
sensors

Article

The Effect of Film Thickness on the Gas Sensing
Properties of Ultra-Thin TiO2 Films Deposited by
Atomic Layer Deposition

Rachel L. Wilson 1, Cristian Eugen Simion 2 ID , Christopher S. Blackman 1,*, Claire J. Carmalt 1,
Adelina Stanoiu 2, Francesco Di Maggio 1 and James A. Covington 3 ID

1 Christopher Ingold Laboratories, Department of Chemistry, University College London, 20 Gordon Street,
London WC1H 0AJ, UK; rachel.wilson.14@ucl.ac.uk (R.L.W.); c.j.carmalt@ucl.ac.uk (C.J.C.);
francesco.dimaggio@ucl.ac.uk (F.D.M.)

2 National Institute of Materials Physics, Atomistilor, 405A, P.O. Box MG-7,
077125 Bucharest-Măgurele, Romania; simion@infim.ro (C.E.S.); stanoiu.adelina@yahoo.com (A.S.)

3 School of Engineering, University of Warwick, Coventry CV4 7AL, UK; j.a.covington@warwick.ac.uk
* Correspondence: c.blackman@ucl.ac.uk; Tel.: +44-20-7679-4703

Received: 9 January 2018; Accepted: 20 February 2018; Published: 1 March 2018

Abstract: Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly
dependent on the film thickness, particularly when that thickness is on the order of the Debye
length. This thickness dependence has previously been demonstrated for SnO2 and inferred for TiO2.
In this paper, TiO2 thin films have been prepared by Atomic Layer Deposition (ALD) using titanium
isopropoxide and water as precursors. The deposition process was performed on standard alumina
gas sensor platforms and microscope slides (for analysis purposes), at a temperature of 200 ◦C.
The TiO2 films were exposed to different concentrations of CO, CH4, NO2, NH3 and SO2 to evaluate
their gas sensitivities. These experiments showed that the TiO2 film thickness played a dominant role
within the conduction mechanism and the pattern of response for the electrical resistance towards
CH4 and NH3 exposure indicated typical n-type semiconducting behavior. The effect of relative
humidity on the gas sensitivity has also been demonstrated.
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1. Introduction

Semiconducting metal oxides (SMO) have been applied in solid state gas sensors due to their low
cost, simplicity of fabrication and use, versatility in detecting a wide range of toxic/flammable gases,
and stability in harsh environments. These sensors rely on reversible changes in electrical conductivity
upon adsorption/desorption of gas molecules at their surfaces. Interaction with ambient oxygen in an
n-type SMO can trap mobile carriers (electrons) from the bulk, resulting in an electron-depleted
layer (i.e., space-charge layer) at the material surface [1]. If the size of the sensing element is
comparable with the depth of the electron-depleted layer, then theoretically the entire sensing element
becomes electron-depleted, providing the least conducting state (i.e., greatest change in electrical
conductivity) [2]. In the theory of space-charge layers, where the Shockley approximation is still valid,
the Debye length represents a measure of surface phenomena screening by the bulk [3]. Sysoev et al.
reported the Debye length for TiO2 to be ~10 nm at 250 ◦C [4].

Previously, reported methods for depositing thin film gas sensing materials include magnetron
sputtering [5], sol-gel [6], chemical vapor deposition (CVD) [7], ultrasonic spray pyrolysis [5] and
more recently by atomic layer deposition (ALD) [8]. ALD is a gas-phase thin film deposition technique
that involves sequential, alternative dosing of chemical precursors. Precursors chemisorb to the
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substrate in a non-reversible manner, forming saturated layers. A gas purge step is performed between
each precursor dose to ensure film growth occurs via a self-limiting mechanism. Reaction cycles are
repeated until the desired film thickness is achieved, where the ultra-thin films deposited are extremely
conformal and continuous to the underlying substrate. ALD allows atomic level control of film growth,
allowing fabrication of materials with defined thickness and is capable of depositing semiconductor
materials in the order of the Debye length, making it an ideal tool for exploring the fundamental
sensing properties of these materials. The use of ALD for deposition of gas sensing materials has
recently been reviewed [8] but the most persuasive demonstration of the use of ALD for exploring the
thickness dependence of sensor response has been the work of Du and George for SnO2 [3] where an
optimum sensitivity was found at a film thickness of 3 nm, which was suggested to correlate with the
Debye length of the material under the test conditions.

