
sensors

Article

Hadoop Oriented Smart Cities Architecture

Vlad Diaconita * ID , Ana-Ramona Bologa and Razvan Bologa

Department of Computer Science and Cybernetics, Bucharest University of Economic Studies, Bucharest 010374,
Romania; ramona.bologa@ie.ase.ro (A.-R.B.); razvanbologa@ase.ro (R.B.)
* Correspondence: diaconita.vlad@ie.ase.ro; Tel.: +40-21-319-19-00 (ext. 310)

Received: 12 March 2018; Accepted: 10 April 2018; Published: 12 April 2018
����������
�������

Abstract: A smart city implies a consistent use of technology for the benefit of the community.
As the city develops over time, components and subsystems such as smart grids, smart water
management, smart traffic and transportation systems, smart waste management systems, smart
security systems, or e-governance are added. These components ingest and generate a multitude of
structured, semi-structured or unstructured data that may be processed using a variety of algorithms
in batches, micro batches or in real-time. The ICT architecture must be able to handle the increased
storage and processing needs. When vertical scaling is no longer a viable solution, Hadoop can
offer efficient linear horizontal scaling, solving storage, processing, and data analyses problems in
many ways. This enables architects and developers to choose a stack according to their needs and
skill-levels. In this paper, we propose a Hadoop-based architectural stack that can provide the ICT
backbone for efficiently managing a smart city. On the one hand, Hadoop, together with Spark and
the plethora of NoSQL databases and accompanying Apache projects, is a mature ecosystem. This is
one of the reasons why it is an attractive option for a Smart City architecture. On the other hand, it is
also very dynamic; things can change very quickly, and many new frameworks, products and options
continue to emerge as others decline. To construct an optimized, modern architecture, we discuss
and compare various products and engines based on a process that takes into consideration how the
products perform and scale, as well as the reusability of the code, innovations, features, and support
and interest in online communities.

Keywords: smart cities; sensors; Hadoop; Spark; Elasticsearch; cloud computing; IoT

1. Introduction

We are entering an era where city issues are now problems faced by the entire world. The United
Nations estimates that urban population will exceed rural in emerging economies in 2020, and that
about 70% of the world’s population will live in cities by 2050 [1]. Some cities are facing a low birth rate,
an ageing population, with shrinking budgets, rising unemployment, increasingly inadequate housing
and rising crime rates; therefore, the development of smart cities is on the agenda of many governments
from all around the world. As the urban population share increases, cities feel urban problems more
acutely. Examples include expanding suburbs, air pollution, difficulty in obtaining drinking water,
wastewater treatment and sanitation, energy supply, traffic congestion, and waste disposal.

A smart city is a city that uses ICT infrastructure in a flexible, reliable, scalable, affordable,
secure and safe way, in order to improve the quality of life of its citizens. It can provide stable
economic growth through higher standards of living and job opportunities, welfare, and access to better
education [2,3]. Such an innovation can establish a responsible approach towards the environment,
which meets the needs of today’s generations, without sacrificing those of future generations [4]. It is
able to streamline physical infrastructure-based services, such as transportation (mobility), water,
utilities (electric, gas), telecommunications, and manufacturing sectors. A geographic information

Sensors 2018, 18, 1181; doi:10.3390/s18041181 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-5169-9232
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/18/4/1181?type=check_update&version=1
http://dx.doi.org/10.3390/s18041181


Sensors 2018, 18, 1181 2 of 20

system (GIS) is essential, as it allows a smart city to treat information taking into account the spatial,
geographic localization. GIS systems are used in fields such as land registry (cadastre real estate, water
supply networks, telephone networks), urbanism, and territorial and local government (determining
location optimal new objectives, population register, organizing the collection of waste and landfilling),
geology (inventory and deposits supervision), environment, transport (transport routes optimization),
agriculture, environmental protection (analysis performed for various pollutants). Smart buildings and
smart homes are an essential part of smart cities, offering residents different facilities, ranging from
generating a portion of the electricity to remote controlling, monitoring and auto-adjusting different
appliances. In 2011 in Europe, the boom in solar energy installations reached its peak. This was mainly
based on policies for supporting renewable energies plus increased awareness of environmental issues.

Hadoop is the most popular Big Data ecosystem. Starting with the introduction of Yet Another
Resource Negotiator (YARN) [5], it is no longer only about batch-oriented processing with MapReduce
of data stored in the Hadoop Distributed File System (HDFS). Many Hadoop components and products
that can run on Hadoop have emerged, offering support for different programming languages, e.g.,
Spark supports Python, Java and Scala, and providing easy access to a myriad of machine learning
algorithms needed for running an efficient smart city. The main advantage of the Hadoop architecture
stack is that it is open-source, so has no license cost. The main disadvantage is its limited support and
the notorious security problems of most NoSQL databases and Hadoop ecosystem products. Solutions
to offset these problems exist, e.g., client to node encryption, the use of external products like Kerberos,
etc. However, implementing these and the rest of the architecture requires highly-qualified personnel.

Even for smart cities, especially in eGovernmence, there is the danger of falling into the “Big
Data Hubris”, the impression that having large quantities of data and apparently robust algorithms
mean that the more traditional ways of ensuring data quality, determining valid and trustworthy
dependencies among data, can be overlooked [6,7]. From the citizens’ point-of-view, there are privacy
concerns, the fear that smart cities could be turned into “Big Brothers” that constantly monitor
and evaluate their every move. Even more, there is some concern regarding collaborative filtering
algorithms, like the Netflix prize winner alternating least squares (ALS) algorithm [8], that have been
traditionally used to yield movies or product recommendations by companies like Netflix or Amazon,
could be unfairly used by banks or even by local governments to adjust credit scores or citizen scores,
for example. The problem with Big Data algorithms is that they can take into consideration not
only the actions of the ranked person but also other persons’ actions. Banks could cut someone’s
credit card limit because he or she shops in establishments where people who previously shopped
had difficulties paying their instalments [9]. While bias and unfairness risks exist when using an
“all data is credit data” approach [10], some authors argue that Big Data methods can be useful to
evaluate people with limited or no credit history, i.e. that otherwise would not have access to such
bank services [11,12]. The unfairness concerns should be carefully and transparently addressed by
companies, local governments, or mayoral offices. If transparently used, ALS type algorithms could
benefit the community. For example, they could better promote tourist points of interest to different
target groups, or to better customize social programs according to recipients.

