinning in real road runs, so it will be subjected to challenging and variable
environments where exposure to dust, electrical noise, centrifugal forces, huge accelerations and
significant temperature changes can be an issue.

Finally, a telemetry system based on a Wi-Fi module permits the embedded electronics to
communicate with the remote host application. Figure 5 shows a diagram of the different parts
composing the electronic board.

Figure 5. Schematic view of main blocks in the acquisition device.

The design criteria required to meet the specifications indicated above can be summarized in the
following key points:

• high sensitivity, accuracy, precision and resolution,
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• sufficient noise immunity,
• sufficient data acquisition speed,
• synchronous sampling of the whole set of strain gauges located at the measuring points,
• low dependence on temperature variations,
• small size, low weight and low power consumption,
• wired and wireless operating modes and
• sufficient numerical computing power.

Figure 6 shows the current electronic board, which is an initial prototype designed following the
previous specifications. Currently, another board is under development with a reduced size and some
improved characteristics such as a better noise immunity.

Figure 6. Electronic board prototype designed specifically for the dynamometric wheel.

3.3. Calibration of the Wheel

The wheel used to validate the improvements presented in this paper is a five-spoke Opel Astra c©
wheel instrumented with five measuring radial lines and three measuring circumferences (see Figure 4).
The wheel has been tested applying only a vertical and a lateral force, FZ and FY in the same way
as was explained in [12] (these tests have been performed with the previous workbench presented
in [12]). Each test has been replicated to ensure repeatability. Between tests, the wheel has been
rotated 9◦ because this will provide enough points of the influence functions and calibration matrix
and is a divisor of 72◦, which is the angle between spokes. For the intermediate angular positions,
interpolation methods are used. This calibration process differs with the usual one of calibrating on
a rolling element in order to identify how the values dynamically change as a function of the angular
position. However, as the influence functions are the characterization of the strain field of the rim in
a specific measurement point, it is something inherent to the rim and, consequently, it is assumed to
be independent to dynamic variables as the angular velocity of the rim. Furthermore, as the strain is
assumed linear—and in [13] is shown that the assumption holds—the static calibration presented is
considered sufficient to be able to estimate the forces and moments.

The tests that measure the effect of MX on the strains and that were explained in [12] have not
been performed in this work. Consequently, the effect of the moments has not been taken into account
because, without enough data available on its impact, this would only increase the noise on their own
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influence functions, ψX
ij , ψY

ij and ψZ
ij , as can be seen in Figure 7. It would even affect the influence

functions associated with the forces, especially in the circumference where the weaker strain signals
are measured, as shown in Figures 8 and 9. This is one limitation of the method, although the method
remains valid as long as the effect of these moments can be considered negligible, as is the case with
smooth manoeuvers where the tyre deformation is not huge.

(a) (b)

Figure 7. Influence function ψX
ij : unit strain produced by a unit moment MX . (a) inner measuring

circumference; (b) outer measuring circumference.

(a) (b)

Figure 8. Influence function ϕY
ij : unit strain produced by a unit force FY . (a) inner measuring

circumference; (b) outer measuring circumference.
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(a) (b)

Figure 9. Influence function ϕZ
ij : unit strain produced by a unit force FZ. (a) inner measuring

circumference; (b) outer measuring circumference.

Figure 9a shows the influence function of force FZ, ϕZ
ij , measured in the first or innermost

circumference. It can be seen that, due to factors such as the lack of precision in gauge installation
and/or asymmetries introduced during the rim manufacturing process, the signals obtained in each
spoke are not completely equivalent, which was one of the symmetry requirements of the method.
As a result, since the harmonic composition is not exactly the same, the ripple in the demodulated
signals ESi, EAi, E

′
Si and E

′
Ai will be non-negligible, especially in the second harmonic dependent

signals E
′
Si and E

′
Ai.

In order to validate the improvements presented in [13], several configurations of the
dynamometric wheel have been assessed:

• Fifteen strain gauges distributed amongst five measuring radial lines and three measuring
circumferences.

• Minimum set of strain gauges: two measuring circumferences and five radial lines. Furthermore,
in order to study the influence of the stiffness of the rim with this method, two of the three possible
circumference combinations have been studied: the best option was to use the circumferences
closest to the centre of the wheel, where the strain is greater; and the worst one was to use the
outer two circumferences.

Furthermore, a calibration method that assumes the ripple to be negligible following [12] has also
been used to study the resulting errors.

4. Experimental Results

4.1. Relationship between the Amplitudes of the Strain Signals Generated by MX and FY

The relationship between the influence functions explained in 2.4 and studied with a finite element
model was tested using experimental data obtained in the set of calibration tests. The results for three
of the five measuring lines are shown in Figure 10. Each of the points in the figure correspond to one
of the measuring circumferences. The linear relationship between the influence functions obtained
in each circumference is easily seen in Figure 10b. However, the linear relationship is not so obvious
in Figure 10a and even nonexistent in Figure 10c. This is due to high noise in the influence functions
corresponding to the moment MX, ψX

ij , which, in turn, results from not having made the moment’s
tests for a good characterization of these signals, as was explained in 3.3 and shown in Figure 7.
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(a) (b)

(c)

Figure 10. Relationship between the influence functions ψX
ij and ϕY

ij . (a) measuring radial line 1;
(b) measuring radial line 3; (c) measuring radial line 5.