ALD of semiconducting TiO2 is well reported in the literature and has been deposited using
a variety of different precursors, such as titanium ethoxide (Ti(OEt)4) [9], titanium tetramethoxide
(Ti(OMe)4) [10], titanium iodide (TiI4) [11], titanium chloride (TiCl4) [12], tetrakis-dimethyl-amido
titanium (TDMAT) [13] and titanium isopropoxide (Ti(OiPr)4) [14]. Figure 1 shows a schematic of an
ALD deposition cycle for titanium(IV) isopropoxide and water.
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Although the gas sensing properties of TiO2 have been widely investigated, including TiO2

deposited via ALD [15–17], there are currently very few reported studies on the effect of TiO2 film
thickness at the order of the Debye length on the sensing properties. It is also worth noting that most
previous studies on ALD of gas sensing materials have used bespoke gas sensor substrates, rather
than more traditional ceramic sensor platforms, and while we have previously commented on the
importance of gas sensor substrate feature design being appropriate for use of nanoscaled sensing
materials [18], the use of non-standard designs makes comparison between published work difficult.
In this paper, n-type TiO2 films were deposited onto alumina gas sensors via ALD at 200 ◦C using
Ti(OiPr)4 and water as precursors. By variation of the number of reaction cycles, TiO2 films of different
thicknesses were deposited. The resistance of these films was then measured at variable temperatures
in the presence of CO, CH4, NO2, NH3 and SO2 to determine the responsivity of these films as gas
sensors. It was observed that the sensor response changes with film thickness and gas concentration.

2. Materials and Methods

2.1. TiO2 Film Preparation

ALD depositions were carried out using [titanium(IV) isopropoxide], Ti(OiPr)4 (obtained from
Sigma Aldrich, Gillingham, UK) and deionized water. Pureshiled argon (BOC, 99.998%) was used as
the carrier gas. Single-sided alumina sensor platforms, in which the heater track and sensor electrodes
are separated by an insulating glassy ceramic, were used as obtained (University of Warwick), and
microscope slides (super premium, VWR) were cleaned using isopropanol and air dried before use.
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TiO2 thin films were deposited onto these substrates using a flow-type cold-walled ALD reactor
constructed of stainless steel that was built in house. Titanium isopropoxide was held at a temperature
of 25 ◦C and was introduced into the reaction chamber by an argon gas stream (100 sccm) to assist
the transportation of vaporized precursor molecules. Water was held at a temperature of 5 ◦C and
was introduced into the reaction chamber by means of its own vapor pressure, without any gas assist.
The alumina gas sensors were heated inside the reaction chamber on a heated substrate holder, which
was held at a constant temperature of 200 ◦C throughout the deposition process. Films were deposited
by alternately exposing the metal precursor and water into the reaction chamber, with an inert gas
purge step in between each dose. Therefore, one complete ALD reaction cycle consisted of a 2.5 s
Ti(OiPr)4 dose, 1 min purge, 2.0 s water dose and 3 min purge. 100 sccm of inert gas was used to
purge the reaction chamber in between each precursor dose step, resulting in a total reactor pressure of
~8 mbar when running. During the depositions, a microscope slide was also placed inside the reactor
to provide a sample on which to perform standard film characterization techniques.

TiO2 film thickness was measured using a Semilab SE-2000 ellipsometer and Atomic Force
Microscopy (AFM) measurements were performed using a Nanosurf easy Scan Atomic Force
Microscope, with a 10 µm tip in non-contact mode with oscillating probe. Scan areas were 5 × 5 µm
with measurements taken at 20 nm intervals. All images were set to a physical scale factor of 15 in
the z axis. X-ray Diffraction (XRD) measurements were performed using a Bruker-Axs D8 (GaDDS)
diffractometer, which operates with a Cu X-ray source, monochromated (Kα1 and Kα2) and a 2D
area X-ray detector with a resolution of 0.01◦. X-ray Photoelectron Spectroscopy (XPS) analysis was
performed using a Thermo Scientific K-Alpha X-ray Photoelectron Spectrometer with monochromated
Al K alpha radiation, a dual beam charge compensation system and constant pass energy of 50 eV.
All the peaks reported were charge corrected using C 1s peak position at 284.8 eV as the reference point.

