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Abstract: As indoor mobile navigation suffers from low positioning accuracy and accumulation error,
we carried out research into an integrated location system for a robot based on Kinect and an Inertial
Measurement Unit (IMU). In this paper, the close-range stereo images are used to calculate the attitude
information and the translation amount of the adjacent positions of the robot by means of the absolute
orientation algorithm, for improving the calculation accuracy of the robot’s movement. Relying on the
Kinect visual measurement and the strap-down IMU devices, we also use Kalman filtering to obtain
the errors of the position and attitude outputs, in order to seek the optimal estimation and correct
the errors. Experimental results show that the proposed method is able to improve the positioning
accuracy and stability of the indoor mobile robot.

Keywords: indoor navigation; location; Kinect; IMU; Kalman filters

1. Introduction

In mobile robot navigation, stable and reliable positioning results are the key prerequisite for
planning paths. In recent years, Kinect has increasingly been applied in robot obstacle avoidance [1,2],
target reconstruction [3,4], target tracking [5,6], attitude control [7,8] and other fields due to its
advantageous features. Kinect is a novel 3D stereoscopic camera developed by Microsoft, which can
provide RGB and depth information of the mobile robot’s environment for users, and is low in
price, making it suitable for replacing conventional ultrasonic radar and laser radar as a distance
sensor. Additionally, the acquired environment depth value is continuous, contains a large amount
of information, is minimally influenced by light and other features, and can be used in limited-cost
positioning situations with certain accuracy requirements.

Kinect is a visual sensor, and has limitations with respect to accuracy [9] and speed [10,11].
In terms of accuracy, there is a positioning error in the visualization positioning method due to the
uncertain location estimation of the spatial feature points.

Take the visual odometer as an example: the position and attitude of the robot is cumulatively
calculated based on the change in position between the current frame and the previous one,
meaning that the accumulation of estimation errors per frame will reduce the positioning accuracy as
the number of frames increases [12].

In extreme cases, feature point extraction and matching algorithms may fail in purely visual
autonomous navigation due to insufficient or excessive external light. While in terms of speed,
due to the huge amount of image data collected per frame, complicated processing algorithms and
lower degrees of parallelism of the corresponding image mean that the speed can not be improved,
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thus limiting real-time response to positioning accuracy requirements. In contrast, IMU, which has
simple, real-time and all-weather completely autonomous navigation functionality, can compensate
for visual measurement errors in accuracy and speed [13], although it still has many serious problems,
such as accumulated positioning error.

Therefore, this paper investigated indoor mobile robot integrated navigation and positioning
based on Kinect and IMU. For high-precision positioning, we firstly use feature point extraction,
match the RGB image between the target frame obtained by Kinect and the reference frame, implement
the Random Sample Consensus (RANSAC) algorithm to remove the mismatching points, and then use
the absolute orientation algorithm to obtain the Kinect posture and offset (here, Kinect pose represents
the pose of the robot). Thereby, we obtain the trajectory of mobile robot movement. The visual
positioning results and the inertial navigation system (INS) data are fused by Kalman filter algorithm
to improve the self-positioning accuracy of the indoor mobile robot. The detailed design process is
described in the following sections.

2. Independent Localization Based on Kinect and INS

2.1. Kinect Method

2.1.1. Kinect Obtaining 3D Point Cloud Data

The pixel coordinates of the feature points in the RGB image coordinates (xi, yi) are known,
after the angle correction in depth and RGB image, the three-dimensional coordinates of a point in the
Kinect v1 coordinate system can be obtained from the depth of the image through the calculation of
Equation (1):

xc = (xi − u0) ∗ z/ fx

yc = (yi − v0) ∗ z/ fy

zc = z
(1)

where z is the depth value of a feature point, and u0, v0, fx and fy are the internal orientation elements
of the Kinect calibrated RGB camera. The sensor Kinect operates (runs) usually at a range from 0.5 m
to 4 m.

2.1.2. Absolute Orientation Algorithm

In order to improve the image of the absolute orientation accuracy of the digital close-range
accuracy image, Nanshan Zheng et al. [14] describe an absolute orientation method for close-range
images based on the successive correlative condition adjustment model. If the deformation of the
model itself is not considered, an absolute orientation model is a spatial similarity conversion issue,
including the rotation and displacement of the model coordinate system relative to the target coordinate
system, and the scale factor of the model scale. The basic relation of the absolute orientation is shown
in Equation (2):  X

Y
Z

 = λ

 a1 b1 c1

a2 b2 c2

a3 b3 c3


 U

V
W

+

 ∆X
∆Y
∆Z

 (2)