Using IoT and Big Data analytics for smart tourism and sustainable cultural heritage is discussed
in [13], together with the concept of smart and connected communities (SCC). To support an SCC (case
study: TreSight, Torino, Italy), a conceptual architecture and a backend architecture that contains a
NoSQL database (MongoDB) and an HFS Cluster (XIFI nodes) is presented.

The combination of smart things and smart spaces, interconnected in smart cities, works because
of the Internet of Things (IoT) technology: smartphones, RFIDs, devices, sensors, vehicles, home
appliances and network capacity to transmit large volumes of data. The data collected from these
providers consists of the knowledge accumulated on the basis of data analysis using classical statistical
algorithms, data mining, or machine learning, and can help give value.

So, in order to fully benefit from the massive amounts of data produced by these smart systems,
a data management and processing system is needed. The ways in which cloud computing responds



Sensors 2018, 18, 1181 3 of 20

to these needs for data collection, storage and management was discussed by Ahuja et al. [14].
The availability of abundant data sources from intelligent devices and smart homes, the rapid progress
made in IoT, and Big data technology, make it possible to apply appropriate algorithms to enable
intelligent decisions in driving smart city activities. What is noticeable is the difficulty in combining
the advances in many domains (IoT, big data, cloud computing, machine learning), in order to provide
the services needed in a smart city at reasonable parameters [15].

The remainder of this paper is structured as follows: the next section provides a literature review
for machine learning techniques, clusters and cloud platforms and big data challenges, all in the
context of a discussion of smart cities. Then, we propose a city scale architecture for smart cities’ needs
based on Hadoop and its components. The final section presents the results obtained when testing the
proposed architecture on several data sets, and some discussions, taking into account the processing
speed, code reusability, scalability and fault tolerance.

2. Related Work

Using machine learning algorithms adds value to data supplied by sensors and meters.
Smart Buildings and IoT facilitate monitoring energy consumption and environmental parameters in
buildings [16]. The data is converted into information, information into knowledge, and knowledge
into intelligent decisions. Examples include analysis of electricity consumption, forecasting growth
areas, criminological analysis, equipment status, drawing automatically the best route for public
transport users, personalized portals for citizen applications to locate various objectives (e.g., parks,
ATM), etc. Also, solutions for business analysis use data from different departments that have the
potential to identify new perspectives and unique solutions in service delivery, as discussed in [17],
where the authors propose a general framework for the creation of e-Business models in eGovernment.

Buildings use about 40% of the total energy, as about 75% of them are energy inefficient [18].
Using renewable energy, especially when produced on the building premises is one of the critical
components of energy efficient buildings according to the EN 15232 standard [19]. There is a growing
interest in decentralized energy production in urban environments, as people are discovering the
potential of solar production on roofs, but also on building facades [20–22]. People who install
their own solar power generators can act as both a user and a provider. The role of the citizen
requires bidirectional communication between stakeholders and an awareness of the conditions
which must be mutually respected. If building level renewable energy production is accompanied
by larger photovoltaic power stations and wind power plants, this can have a positive impact on the
economic and social environment [23] (e.g., reduced pollution, reduced electricity price, creation of
more jobs). Some researchers argue that renewable energy can cap economic growth due to the need
of backup capacity from controllable fossil generation to offset the absence of instantaneous renewable
resources such as sunlight or wind [24]. But, generating more accurate power predictions is one of
the fundamental research areas in renewable energies, because it can significantly reduce the costs of
imbalances and the need for tertiary power reserves [25,26].

A holistic review of IoT applications has been presented in [27], including architectures (the classic
three-layer architecture and the SoA-based four-layer architecture), technologies, security and privacy
issues, and the integration of fog/edge computing and IoT to support the need of the applications.

CIDAP is a big data-based platform that tracks data collected from smart cities through an IoT
middleware. The primary concern is the storage and processing of a significant amount of data
in real time. It includes a big data repository for primary data storage, which is implemented in
CouchDB, a non-relational database that uses JSON type format. Data processing is partially provided
by CouchDB, but in order to process unstructured data for analysis purposes, the architecture includes
Apache Spark. The platform has already been tested in SmartSantander, one of the most extensive
running smart city test beds in the world [28–30].

Partly based on SmartSantander, the Organicity project proposes an Experimentation-as-a-Service
(EaaS) solution, aiming to federate existing smart city platforms with a focus on crowd-sensing.



Sensors 2018, 18, 1181 4 of 20

The intention of the project is, that with the help of the platform, citizens will implicate themselves
in identify challenges, create experiments, and find potential solutions for these problems [31]. Also,
the different stake-holders can make different contributions (e.g., characterizing smart city data).

OpenIoT [32] is an open source middleware for IoT application development. It provides an API
to connect to the wireless sensor network, and uses big data tools for data storage and processing.
The OpenIot architecture has three plans: the physical plan—the interface with physical devices for
configuring and collecting data, the virtualized plan—dealing with data storage, scheduling services
and service management, and the Utility App plan—the user interface of the platform, development
and configuration tools. The platform does not provide tools for real-time streaming data processing.

BASIS [33] is a big data architecture for smart cities. The architecture pays attention to multiple
abstraction layers, from the most conceptual to the most technological. It uses the Hadoop mechanism
to analyze data from various data sources, like file uploads and social network APIs. It uses the
Hadoop file storage system along with HIVE tables and non-relational storage to store different types
of data. The architecture has been tested on various use cases.