2.2. Gas Sensor Testing

Alumina sensors (2.5 × 2.5 mm in size, and 0.550 mm thick, Figure 2) possessed detection
electrodes and heater tracks, which were made with gold and platinum materials respectively. The
detection electrodes were exposed to air whilst the heater tracks were embedded in a layer of glassy
ceramic insulating material, with only the pads exposed for subsequent attachment of wires (Figure 3).
A shadow mask was used for deposition, where tungsten foil (100 µm thick) was machined with a
2000 µm diameter hole. After deposition of TiO2 the gas sensor substrates were welded onto a TO- 39
housing using platinum wires for interfacing with test equipment. 
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Figure 3. TiO2 gas sensor substrate welded onto a TO-39 housing using platinum wires.

The electrical resistance of the TiO2 films (of different thicknesses’) decreased with increasing
temperature (from TΩ to GΩ). This is a general behavior for most of the SMO class materials. It
was previously reported that TiO2 requires a high operating temperature to accomplish in-field gas
sensing demands [19]. Here, the operating temperature was varied from ambient to 480 ◦C. To keep the
operating temperature constant during the gas sensing performance evaluation, the heater calibration
of the TiO2 coated sensor substrates was performed using a digital pyrometer from LumaSense IN 5-L
plus (US) The “hot spot” size was set to 2 mm2. Figure 4a shows the experimental and the theoretical
dependence of the Theater = f (Vheater) along with the associated linear fitting.
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Figure 4. Calibration curves of the operating temperature (a) and heating power (b) with respect to the
applied voltage (experimental and theoretical) for the TiO2 coated gas sensor substrates. The emissivity
(ε) was set to: 0.76 whereas the theoretical dependence was calculated based on the Pt temperature
coefficient (α): 3.92 × 10−3/◦C.

The associated power consumption at 480 ◦C was 1.5 W. The power consumption (P) obeys the
following relation, were U represents the applied DC voltage to the Pt heater terminals, R is the Pt
resistance at temperature T; R0 is the Pt resistance at room temperature; α represents the temperature
coefficient of resistance for the Pt heater and ∆T is the temperature variation.

P =
U2

R
=

U2

R = R0(1 + α∆T)
(1)

As such, one can see that the operating temperature follows a linear dependence with respect to
the applied voltage whereas the heating power exhibit a power law behavior (Figure 4b) dependence
on the applied voltage with an exponent close to 1.4.
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The experimental setup consisted of a fully computer-controlled Gas Mixing System (GMS), PTFE
sensor chamber designed for TO-39 samples, power supply, Keithley 6517A-Electrometer (US) and
Keithley 2000-Multimeter (US) (Figure 5). The GMS has eleven channels provided with high purity
(5.0) certified test gases from cylinders. Each gas port was electronically controlled by a Bronkhorst
(Netherlands) mass flow controller and two electrovalves. The first two channels were dedicated for
carrier gas with controlled relative humidity (RH) in the range of 0–80%. To avoid outgassing, the gas
channel interconnections were made of PTFE and stainless-steel with Kalrez seals. The required test
gas concentrations were acquired by controlling the flow ratio between the carrier gas and the target
gas. The concentrations of the target gases used were: CH4 (500, 1000, 1500, 2000 and 2500 ppm) and
NH3 (50, 70, 100, 150, 200 ppm) dosed in: 0, 10, 30 and 50% RH. The length of each gas pulse was set to
15 min while the dedicated recovery time was set to 30 min. The flow through the system was kept
constant at 200 sccm. The sensor signal was calculated according to the relation S = Rair

Rgas
for reducing

gases and S =
Rgas
Rair

for NO2 (oxidizing gas), where Rair is the electrical resistance under dry air and
Rgas is the electrical resistance under test gas. For the current passing through the heater, the associated

variations have been calculated using the formula: I = Igas−Iair
Iair

× 106.
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3. Results and Discussion