4.2. Demodulated Signals and Influence of the Higher Order Harmonics

Once the influence functions, ϕY
ij and ϕZ

ij , have been obtained, it is possible to calculate virtual
strain signals known virtual forces, FZ and FY, and using (1). Knowing the angle rotated by the
wheel and combining the strain signals as per (3)–(6), the demodulated signal can be determined.
In Figure 11, the strain signals obtained for a force FZ of 6000 N and FY of 3000 N are shown as well as
the demodulated signals ESi, EAi, E

′
Si and E

′
Ai. Due to the fact that the forces simulated are symmetrical,

EAi and E
′
Ai oscillate around the null value. However, the most important observation is that the

fifth harmonic is not negligible, especially on the second harmonic dependent signals, E
′
Si and E

′
Ai.

Table 1 shows the average values of the demodulated signals with their percentage variation. The huge
variation in the antisymmetrical signals is due to oscillation around a very small value, near zero.
Furthermore, the percentage increases with the number of measuring circumferences, corresponding
to a weaker sensitivity in the influence functions. In addition, the variance is higher in the signals
corresponding to the second harmonic.
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(a) (b)

(c)

Figure 11. Strain signals generated when a combination of forces FZ = 6000 N and FY = 3000 N
acts at he contact patch and the demodulated signals corresponding to the first and second harmonic,
ESi, EAi, E

′

Si and E
′

Ai. (a) measurement circumference 1 (inner); (b) measurement circumference 2;
(c) measurement circumference 3 (outer).

Table 1. Values of the demodulated signals.

i = 1 i = 2 i = 3

ES 353.79 ± 2.28% 116.41 ± 7.54% −62.70 ± 15.41%
EA 4.11 ± 297.39% 4.31 ± 253.22% 1.29 ± 644.85%
E
′

S 120.10 ± 10.83% 97.83 ± 17.04% 33.42 ± 25.91%
E
′

A 3.47 ± 434.61% 5.27 ± 415.75% 2.76 ± 511.45%

Finally, in Figure 12, the estimated forces obtained using the constant calibration matrix (analogous
to the one presented in [12]) are shown as well as the virtual force used to generate the strain signals.
The constant calibration matrix for the fifteen measurement points is:
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

0 0.0729 0.0225
0 6.8109× 10−4 3.4377× 10−4

0 0.0216 0.0086
0 8.5200× 10−4 2.9181× 10−4

0 −0.0129 −0.0040
0 2.1746× 10−4 1.0569× 10−4

0 0.0086 0.0157
0 1.7693× 10−4 4.8916× 10−4

0 0.0067 0.0129
0 3.7407× 10−4 6.9114× 10−4

0 0.0024 0.0044
0 1.5270× 10−4 3.8416× 10−4




MX(t)
FY(t)
FZ(t)

 =



ES1

EA1
ES2
EA2

ES3
EA3

E
′
S1

E
′
A1

E
′
S2

E
′
A2

E
′
S3

E
′
A3



, (12)

where the column corresponding to the moment MX is null because, as explained in 3.3, the influence
of the moments has not been considered.

Figure 12. Virtual and estimated forces.

4.3. Errors While Estimating Forces

Some of the test results from the calibration workbench have not been used to obtain the influence
functions and the calibration matrices. These results have instead been used to validate and estimate
the expected errors by comparing the measurement of the load cell integrated in the actuators
of the workbench with the force estimated according with the method presented in this research.
A comparison between the different configurations explained in 3.3 has been made to determine the
best way of instrumenting the tire. Figure 13 shows the absolute and relative errors and Tables 2 and 3
show the maximum and mean values of the relative errors obtained using the three options studied
when estimating FY and FZ, respectively.
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(a) (b)

(c) (d)

Figure 13. Comparison between the absolute and relative errors obtained when using matrices
depending on the angular position using different measurement circumferences (new method
proposed). (a) absolute error in the measurement of FY ; (b) absolute error in the measurement of
FZ; (c) relative error in the measurement of FY ; (d) relative error in the measurement of FZ.