Sentilo [34] is a smart city platform that was designed for the city of Barcelona, but it has been
released as open source and can be used by any city or organization. Its primary objective was to share
information between heterogeneous systems and easily integrate legacy applications. The architecture
manages sensors and actuators using IoT, and it uses large data tools to collect and store data. It offers
a high level of scalability and interoperability.

Using Hadoop as part of a smart city architecture attracted attention in different scientific works.
A four-tier architecture that can be used for remote smart city and urban planning IoT Big Data analytics
is proposed in [35]. Another architecture for smart cities that uses Hadoop and Spark open-source
solutions has been proposed in [36]. The architecture is structured in three layers: the first layer collects
and cleans data, the second processes data, and the third offers tools for developing user applications
for the visualization of results and generating reports.

As most of the mentioned platforms do not provide real-time data streaming analysis, an exciting
contribution is the infrastructure that is described in [37]. The architecture was developed for real-time
processing of data provided by vehicles in traffic, and for sending recommendations to drivers, using
a simulator to test the scalability and response speed of the solution. The cost element has played an
essential role in the technology selection: Apache Kafka [38], being the distributed streaming solution,
was selected and tested in several configurations.

A very interesting open source platform that uses both distributed (Open Traffic Reporter, Open
Traffic Analyst User Interface) and centralized services (Open Traffic Basemap Producer, Open Traffic
Datastore, routing engine) is Open Traffic v2 (OTv2), that is available on github [39]. It generates
OSMLR tile sets that are freely available on Amazon Web Services [40]. The platform was used as
part of different grants (e.g., World Bank’s Big Data Challenge Innovation Grant) to improve traffic
management it cities like Cebu, Manila or Jakarta [41].

Implementing distributed solutions (e.g., Hadoop) can be realized with the help of a Cloud
platform because it reduces upfront costs, and offers both easy scaling and a content delivery network.
It can be used in the development and testing phases, and even in production, as the sole solution, or as
a hybrid that combines data from the customer’s premise and the Cloud. Data can be stored separately,
in object-based (e.g., Amazon S3) or block-based storage (e.g., Amazon EBS) services, depending on
the application.

Scaling in a cluster involves dividing the workload between the different nodes. There are also
alternative approaches that replicate the same request multiple times, to be processed in parallel by
the different nodes, and to accept the result from the first node in order to finish [42].

Cost optimization in Cloud platforms is discussed in [43]. The authors take into consideration
different variables, such as virtual machine types, limits imposed by providers, and different price
schemes. Considering all of these, they search for the optimal solution and also, for a quick,
but adequate, approximated solution.



Sensors 2018, 18, 1181 5 of 20

In Europe, a cooperation between the European Commission and private partners has yielded
an open standard platform, FIWARE. This is the standard offer for Smart City projects supported by
the European Commission, as previously developed projects used proprietary or vertical solutions
that were difficult to spread and applied globally. From a technical point of view, FIWARE provides
“OpenStack-based Cloud capabilities and a set of tools and libraries known as Generic Enablers (GEs)
with public and open-source specifications and interfaces” [44]. The platform uses a Context Broker
(REST implementations) to manipulate data from various sources in smart cities. Data access is
accomplished through a single API (NGSI), using the set of GE’s mentioned above. Connection to
provided cloud facilities can also be achieved via a Web portal or through the command line. It is a
significant investment in Europe, involving 52 partners in 13 countries with over 100 million of euros
spent in 2011–2016. It continues to develop within the HORIZON2020 program. Fifteen European
cities have provided real data and are connected to Fireware Lab experiments and Fireware LAB
Cloud, offering free computing capacity by 16 nodes distributed in Europe. Some voices criticized
FIWARE for being ”over-engineered and unnecessarily complex” [45]. The authors are advocating
the necessity of using a mobile cloud system because a large part of the services in Smart City can be
viewed as on-demand Internet-of-Things systems. In general, Smart Cities are facing a heavy workload;
it is therefore essential to support data collection and dynamic, end-to-end resource provisioning to
by IoT systems. We propose an information-centric design-based architecture that aims to deploy
a publish-subscribe messaging system as a cloudlet. Smart Cities take advantage of cloud services,
including public, private and hybrid solutions. Examples include the IBM SmartCloud Dubuque [46]
project; it represents an intelligent solution based on Cloud, that allows citizens and companies
to monitor water and energy consumption. In this case, the cloud solution enables more efficient
integration and coordination of various applications on a common platform. Small towns can also
benefit from the functionality offered by Cloud solution, just like the major cities.

Many smart city initiatives and frameworks have been developed as part of research projects.
One of the problems with such initiatives are that, after the funding is exhausted (FP7, H2020
etc.), numerous projects do not seem to develop further on their own, and many websites are
down or not updated for years so information is not as complete as it could have been (e.g.,
http://www.semsorgrid4env.eu, http://www.fi-ppp-outsmart.eu/, and http://www.opencities.net/
content/project). Nonetheless, there are lessons to be learned from every project, especially from the
articles written as part of these projects regarding the chosen technological stack and the challenges of
smart-city platforms.

A unified city scale ICT architecture is required to benefit from the full potential of a smart
city [47–49]. In this article, in order to build a robust ICT architecture, we investigated many solutions
that address smart city problems: the need for a powerful communication model, the integration
and real-time processing of various fast-moving streams of data, the need to process semi-structured
and non-structured data, the interoperability of different systems, and reliable scaling as processing
needs increase.

3. System Architecture and Components

An IoT enabled smart city architecture has three main tiers: the back-end tier (data storage and
processing), the IoT peripheral nodes tier (sensors, actuators, and other embedded systems) and the
middle-tier (the gateways).