Among them, (U, V, W) are the points in the local reference frame (i.e., the model coordinates) of
the corresponding points (X, Y, Z), which are in the International Terrestrial Reference Frame (ITRF)
(i.e., the corresponding target coordinates). Seven absolute orientation elements are: the shift of
coordinate origin (∆X, ∆Y, ∆Z), scale factor λ, the three rotation angles between the two coordinate
systems {Φ, Ω, K}, and ai, bi, ci are the transform coefficients between the model and target coordinate
system. Absolute orientation is a method obtaining seven absolute orientation elements with known
control points. Suppose M(XM, YM, ZM), N(XN , YN , ZN), P(XP, YP, ZP), Q

(
XQ, YQ, ZQ

)
are the initial

position coordinates of the Kinect, m(Um, Vm, Wm), n(Un, Vn, Wn), p
(
Up, Vp, Wp

)
, q
(
Uq, Vq, Wq

)
are the

adjacent initial position coordinates, wherein λ is 1. Putting coordinates of the four same-named points
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into Equation (3), and using the equations listed at points N, P, Q, separately subtracting the equations
listed at point M to eliminate the shift parameters, the result is: UN −UM VN −VM WN −WM

UP −UM VP −VM WP −WM
UQ −UM VQ −VM WQ −WM

 R0 =

 XN − XM YN −YM ZN − ZM
XP − XM YP −YM ZP − ZM
XQ − XM YQ −YM ZQ − ZM

. (3)

Among them:

R0 =

 a0
1 b0

1 c0
1

a0
2 b0

2 c0
2

a0
3 b0

3 c0
3

 (4)

where R0 is the transformation matrix transforming between the model (the local reference frame) and
the target coordinate system (ITRF). The initial rotation angle of the absolute orientations are:

Φ = −arctan
(
a0

3/c0
3
)

Ω = −arcsin
(
b0

3
)

K = arctan
(
b0

1/b0
2
) (5)

After obtaining the scale factor and the initial rotation angle, the shift parameter (∆X, ∆Y, ∆Z)
can be obtained by substituting arbitrary points into the equation.

2.1.3. Implementation of Kinect Self-Localization Algorithm

The scale-invariant feature transform (SIFT) matching algorithm [15] has a strong matching
ability, and can match the image feature points when any two images are translated, rotated and affine
transformed. In this paper, we mainly use SIFT matching, the RANSAC algorithm [16], and the absolute
orientation algorithm to realize the robot self-localization scheme. In this section, a method is proposed
for how to use the above algorithms to solve the robot autonomous navigation problem. This method
consists of four parts: same-named point extraction, abnormal point elimination, region selection,
motion parameter calculation.

Same-named point extraction: Obtain the SIFT matching points of two adjacent images from the
RGB image, and then obtain the 3D coordinates of all matching point pairs from the depth image.
The specific steps include using the SIFT method to extract the common key points in Image1 and
Image2 first, and then obtaining the pixel coordinates of SIFTData1 and SIFTData2 in the respective
RGB images.

Although the SIFT algorithm is able to extract stable feature points, there will still be some
mismatching points. In order not to affect the calculation and improve the accuracy of parameters,
the RANSAC algorithm is used to eliminate mismatch points in the initial matching point pair. Then the
3D coordinates of Depth1 and Depth2 of the key points are obtained from the depth images by using
new positional information of Data1 and Data2.

Since Kinect is utilizes an infrared camera, it is easily influenced by noise, such as strong light,
high density in the layout of feature points, and other factors, which can cause deviations in the depth
information obtained by the Kinect, reducing positioning accuracy. Hence, one can use the bubble
sorting method to select four intervals of relatively large feature points (generally the area formed by
selected points accounting for more than 50% of the entire color image) for the absolute orientation
calculation, and take the 3D coordinates of the points around these four feature points, summed and
averaged together, thereby improving the accuracy of the motion parameters calculated by the absolute
orientation method.

After removing the mismatching points and using regional screening, remaining at least two pairs
of high-precision matching points, and so the reliability of the data is increased.
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Assuming the feature point set 3D coordinates acquired by the Kinect in the first position is Data1,
and the set acquired in the second position is Data2, combining the coordinates of Data1 and Data2,
one can use the absolute orientation algorithm to calculate the rotation matrix and the offset vector in
these two positions. Setting the robot’s initial position as the origin of the coordinates, when the robot
moves to the third position, the feature point set 3D coordinates acquired by the Kinect in the second
position are used as the new Data1, and those from the third position as the new Data2. The new
Data1 and Data2 coordinates are used to calculate the relative motion parameters from the second to
the third position of the robot, and the trajectories of the robot motion can be obtained by iteration.
The flowchart is shown in Figure 1.
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2.2. Principle and Algorithm Design of SINS

The trapdown Inertial Navigation System (SINS) algorithm [17,18] uses a mathematical platform,
and the core part of it is the attitude updating solution. As the angular velocity vector is not
a real vector, integrating the angular velocity will produce a noncommutativity rotation error. Thus,
the equivalent rotation vector method is used [19]. Due to the superiority of the quaternion algorithm,
a quaternion-based rotation vector algorithm is used. Considering that the accuracy and the amount
are not high, a three-component algorithm is used to process the equivalent rotation vector problem.