Table 2. Mean and maximum value of the relative error when estimating FY .

i = 1, 2, 3 i = 1, 2 i = 2, 3

ēα 1.6768% 1.6880% 2.3793%
maxeα 5.9297% 6.2446% 6.6426%

Table 3. Mean and maximum value of the relative error when estimating FZ.

i = 1, 2, 3 i = 1, 2 i = 2, 3

ēα 1.7651% 1.7161% 2.0885%
maxeα 4.5502% 4.6518% 5.7134%

It can be seen that the option based on two measuring circumferences has approximately the
same mean error as that associated with using three circumferences, around 1.7% when estimating
FY and less than 1.8% in the case of FZ. Therefore, it is feasible to reduce the number of measuring
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circumferences without any related relevant increase in the estimation error. Between choosing the
circumferences with a higher strain signal or the ones with a weaker one, there is no statistically
significant difference, although the errors are somewhat higher in the latter case (2.4% error instead of
1.7% when estimating FY and 2.1% error instead of 1.7% in the case of FY). The maximum errors are
less than 7% and are caused mostly by the noise in the signals. Currently, efforts are being made to
improve the design of the analog front-end in order to ensure a higher resolution and noise immunity
of the strain signals with a better signal acquisition and conditioning unit. As it was previously stated,
the stiffness of the rims is really high and consequently the gauge signals are weak.

On the other hand, in Figure 14, the absolute and relative errors calculated for the case where
the constant calibration matrix is used are presented. The maximum relative error obtained when
estimating FY is 22.065%, very similar to the 21.0441% obtained when estimating FZ. The mean relative
errors of the estimation of FY and FZ are 8.6563% and 8.1652%, respectively. Therefore, the constant
calibration matrix presented in [12] has some limitations when applied to the case of wheels with fewer
spokes or at least when the higher order harmonics are not negligible and consequently is superseded
by the new method proposed in the present paper.

(a) (b)

(c)

Figure 14. Absolute and relative errors obtained when using the superseded constant matrix method.
(a) absolute error in the measurement of FY ; (b) absolute error in the measurement of FZ; (c) relative
error in the measurement of FY and FZ.
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5. Conclusions

In the present paper, the effect of reducing the number of radial lines in the method presented
in [12] has been shown: the ripple due to the higher harmonics that cannot be canceled is non-negligible
and therefore a calibration depending on the angle is proposed. This method also solves other
symmetry problems such as the lack of precision in the installation of the strain gauges and minor
manufacturing deviations in the rim. In order to provide sufficient data to describe the influence
functions and calibration matrices, a set of static tests are performed every 9◦, and the intermediate
angular positions are interpolated.

It has also been proved that it is not necessary to use three measuring circumferences because
due to the linear relationship between the influence functions corresponding to FY and MX , it is not
possible to estimate the symmetrical forces using only signals that depend on the first harmonic as was
proposed in [12]. Furthermore, it has been proved that there is not a significant difference between
using three or two measuring circumferences. Consequently, a reduced number of measuring points
can be implemented reducing the cost and increasing the robustness of the system.

Finally, the new semi-automated calibration workbench has been presented along with
the embedded electronic system needed to acquire and process the strain signals and transmit
them wirelessly.
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7. Matus̆ko, J.; Petrović, I.; Perić, N. Neural network based tire/road friction force estimation. Eng. Appl.
Artif. Intell. 2008, 21, 442–456.

8. Villagra, J.; d’Andréa Novel, B.; Fliess, M.; Mounier, H. A diagnosis-based approach for tire-road forces and
maximum friction estimation. Control Eng. Pract. 2011, 19, 174–184.

9. Gobbi, M.; Botero, J.C.; Mastinu, G. Improving the active safety of road vehicles by sensing forces and
moments at the wheels. Veh. Syst. Dyn. 2008, 46, 957–968.

10. Weiblen, W.; Hofmann, T. Evaluation of Different Designs of Wheel Force Transducers; SAE Technical Paper
980262; Commonwealth Drive: Warrendale, PA, USA, 1998.

11. Weiblen, W.; Kockelmann, H.; Burkard, H. Evaluation of Different Designs of Wheel Force Transducers (Part II);
SAE Technical Paper 1999-01-1037; Commonwealth Drive: Warrendale, PA, USA, 1999.



Sensors 2018, 18, 541 19 of 19

12. Gutiérrez-López, M.D.; García de Jalón, J.; Cubillo, A. A novel method for producing low cost dynamometric
wheels based on harmonic elimination techniques. Mech. Syst. Signal Process. 2015, 52-53, 577–599.

13. Gutiérrez López, M.D. Measurement of Tyre-Road Contact Forces Through the Strains Measured in the
Rim and Harmonic Elimiantion Techniques. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid,
Spain, 2015.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Description of the Measurement System
	Measurement Method
	Dependence of the Demodulated Signals E with the Wheel Rotation
	Computation of the Calibration Matrices
	Relationship between the Influence Functions
	Final System of Equations

	Static Calibration
	Semi-Automated Workbench
	Embedded Electronics
	Calibration of the Wheel

	Experimental Results
	Relationship between the Amplitudes of the Strain Signals Generated by MX and FY
	Demodulated Signals and Influence of the Higher Order Harmonics
	Errors While Estimating Forces

	Conclusions