For a city scale architecture to provide the space to store the data and the processing power to
analyze it, a back-end architecture constructed around a relational database would show its limits
rather fast. When such an architecture reaches its limits and vertical scaling does not fulfil requirements,
developers resort to workarounds like denormalization, using materialized views, using partitions,
or building additional caching layers on top of the database. Such solutions have the tendency to
become too complicated to maintain.

http://www.semsorgrid4env.eu
http://www.fi-ppp-outsmart.eu/
http://www.opencities.net/content/project
http://www.opencities.net/content/project


Sensors 2018, 18, 1181 6 of 20

Our primary objective is to propose an architecture that is easy to maintain and is able to manage
big data produced in a smart city environment, an architecture that analyses historical data, near-time
data, but also real-time data. As part of this objective, we wanted to test the way Hadoop handles
scalability. If scaling is linear, a smart city could start from a three-node cluster and scale when needed
to thousands of nodes and get a proportional processing boost. To choose from the plethora of solutions
which are potentially useful in a smart city environment and propose the architecture, we used the
datasets described in Section 4 and the criteria described in Section 5 to evaluate:

• Two bulk data loading solutions: Apache Sqoop [50] vs. Oracle Loader for Hadoop [51];
• Two streaming solutions: Spark Streaming [52] vs. Apache Storm [53];
• Two NoSQL databases relevant for a smart city architecture: HBase [54] vs. Cassandra [55];
• Two NoSQL databases using two SQL query engines: Apache Phoenix [56] vs. Presto [57];
• Three Hive [58] execution engines: MapReduce vs. Tez vs. Spark [59].

The architecture is shown in Figure 1. The elements that are evaluated in this paper are highlighted
in red.

Figure 1. Hadoop architecture for smart cities.

In a smart city environment, most data are produced by IoT nodes which are typically
resource-constrained devices that cannot exclusively rely on their own limited resources to satisfy
their computing needs. Nonetheless, as the nodes, the controllers, or more commonly the gateways,
become more and more intelligent, collecting, transforming, summarizing data and decision making
regarding data routing and data prioritizing can be brought towards the edge, nearer to the end-user,
paving the way for a fog architecture to develop alongside cloud computing [60]. There are several IoT
data collection solutions [61]. For example, Stack4Things [62] proposes a data collection and inference
architecture constructed using the free, open-source OpenStack cloud platform. In this approach
the board (node level) is like a cloud machine instance, a compute node is like any standard or IoT
enabled machine, and the controller hosts a Ceilometer collector. The board of the IoT nodes (e.g.,
Arduino YUN) runs a Python implemented probe that loads a monitoring plugin that talks with the
Ceilometer agent of the compute node using an AMQP (Advanced Message Queuing Protocol) queue.



Sensors 2018, 18, 1181 7 of 20

The same communication approach is employed between the Ceilometer agent and the Ceilometer
collector. The Ceilometer which is traditionally used in OpenStack deployments for customer billing,
resource tracking, and alarming capabilities [63] is extended at the compute-node side using a pollster
that extracts messages from the queues and at the controller-side with a dispatcher that analyses the
measurements coming from the probes and which were encoded by the agent. In the Stack4Things
architecture, the measurements are sent to MongoDB and the standard OpenStack Dashboard, Horizon,
extended with an IoT-enabled panel, is used for data visualization. Another approach would be to send
the measurements to Flume, and from there to Elasticsearch and Kibana, for indexing and visualization.

3.1. Resource Negotiator

YARN [5] provides resource management, security, and different governance tools, making it
possible for other developers to construct data access software that runs in the cluster. Multiple
projects and frameworks are taking advantage of the open source platform, being developed as part
of the ecosystem to address storage, processing and scheduling needs generated by high-variety,
high-volume, and high-velocity data. Even if some projects and solutions are popular, alternatives
can out-perform them in various scenarios. For example, Apache Mesos [64] can be an alternative to
YARN, the default Hadoop resource negotiator, when scalability is salient or when controlling not
merely Hadoop jobs but a whole data center is necessary. There are incubating projects, e.g., Apache
Myriad that “enables the co-existence of Apache Hadoop and Apache Mesos on the same physical
infrastructure. By running Hadoop YARN as a Mesos framework, YARN applications and Mesos
frameworks can run side-by-side, dynamically sharing cluster resources” [65]. Apache Spark has its
cluster manager, but it can also use Hadoop’s manager, YARN, or other managers, such as Mesos.

3.2. Relational Stores and Bulk Data Transfers

Apache Sqoop [50] can move, using mappers, large volumes of data between relational sources
like existing databases and a Hadoop cluster. Using –check-column and –last-value parameters the
database and the cluster can be kept in sync. Sqoop can be started from the command line, from a script
in crontab or from Oozie. Apache Flume and Apache Kafka [66] work with data from fast-moving
streams generated by social media, different sensors, or as a result of reading application or server logs.
Data can be delivered to various targets (HDFS, No-SQL databases, Flume) in parallel. These tools
can be used to load data in HDFS, and in conjunction with Hive’s schema-on-read approach. Flume
uses multiple sources and sinks to load data into the targets. These can work in parallel. The source
receives an event from the exterior and stores it in a passive store, called a channel. By using this buffer,
the sink, and the source work asynchronously. The sink consumes the data from the channel and loads
it into the target. This approach is useful for integrating the infrastructure-based services.

3.3. Sensors Data Ingestion and Streaming

Service delivery for smart cities requires applications to handle the massive volume of streaming
data provided by sensors. When real-time processing with latencies in milliseconds is required, Apache
Storm [53] or Spark Streaming can be used. These can be useful for processing data coming from
sensors, and integrate well with a distributed message system such as Apache Kafka, that can work
with hundreds of megabytes per second, from multiple clients. Similarly, Spark Streaming takes Spark
beyond batch processing, as it can be used to ingest and process streams of data in real time.