3.1. Analysis of TiO2 Films

Characterization of the TiO2 films was performed using the films deposited onto microscope slides,
placed inside the reactor and deposited simultaneously with the alumina sensors. Figure 6 shows that
the TiO2 film thickness increased with the number of reaction cycles in an approximately linear fashion,
as expected for ALD-like growth where the amount of material deposited in each reaction cycle should
be constant. The growth rate was ~0.40 Å/cycle, which is comparable to the growth rate achieved using
similar TiO2 systems. For the Ti(OiPr)4 and water precursor combination, Ritala and Leskelä reported
a growth rate of 0.3 Å/cycle in the temperature range of 250–325 ◦C [20] and Matero et al., reported a
growth rate in the range of 0.33–0.60 Å/cycle at 300 ◦C [21]. The refractive indices of the deposited
films (obtained by ellipsometry at 560 nm) were 2.0, 2.3 and 2.8 for films of approximately 10 nm,
50 nm, and 70 nm films respectively. These values were in line with those reported in the literature,
which range from 2.3 to 2.6 depending on the deposition temperature [14,22,23]. The refractive
index increased with film thickness, which suggests that the density and/or crystallinity of the films
increased with thickness. The surface morphology of the TiO2 films was studied in more detail using
non-contact mode Atomic Force Microscopy (AFM). All films showed good thickness uniformity
across the substrate with roughness values similar to the uncoated substrate. Figure 7 shows that as
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the number of ALD reaction cycles increases, the surface roughness also increases. The root mean
square (RMS) roughness values measured for these films are shown in Table 1.Sensors 2018, 18, x FOR PEER REVIEW  6 of 13 
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Figure 7. AFM Images of (a) 10 nm and (b) 50 nm TiO2 films deposited at 200 ◦C.

Table 1. Film thickness and roughness measurements of TiO2 films deposited at 200 ◦C.

Number of ALD Reaction Cycles Film Thickness (nm) RMS (nm)

Blank microscope slide - 2.3
350 10 3.0
1150 50 3.8
1800 70 4.5

3.1.1. X-ray Diffraction

X-ray Diffraction (XRD) measurements gave no intense peaks for the 10 nm film, which was likely
because the film was too thin to produce significant diffraction. This is consistent with the appearance
of a broad background peak attributed to break-through to the glass substrate. The 50 nm film, however,
showed the presence of peaks attributable to anatase (Figure 8), with the (101) reflection being the most
intense (PDF reference number PDF 01-071-1166). As the film thickness increases further the relative
peak intensities of the (101) and (200) reflections increased compared to the 50 nm film and the (103),
(004), (112), (105) and (211) reflections became more apparent. It has previously been suggested that
initially, when the film thickness is low, an amorphous/poorly crystalline layer forms on the surface of
the substrate and it is only after subsequent growth that the nucleation sites start to coalesce and form
a denser film and become more crystalline [20]. This is consistent with the findings from ellipsometry,
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where the measured refractive index increased with increasing film thickness. The crystallite size for
the 50 nm film was calculated at ~40 nm using the Sherrer equation [24], comparable to the grain size
observed using AFM, suggesting that the film consists of a single layer of separated crystallites.Sensors 2018, 18, x FOR PEER REVIEW  7 of 13 
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Figure 8. XRD pattern for 10 nm and 50 nm TiO2 films deposited by ALD. A typical anatase reference
pattern is also included [PDF 01-071-1166].

3.1.2. X-ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) data revealed the presence of Ti and O elements on the
film surface with minimal contaminants presence, as shown by the survey spectrum (Figure 9). High
resolution surface scans (Figure 10a) of the Ti2p peak confirm the presence of Ti4+. The 2p3/2 and
2p1/2 peak binding energies were 458.0 eV and 464.0 eV respectively, with a peak separation of 5.7 eV.
These values were within ±0.2 eV of literature values [25,26]. De-convolution of the O1s peak revealed
2 peaks. The peak at the highest binding energy (531.7 eV) can be attributed to surface adsorbed
water and the peak with the lowest binding energy (529.5 eV) is ascribed to the O1s core peak of O2−

bound to Ti4+ (Figure 10b). Again, these peaks are consistent with literature values [27]. The Ti:O
elemental ratio, determined from the Ti2p and O1s peak (529.5 eV) areas, was 1:2.4, which confirmed
the presence of TiO2. XPS also confirmed that the films were pin-hole free as no Si was detected from
beam break-through to the substrate.
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Figure 9. Typical XPS survey of TiO2 films deposited by ALD at 200 ◦C.
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Figure 10. High resolution XPS spectra of (a) Ti2p peak and (b) de-convoluted O1s peak.