The basic idea of SINS updating is to take the previous navigation parameters (attitude, velocity
and position) as initial values, and to calculate the current navigation parameters by using the outputs
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(angular velocity and acceleration) of the inertial device from the previous time to the current time.
Then it takes recursively the current time as the initial values for the next moment calculation. The basic
formulas are as follows.

Velocity update algorithm:

vn
m = vn

m−1 + Fv→q

(−ωn
inm−1Tm

2

)
qn

bm−1∆vs f m +
[
gm−1 −

(
2ωn

iem−1 + ωn
enm−1

)
× vn

m−1
]
Tm (6)

∆vs f m = ∆vm + 0.5∆θm × ∆vm +

{[
n−1

∑
i=1

ki∆θm(i)× ∆vm(n)

]
+

[
n−1

∑
i=1

ki∆vm(i)

]
× ∆θm(n)

}
(7)

Location update algorithm:

Lm = Lm−1 +
Tmvn

Nm, m−1

RM
(8)

λm = λm−1 +
Tm sec Lm−1vn

Em, m−1

RN
(9)

hm = hm−1 + Tmvn
Um, m−1 (10)

Attitude update algorithm:

qn
bm = qn

bm−1Fv→q
(
Φm − qn

bm−1 ∗ωn
inm−1Tm

)
(11)

where Lm is the longitude, λm is the latitude, hm is the height, Tm is the sampling period, Φm is
equivalent rotation matrix, * is common rail, and ∆vs f m is the speed compensation amount caused by
the force (Sculling compensation term), as the gyroscope outputs are the signals of angular increment
and velocity increment, they cannot be calculated directly. Equation (7) is a quadratic fitting of the
angular rate and acceleration; that is, a three-subsample algorithm.

As the SINS posture updating with a coning motion, it will lead to a serious drift of the
mathematical platform, so it is necessary to further optimize the rotation vector algorithm [20,21].
The following formula is the rotation vector optimized by the three-subsample algorithm.

Φm = ∆θ1 + ∆θ2 + ∆θ3 +
9
20

∆θ1 × ∆θ3 +
27
40

∆θ2 × (∆θ3 − ∆θ1) (12)

The longitude, latitude, and height have to be transformed into the local coordinate system.
For a coordinate transformation from the International Terrestrial Reference Frame (ITRF), such as the
World Geodetic System (WGS) 84, to the local coordinate system, several points with the coordinates
of both systems were calculated to support the indoor positioning using a local coordinate system.

3. Integrated Navigation Scheme

Simple visual navigation will have a cumulative error over a long time, and Global Positioning
System (GPS) loses signal indoors and cannot be positioned, so it is necessary to introduce other
navigation systems to amend traditional navigation systems. In conclusion, a Kalman filter integrated
navigation system based on Kinect/IMU is used to reduce the visual error, so that the positioning
accuracy of mobile robots in indoor autonomous navigation is improved.

The Kalman filter [22] is an optimal linear estimation method, which uses the state-space
description method to describe the system and makes continuous estimations through the estimation
errors of various sensor outputs to optimally combine the information of all the sensors. This optimally
estimated value minimizes the linear quadratic loss of the estimation error, including the mean square
error of any linear combination of state estimation errors. Note that the Kalman gain is the optimal
weighting matrix.
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The Kalman filter includes time updating and measurement updating. Measurement updating is
performed by measuring the new information obtained from the sensor in order to update the estimated
value and error. Time updating mainly considers the uncertain dynamic image, update estimation and
estimation error. Since the used state equation is based on the errors, this paper does not deal with the
extended Kalman filter. A filter that constitutes a feedback pulse is used here. Basic equations of the
discrete Kalman filter are shown below.

One-step state prediction equation:

X̂k|k−1 = Φk|k−1X̂k−1 (13)

where X̂k−1 is the system state estimation value at tk−1 moment, X̂k|k−1 is the system state predictive
value at tk.