3.4. Large-Scale Data Processing

For data processing and analytics, Apache Spark uses in-memory processing at distributed scale
and can be an alternative or compliment to a Hadoop cluster, leveraging HDFS. When running in
a cluster, the Spark driver runs on the master node and communicates with the cluster manager
to distribute processing to the worker nodes. The manager handles the eventual failures and,
after the processes are over, collects the results and passes them to the driver. As shown in [67],



Sensors 2018, 18, 1181 8 of 20

the primary abstraction in Spark is an RDD (Resilient Distributed Dataset), which is a collection of
elements partitioned across the nodes of the cluster that can be processed in parallel using a series
of operations (transformations or actions). Spark uses wide dependencies to break execution into
stages, with shuffle operations between them, and narrow dependencies to create pipelined tasks.
Apache Spark uses a Directed Acyclic Graph (DAG) scheduler. Consequently, the execution style
is acyclic; once a stage is executed, the execution doesn’t return to that stage. Spark, by default,
caches the intermediate data between stages in memory. By request, Spark can also cache an RDD
inside a stage. By using RDD, Spark achieves fault tolerance by keeping track of all changes that
happen on the dataset, and produces speed improvements compared to Hadoop MapReduce for
algorithms that reuse intermediate results across multiple computations. Spark 2.0 extends RDD to
table-equivalent DataFrame objects that can, among other things, contain row objects of structured
data on which SQL queries may be run. With this approach, we can have a schema associated
with the data. Thus, data can be more efficiently transported through the cluster, and queries can
be more optimized. Additionally, Spark has a library for machine learning (MLlib), a library for
graph-oriented analyses (GraphX), and an SQL implementation (Spark SQL) for querying structured
data, offering APIs for modern programming languages (e.g., Python, Scala, Java). It can be suitable
for implementing iterative algorithms, machine learning algorithms like graph processing, page
ranking, logistic regression, Artificial Neural Networks (ANNs) or Bayesian Network Classifiers
(BNCs), as tested in [68]. As shown by its original developers [69], besides iterative algorithms, RDD
and Spark’s other significant strength is in interactive data mining.

3.5. Data Storage for OLAP and OLTP

Hive is a data warehouse project that runs on top of Hadoop. It implements a query language,
HiveQL, that integrates most of the SQL-92 standard, but compared to classical relational databases,
can use a schema-on-read approach. This method enables data to be ingested and stored first, and
then, if necessary, a table can be created over the stored data for querying purposes. The data is stored
in text files, RCFiles, or in a database (by default, Apache HBase). Implicitly, the metadata is stored in
Apache Derby, but other relational databases (e.g., MySQL) can be used. Hive can use Spark [70], as
well as MapReduce or Tez, as its execution engine [71].

HBase is a NoSQL database modelled after Google’s Bigtable [72]. It offers real-time read/write
access to Big Data, guaranteeing partition tolerance and consistency. The hbase shell can seem difficult
to use at first. It doesn’t support SQL but uses commands such as describe, scan, count or get. To overcome
this problem, distributed SQL style query engines were built. Phoenix and Presto are distributed
SQL query engines that can combine data from different types of data sources in a single query. They
offer RDBMS style semantics (SQL), and support transactions and user-defined functions (UDFs)
based on Java Archives (JARs). Apache Phoenix is built primarily for HBase but can also access other
sources such as Hive or Pig. Apache Presto is similar but can access more data sources, including
Accumulo, Cassandra, Hive, MongoDB, MySQL or PostgreSQL [57]. The Phoenix client communicates
directly with the HBase API, with the help of the Phoenix Co-Processor (that installs on the server
side), and Zookeeper, to keep track of the available HBase region servers.

For developers, in addition to using dedicated SQL engines, accessing data from different sources
can be accomplished using different languages (Java, Scala, Python, Pig). Both Phoenix and Presto
enable running SQL commands from the command line, but also from GUI clients or other products
that support JDBC drivers (Apache Pig, Flume, Sqoop, Hive, and SparkSQL). In the following example
we use a PIG script to access data stored in a Phoenix backed HBase table:

REGISTER /usr/hdp/current/phoenix-client/phoenix-client.jar
A = LOAD ‘default.sentiment_ratings’ USING org.apache.hive.hcatalog.pig.HCatLoader();
STORE A into ‘hbase://ratings’ using org.apache.phoenix.pig.PhoenixHBaseStorage(‘master_node_ip’,

‘-batchSize 1000’).



Sensors 2018, 18, 1181 9 of 20

Elasticsearch is a database engine that gained a lot of popularity lately [73]. It is an open-source,
scalable, distributed RESTful search and analytics engine [74] based on Apache Lucerne, a Java
written text search engine. It provides accurate results in near real-time [75] on different types of
searches (single and multi-field, proximity, autocomplete, etc.), on different types of data (structured,
semi-structured and unstructured). It can be extended using plugins bundled into an X-Pack [76] to
support extra features (security, machine learning, reporting, etc.). Elasticsearch, with the help of the
visualization tool Kibana [77], can help monitor the entire infrastructure and can also index, filter, sort,
aggregate or correlate data coming from the sensors. Elasticsearch can use HDFS for long-time archival
and can easily move data to and from Hadoop (including Spark, Spark Streaming, and SparkSQL)
with the aid of the ES-Hadoop connector [78].

4. Data and Methods

The queries and the test results are in the supplementary excel file. We tested the proposed
architecture on clusters built on Amazon Elastic MapReduce (EMR) with the datasets initially stored
in S3 buckets. When needed, the datasets were copied from S3 into the HDFS. We started with a
three-node cluster and scaled up to near real-time to evaluate the improvements. When clusters are
smaller, the results are less dependent on the data distribution and access paths and more on the
evaluated products. While benchmarking different products or engines to maintain similar testing
environments, if the product provided a Thrift JDBC/ODBC server, the statements were run over
JDBC from Java or Scala classes. Where applicable, JMeter or JProfiler were used.