3.2. Gas Sensing Results

Prior to sensing property evaluation, the stability of TiO2 structures over a temperature range of
175–500 ◦C was analyzed, measuring the electrical resistance as a function of operating temperature
(Figure 11).
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Figure 11. Relation between electrical resistance and operating temperature in the form of ln R and 1/kBT.

Using the plot of the electrical resistance vs. operating temperature for the 50 nm TiO2 gas
sensor under dry air conditions, we could gain insights about the activation energies according to the
Arrhenius equation:

lnR = lnR0 + Ea × 1
kBT

(2)

From the slopes of the linear regions, the associated activation energies (Ea) could be calculated.
As such, the decrease in the electrical resistance, with the increase in the operating temperature, can
be ascribed to typical semiconductor behavior. In the temperature range 175–375 ◦C, the obtained
activation energy was Ea = 627 meV, whereas for the range 400–500 ◦C, the activation energy was
found to be Ea = 687 meV. Even though an increase in temperature induces an increase in the
activation energy, for electronic conduction of the TiO2 material, the small differences between the two
temperature regimes indicated the good stability of the sensitive materials through the whole tested
temperature range.
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The sensing behavior of the TiO2-coated gas sensors was evaluated with different test gas
concentrations of CO (50, 70, 100 ppm), CH4 (1000, 2000, 2500 ppm), NO2 (3, 5, 7 ppm), NH3 (50,
70, 100 ppm) and SO2 (5, 10, 20 ppm) under dry air, spanning the temperature range 23–480 ◦C. The
temperature level of 350 ◦C was the threshold where appreciable electrical resistance effects could be
recorded for the gases of interest (Figure 12a). However, it was also observed that by measuring the
electrical resistance of the sensitive TiO2 material and the current passing through the platinum heater
simultaneously, that CH4 exposure also induced a variation in the heating current (Figure 12a—blue
line) [28]. As can be seen in Figure 12b, the sensor signals for CO, CH4, NO2 and SO2 exposure
were rather negligible compared to those towards NH3 exposure (factor up to 4.24). According to
the aforementioned reasons, NH3 (electrical resistance) and CH4 (heater current) were chosen for
further investigation.
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Figure 12. (a) Electrical resistance and current response of a 50 nm TiO2 coated gas sensor substrates
exposed to different concentrations of CO, CH4, NO2, NH3 and SO2 under 0% RH at 350 ◦C and (b) the
associated sensor signals responses.

Raising the temperature to 480 ◦C induced an increase in the electrical resistance effects
(Figure 13a) and hence further tests were conducted at this higher temperature. The dynamic responses
in electrical resistance changes with CH4 and NH3 gas exposure (Figure 13b) indicate a typical n-type
semiconducting-like behavior [29,30]. The influence of TiO2 thickness toward the ammonia sensor
signals is highlighted in Figure 13c.
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For the 50 nm thick TiO2 film, calibration curves for the sensor signal S with respect to different
NH3 concentrations are shown in Figure 14a. The dependence of the sensor signal, S = Rair/RNH3,
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dependence on NH3 concentration (in the range 50–200 ppm) at 0% RH was fitted to a power law
dependence and the associated exponent Cx