State estimation equation:

X̂k = X̂k|k−1 + Kk(Zk − HkX̂k|k−1) (14)

Filter gain equation:

Kk = Pk|k−1HT
k

[
HkPk|k−1HT

k + Rk

]−1
(15)

One-step prediction MSE (mean square error):

Pk|k−1 = Φk|k−1Pk−1ΦT
k|k−1 + Γk|k−1QkΓT

k|k−1 (16)

Estimated MSE (mean square error):

Pk = [I − Kk Hk]Pk|k−1[I − Kk Hk]
−1 + KkRk−1KT

k (17)

Using the Kalman filter linear recursive algorithm to calculate the next moment measurement
and state estimates, the initial value of X̂0 and P0 should be known first. The designed Kalman filter
model is used to fuse the attitude and position information of the Kinect and IMU, and can be used
to modify the trajectory of IMU and make up for errors accumulating over time, thus improving the
self-localization accuracy of the indoor robot. The system and filter structure are shown in Figure 2.
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4. Indoor Positioning Experiment

In order to verify the positioning accuracy of the Kalman filter after fusion, an indoor experiment
was designed in the study room of our institute, in which the robot went along the wall of the room.
Using a WX-DP203 (designed and developed by our navigation group) mobile robot installed with
a Kinect sensor and IMU, the robot tracked a wall and landmarks, as shown in Figure 3. Kinect image
acquisition frequency is 1 Hz, IMU data collection frequency is 100 Hz. In order to compare the final
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positioning accuracy, we preplanned the relevant path, set up three control points including the start
and the end, and obtained the exact positions of the control points under the local coordinate system
by using the total station. With the starting point coordinate set as 0, the measured control point
coordinates are shown in Table 1.Sensors 2018, 18, x FOR PEER REVIEW  7 of 9 
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Figure 3. Kinect and experimental platform WX-DP203.

Table 1. Control point coordinates (in meters).

Number of Control Points 1 2 3

Control Points (0, 0) (5.61, 0.01) (5.60, 5.61)

During the experiment, the robot moved 11.2 m, moved no more than 20 cm per second,
and obtained 116 frames of color and depth images in total. The results of the pure visual positioning
and Kalman filter combination positioning are shown in Figure 4. The corresponding visual positions
and the control point positions of the three set points are shown in Table 2, Kalman filter error analysis
is shown in Table 3.
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Table 2. Position comparison of visual and control points (in meters).

Number of Control Points 1 2 3

The position of the control point (0.00, 0.00) (5.61, 0.01) (5.60, 5.61)
Visual position (0.00, 0.00) (5.321, 0.0062) (5.5248, 4.8182)

Distance errors (Positioning errors) 0.00 0.2890 0.7954

Table 3. Kalman filter error analysis (in meters).

Number of Control Points 1 2 3

Visual odometry 0.00 0.2890 0.7954
Kalman filter of Kinect/IMU 0.00 0.2077 0.6078

It can be seen from Table 2 that when the robot moves in a straight line of 5.61 m,
the error accumulates slowly, the positioning accuracy was 0.2890/5.61 × 100% = 5.16%, which is
higher. When the robot turns, the error accumulates faster, and the positioning accuracy was
0.7954/5.61 = 14.2%. Considering that the robot itself may sideslip during operation and Kinect
sensors are susceptible to noise and other factors, there is some degree of the errors to be expected in
the experimental results.

From Table 3, it can be seen that the Kinect/IMU integrated Kalman filter plays a very good role
in making up for the cumulative error of the visual range. The combination of these two sensors can
achieve higher positioning accuracy. The cumulative error before turning decreased from 0.2890 m to
0.2077 m, the relative visual improved by 1.36%, the cumulative error after turning decreased from
0.7954 m to 0.6078 m, and the relative visual acuity increased by 3.4%. These results show that the
cumulative positioning error of the short-distance visual range is very small, while the positioning
accuracy is high. We have known that the IMU strapdown solution goes from an unstable to a stable
phase in the initial calculation stage, and when a large change in the posture (e.g., a turning along the
route) occurs, the strapdown solution will change significantly, and the improvement in the position
accuracy after following a short distance is not obvious. However, the accuracy of the orientation angle
is better improved, and the stability of the orientation is also improved.

5. Conclusions

This paper combined the Kinect sensor with an IMU and the Kalman filter in order to conduct
integrated positioning system research. The integrated positioning results of the Kalman filter reduce
the trajectory errors of the visual range with an IMU, modify the accumulative IMU errors with the
visual range, and improve the positioning accuracy of the indoor robot. The Kinect has the advantages
that it utilizes an ordinary RGB camera and depth sensor, and is a cost-effective, simple, and valuable
sensor. Since an IMU has been used to increase the data collection numbers with its high sampling rate
and relatively high accuracy, the cumulative errors of the integrated system of our method decreased
from 0.2890 m to 0.2077 m, and the relative accuracy improved by 1.36% (for accuracy improvement,
see the Table 3), compared with the vision system alone. The Kinect and IMU integrated system
benefited from each other, which overcame the drawbacks of them, so that improve the system stability.
However, the method has still the accuracy limitation, as the research has only just commenced,
and much work is still to be done. Our next step is to increase the Kinect measurement range and
improve the accuracy of counting motion parameters, as this is easily affected by the noises. In addition,
we will try to reduce the swing amplitude when the robot turns, thereby decreasing the attitude errors.
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