In developing the architecture, we were inspired by the “urban smartness” approach suggested
in [79]. It represents a set of processes, features and technologies that are required to make a “Smart
City”. They are inspired by the protocols for the evaluation the smartness of cities at European
Union level.

The smartness of the infrastructure is a crucial element in obtaining a smart city [80]. A city can
optimize resources, monitor public security, and provide proper maintenance only if its infrastructure
is connected and integrated: streets, roads, boulevards, parking spaces, rail lines, underground tunnels,
communication lines, public lighting, traffic lights, public transportation, video surveillance systems,
pipes, power lines, significant buildings, parks and recreational areas. Social media and forum data
can be used to extract and synthesize tourist and citizens’ problems and experiences. It can be an
efficient way to identify trending problems, but also to assess damage during emergencies [81–83].
By implementing the Big Data oriented solution that we propose, a city can obtain benefits by having
a scalable state-of-the-art architecture that is fit to support the data and service integration of the
different components of its infrastructure.

To benchmark the architecture components, we used four datasets that we considered a good
sample of smart-cities related data. The first is comprised of data from Beijing that was extracted from
GPS trajectories of taxicabs, road networks, POIs of Beijing, and video clips recording real traffic on
road [84,85]. The dataset size is 866 MB and can be downloaded from [86]. In the original dataset,
the data from different days was stored in different files, and the data that contained calculations was
stored separately for weekdays and holidays. For simple analyses, when we loaded the dataset into
the NoSQL databases, we added a column with the date to the real_time_traffic and speed tables, and
a column that indicates if the day is a holiday or not to the real_time_traffic, speed, day_speed_history
and day_real_time_traffic tables. We also constructed a table, time_slots that shows the start time and
end time of each time slot (e.g., slot 0 for interval 00:00:00 00:09:59; slot 1 for interval 00:10:00 00:19:59).
The structure of the database that is not entirely normalized is shown in Figure 2. This dataset was
used to benchmark the OLTP elements (NoSQL databases and the query engines) for operations that
require joining data and data aggregation (e.g., inner/outer joins combined sum, avg, stdev).



Sensors 2018, 18, 1181 10 of 20

Figure 2. The structure of the first data set.

The second dataset was derived from a 2017 Reddit comment dataset [87] and can be found in
this article’s complementary materials. The whole Reddit dataset that starts from 2005 is extensive
(over 900 GB), making it an efficient solution for evaluating distributed storing and processing
solutions. The 2017 subset that we used had 7.7 GB in bz2 format, or over 41 GB when uncompressed.
We processed it (in Python) using the VADER Sentiment Lexicon [88] to rank every post as positive,
negative or neutral. Lexicons have improved over time; the VADER lexicon was developed with the
help of 10 trained people that ranked 9000 token features on a scale from “[−4] Extremely Negative” to
“[4] Extremely Positive”, with allowance for “[0] Neutral (or Neither, N/A)”. It takes into consideration
punctuation, capitalization, emoticons, acronyms and slang with sentimental value. For our case
study, we added the scores of each token, adjusted according to the rules to the [−1, 1] interval,
and calculated the compound score of over 54.3 million posts and categorized them as positive
(compound score ≥ 0.5), negative (compound score ≤ −0.5) or neutral −0.5 < compound score < 0.5):

• Number of positive posts: 4,575,572, of which 17,829 were very positive (score > 0.95);
• Number of negative posts: 2,184,071, of which 8920 were very negative (score < −0.95);
• Number of neutral posts: 47,538,380.

When doing sentiment analyses, any lexicon will generate errors (false positives, false negatives)
because it has limited possibilities to detect the context, including double-entendre, irony and sarcasm.
For example, a sentence like “I hate you” that receive by applying the lexicon a strong negative score
(−0.6114) can have a positive meaning in a particular context.

The resulting file had 1.1 GB, 4 columns (roundedFinalScore, maxPosScore, maxNegScore, postId) and
54.3 million lines. Because it is a dataset that resembles various smart-cities use cases (including sensor
outputs) that involve lots of rows and few columns, we used this dataset to test all the products using
aggregate intensive operation.

The third dataset is also included in the complementary materials and it is comprised of
5,144,791 XML documents (1.1 GB in total) that show the transactions from an online shop (the
names and the emails of the customers have been anonymized) having the schema:

<xs:schema attributeFormDefault=“unqualified” elementFormDefault=“qualified”
xmlns:xs=“http://www.w3.org/2001/XMLSchema”>

<xs:element name=“record”>

http://www.w3.org/2001/XMLSchema


Sensors 2018, 18, 1181 11 of 20

<xs:complexType>
<xs:sequence>

<xs:element type=“xs:string” name=“Customer”/>
<xs:element type=“xs:string” name=“Email”/>
<xs:element type=“xs:string” name=“PurchaseDate”/>
<xs:element type=“xs:float” name=“Price”/>
<xs:element type=“xs:string” name=“ProductIDs”/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

The dataset was used to test the XML processing capabilities of the OLAP solution (e.g., split,
lateral view, explode).

To evaluate the streaming solutions, we used the second dataset mentioned above in addition to
a fourth dataset: weather data captured in real time from [89], using a developer key and a Python
program (columns: year, month, day, precipitations, maxTemp, meanTemp, minTemp). The data was
sent line by line from ten sources to Apache Flume (e.g., python getweather.py | nc <ip_master_node>
<netcat-collect.port>), to be consumed by Spark Streaming or Apache Storm. A small sample is included
in the complementary materials.