NH3 value of 0.787 is similar to that previously reported in
the literature [30]. We note that the effect of increasing relative humidity (RH), in the range 0–50%,
decreased the NH3 sensitivity, which may be related to a competition between NH3 and OH- groups
for the same pre-adsorbed oxygen species [31]. On the other hand, (Figure 14b) under the same testing
conditions, the 50 nm TiO2-based gas sensor showed a good selectivity towards ammonia (black curve)
vs. methane (red curve).
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Electrical current changes in the heater were also observed when the sensors were exposed to
CH4 (in the range 500–2500 ppm) and NH3 (in the range 50–200 ppm) as shown in Figure 14c. Both,
the TiO2-coated gas sensor and the platinum (Pt) heater have been operated under constant potential
mode (U = constant). Based on the metal (Pt) electrical resistance dependence with the temperature,
R = R0 [1 + α(T − T0)] and with respect to Ohm’s law, the increase in the electrical current passing
through the heater during CH4 exposure can be translated into a decrease in the electrical resistance
(solely at U = constant). A possible explanation of this observation is that we are seeing our sensor
behave as a thermal conductivity sensor [32]. As such, we observe a physical detection process, rather
than a chemical one. In these sensors, heat is transferred from a hot body to a cold element, thus from
the hot gas sensor to the gas it isbeing exposed to. As a gas sensor, thermal conductivity detection can
only be used for gases that have a thermal conductivity significantly greater than air. Of these CH4 is
one of the most important, with a thermal conductivity of 84.1 mW/mK at 350 ◦C [33]. The change
in heater current on exposure to NH3 is nearly an order of magnitude smaller than that for CH4

(Figure 14c), therefore due to the dual functioning principle of the sensor (electrical resistance and
current passing through the heater measurements) the accuracy in the selective-sensitivity is enhanced.
Thus, for NH3 detection one can focus solely on the resistance variation of the TiO2 material whereas
for CH4 detection the changes within the current passing through the heater are required.

It is evident that the TiO2 film thickness plays a dominant role within the conduction mechanism.
Reported carrier concentrations for TiO2 are in the range from 1022 to 1026 m−3 [34]; Figure 15
correlates the variation of Debye length as a function of charge carrier concentration. The Debye
Length dependence was calculated according to relationship:

Ld =

√
εε0kBT

q2nb
(3)

where the operating temperature T, of the TiO2-coated gas sensor substrates was set to 753.15 K and the
dielectric constant εwas set to 18.9 [35]. Since the tested TiO2 materials are quite resistive it is reasonable
to assume that the charge carrier concentration is at the lower end of those reported in literature, i.e.,
1022 m−3 and hence the Debye length is likely to be within the range of the film thickness examined in
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this study, i.e., between 10 and 50 nm. We note that our attempts to experimentally measure the carrier
concentration were not successful due to the relatively high resistivity of the samples.Sensors 2018, 18, x FOR PEER REVIEW  11 of 13 
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Given that the 10 nm thick film is near the expected value for the Debye length [4] it is perhaps
surprising that the sensitivity towards CH4 and NH3 is so low. It is, however, worth noting that
because electrical conduction must take place parallel to the substrate, in the case of the 10 nm thick
film, the film can be described as a fully depleted layer due to the ratio between the Debye length and
film thickness and hence the lack of sensitivity might be related to the screening effect exhibited by the
Debye length.

4. Conclusions

We describe the deposition of TiO2 films onto alumina gas sensor substrates via ALD of
titanium(IV) isopropoxide and water, with thickness values in the range of the expected Debye
length. These films were not sensitive to CO, NO2 or SO2 but were sensitive to NH3 and CH4,
with power exponents typical of the materials. Through simultaneous measurement of the electrical
resistance and current through the heater at a constant temperature it was possible to highlight the
selective-sensitivity of the TiO2 sensors to CH4 and NH3 test gases. The films were more sensitive
towards NH3 than CH4; where CH4 was found to undergo combustion on the TiO2 surface. Sensitivity
towards NH3 varied with thickness, but surprisingly the film of thickness most consistent with a
previously determined value for the Debye length of 10 nm, was not the most sensitive. This lack of
sensitivity may possibly be due to screening effects induced by a fully depleted layer.
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The following abbreviations are used in this manuscript:

DOAJ Directory of open access journals
ALD Atomic Layer Deposition
SMO Semiconducting metal oxides
CVD Chemical Vapor Deposition
TDMAT tetrakis-dimethyl-amido titanium
AFM Atomic Force Microscopy
XRD X-ray Diffraction
XPS X-ray Photoelectron Spectroscopy
GMS Gas Mixing System
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