5. Results and Evaluation

When comparing two or more real-time or micro-batching Big Data products, speed is, of course,
important. But even more important is the way the speed scales when new nodes are added to the
cluster. Even if one product is faster on the initial cluster, another might out-perform it when more
nodes are added. Other important things to consider are support, innovations, features, or the way a
product integrates into the solution. Underpinned by our Big Data projects experience, to compare the
products mentioned above we propose the following criteria based framework:

1. Speed increments when scaling to a cluster with more nodes (50%)
2. Processing speed over the datasets (15%)
3. The reusability of the code between the components of the architecture (15%)
4. Innovations in the past 36 months (e.g., DataFrames in Spark) or important extra features (10%)
5. Releases in the past 12 months (5%)
6. Support/interest shown in online communities (5%)

For the first criterion, the scores are proportional to 100. A maximum score would indicate a
perfect linear scalability when switching from a three-node cluster to a five-node cluster (e.g., the query
time halves when the working nodes double). For the second criterion, the fastest product receives a
score of 100 and the rest, proportional to 100, according to the average speed difference calculated for
each test executed on the three-node cluster (with default settings). For the third measure, scores can
be 100 (very high reusability), 75 (high reusability), 50 (some reusability), 10 (no reusability). For the
fourth, if at least one innovation was identified, the product receives 75 points; if it has an important
extra feature compared to the other analyzed products it receives 25 points. For the fifth criterion, if a
product had at least two releases in the past 12 months, it receives 100 points; if there was one release
it receives 75 points. An active and vibrant online community can show interest in a product and can
help drive it forward, so for the sixth measure, if there is an active official support forum the product
receives 50 points. The remaining 50 points are awarded proportionally to the product that has had
the most answered questions on StackOverflow in the past 12 months. The final composed score of
each product is calculated according to the weighting system in the brackets. There are also other
criteria that are taken into consideration by the team when choosing a solution, but some are harder



Sensors 2018, 18, 1181 12 of 20

to be quantified in a model, e.g., security features or previous experience with a product compared
to another.

The scores for the analyzed products are shown in Tables 1 and 2.

Table 1. Scores for the analyzed products (part 1)—the details regarding the tests, including the queries,
are in the Excel file included in the Complementary Materials of the article. In the tab dedicated to the
criteria, in the cell comments, there are additional explications regarding how the score was calculated.

Criteria Hive with MR Hive with Tez Hive with Spark Oraloader Sqoop

1. Speed increments
when scaling to a cluster
with more nodes (50%)

60.08 74.16 67.70 0.00 0.00

2. Processing speed over
the datasets (15%) 34.80 100.00 62.20 100.00 93.23

3. The reusability of the
code between the
components of the
architecture (15%)

50.00 50.00 50.00 10.00 50.00

4. Innovations in the past
36 months (e.g.,
DataFrames in Spark) or
important extra features
(10%)

75.00 100.00 75.00 0.00 15.00

5. Releases in the past 12
months (5%) 100.00 100.00 100.00 75.00 75.00

6. Support/interest
shown in online
communities

100.00 100.00 100.00 50.00 100.00

Final Score 60.26 79.58 68.18 22.75 31.7345

Table 2. Scores for the analyzed products (part 2)—the details regarding the tests, including the queries,
are in the Excel file included in the Complementary Materials of the article. In the tab dedicated to the
criteria, in the cell comments, there are additional explications regarding how the score was calculated.

Criteria Cassandra +
Presto

HBase +
Pheonix

Spark
Streaming Storm Ambari Hue

1. Speed increments when
scaling to a cluster with
more nodes (50%)

51.30 75.85 100.00 100.00 0.00 0.00

2. Processing speed over the
datasets (15%) 100.00 34.43 99.00 100.00 0.00 0.00

3. The reusability of the
code between the
components of the
architecture (15%)

75.00 75.00 75.00 50.00 0.00 0.00

4. Innovations in the past 36
months (e.g., DataFrames in
Spark) or important extra
features (10%)

0.00 0.00 100.00 0.00 15.00 0.00

5. Releases in the past 12
months (5%) 100.00 100.00 100.00 100.00 100.00 100.00

6. Support/interest shown
in online communities 100.00 75.00 100.00 71.50 100.00 75.00

Final Score 61.9 63.0895 96.1 81.075 11.5 8.75



Sensors 2018, 18, 1181 13 of 20

The advantage of these measures is that they can be easily used to compare other products that
offer similar features. For this smart city and IoT oriented use case, for NoSQL databases, we looked
into HBase and Cassandra, but for other situations, for example, a business-oriented use case, we could
evaluate CouchDB and MongoDB.

When testing on Amazon Elastic MapReduce (EMR), we used the following configurations:

• 1 node pseudo cluster—8 vCPU, 15 GiB memory, 80 SSD GB storage;
• 3 node cluster: 1 master—8 vCPU, 15 GiB memory, 80 SSD GB storage EBS Storage, 2 cores:

8 vCPU, 15 GiB memory, 80 SSD GB storage;
• 5 node cluster: 1 master—8 vCPU, 15 GiB memory, 80 SSD GB storage EBS Storage, 4 cores:

8 vCPU, 15 GiB memory, 80 SSD GB storage.

When testing scaling, we didn’t use cluster resize for data balance concerns. The three-node
cluster and the five-node cluster were started from scratch, and the data was loaded in HDFS each time.

We choose Hive as the data warehouse solution with Apache Tez as its main execution engine,
because in outperformed the other solutions (Tables 3–6). Apache Spark as the execution engine is
also a good option; it has scaling potential because executing Hive is executing MapReduce primitives
on Spark improving the queries that involve multiple reducer stages, similar to Tez [59]. Classical
MapReduce is not a good solution; it was outperformed, and it is considered deprecated in the
newest Hive versions and Tez as a backup. With this approach, for data processing, Spark, compared
to legacy Hadoop MapReduce, solves inefficiency in areas such as iterative machine learning and
interactive data mining by not HDFS storing intermediate stages. Using Hive with Spark can help
in standardizing the execution backend, especially when Spark is also used for other processes that
run in the cluster, improving operational management and maintenance, making debugging easier.
Furthermore, Hive exposes a thrift server and JDBC/ODBC driver so it can be accessed like any other
database server. Nevertheless, even with Spark or Tez as execution engines and with the introduction
of transactions with ACID semantics (starting from version 0.14), Hive should not be used when a low
latency OLTP database server is needed. A select with “group by” over a 1.1 GB file takes 100 s (the
first run) on a three-node cluster and 85 on a five-node cluster.

Table 3. Test results for execution time (HiveQL with MapReduce as execution engine, the queries can
be found in the Complementary Materials).

Execution Time (s)
HiveQL with MapReduce as Execution Engine

Query 1 Query 2 Query 3 Query 4 Query 5

1 node 139.9 102.467 7150 2440 48.15
3 node cluster 80.9 100.69 6107 1401 40.7
5 node cluster 57.16 85.04 5803 1190 32.5

Table 4. Test results for execution time (HiveQL with Tez as execution engine, the queries can be found
in the Complementary Materials).

Execution Time (s)
HiveQL with Tez as Execution Engine

Query 1 Query 2 Query 3 Query 4 Query 5

1 node 219 118.53 1487 1250.93 27.07
3 node cluster 51.67 79.48 780.53 708 20.1
5 node cluster 43.7 40.25 530.38 600 12.5



Sensors 2018, 18, 1181 14 of 20

Table 5. Test results for execution time (HiveQL with Spark as execution engine, the queries can be
found in the Complementary Materials).

Execution Time (s)
HiveQL with Spark as Execution Engine

Query 1 Query 2 Query 3 Query 4 Query 5

1 node 263 123.98 2967.8 2001 31.644
3 node cluster 80 101.21 1735.6 1380 24.3
5 node cluster 51 83.7 1250.3 1081 18.2

Table 6. Test results for execution time (Spark 2.1: spark-submit, Spark SQL over an HDFS stored file
and over an Hive stored table, the queries can be found in the Complementary Materials).

Execution Time (s)
Spark 2.1 (Spark-Submit, Spark SQL over

HDFS Stored File)
Spark 2.1 (Spark-Submit, Spark SQL over

the Hive Stored Table)

Query 1 Query 2 Query 3,4,5 Query 1 Query 2 Query 3,4,5

1 node 13 25 n/a 12 23 n/a
3 node cluster 48.98 80 n/a 40.2 61 n/a
5 node cluster 38.3 57.9 n/a 31.7 43.5 n/a

For real-time processing, we included Apache HBase in the architecture, a NoSQL database
that emphases consistency and partition-tolerance and natively works with HDFS. For comparison,
Cassandra uses its own filesystem, Cassandra File System (CFS), so if we needed to copy data from
HDFS to CFS, we would need to use a tool like DSE. As shown in Table 7, on the datasets, HBase
used with Phoenix proved to be slower compared to Cassandra, but demonstrated better scaling
capabilities. HBase implements a four-dimensional data model that uses the following components:
row key, column family column qualifiers and data value version. The dataset that we used and the
more analytical oriented queries seem to favor Cassandra, so Cassandra and Presto outperformed
HBase and Phoenix, but the latter two showed a better scalability potential. Also, Presto has the
advantage that it can connect to more data sources (Hive, Cassandra, MongoDB, MySQL etc.) and can
join tables from multiple sources.

Table 7. Test results for execution time (the queries can be found in the Complementary Materials).

Hbase and Phoenix Cassandra and Presto

Query 1 Query 2 Query 3 Query 4 Query 1 Query 2 Query 3 Query 4

3 nodes processing speed (s) 48.5 2.32 80.2 78.5 40.1 2 25 13
5 nodes processing speed (s) 27.9 1.79 58 50.5 34.3 1.85 20 10

For streaming, even though Storm provided slightly better latencies during tests, we chose Spark
Streaming for standardization reasons, as Spark was included in the architecture and the same code
can be used for both batch processing and stream/micro-batch processing. Starting with version 2.1,
Spark also offers Structured Streaming, “fast, scalable, fault-tolerant, end-to-end exactly-once stream
processing without the user having to reason about streaming” [90]. Both Spark Streaming and Storm
provide a similar fault tolerance.

For importing/exporting relational data into/from HDFS, we tested Sqoop and Oracle Loader for
Hadoop (OLH). The functionalities of the two products are similar, with OLH proving better support
for the Oracle Databases. We chose Sqoop for the architecture because it is more general compared to
OLH (since it can be used with other data sources besides Oracle).

We also included Ambari in the architecture because it provides a smooth, interactive way to
monitor and administer the cluster, to start or stop components, and to change the memory allocated
for a node or a container or setup alert thresholds. We selected Ambari over Hue because it provides
more features and a better user interface.



Sensors 2018, 18, 1181 15 of 20

6. Discussions and Further Research

This article proposes a robust architecture for managing a Smart City that can seamlessly handle
a heterogeneous field of complex applications that need to interact, process various fast-moving
heterogeneous streams of semi-structured and not-structured data, and provide reliable and
cost-effective scaling as processing needs increase, gaining the ability to handle limitless concurrent
tasks. The need of such an architecture is discussed in the literature [47–49]. Some papers, even if they
acknowledge the importance of distributed processing only mention a cluster or a NoSQL database as
part of the architecture [13,91], without drilling down.

The Big Data Hadoop centered environment changes very quickly, and some research can be
obsolete in 2–3 years. For example, in a 2015 article, it was stated that NoSQL systems “support only
simple query interfaces, i.e., key-based access or single-table queries requiring that the application
developers have to implement more complex operations such as joins themselves” [92]. This is no
longer true; as discussed in this paper, SQL-type queries can be implemented in NoSQL databases,
sometimes with the help of query engines that can combine, using a single query, data from multiple
sources, joining a table from a NoSQL database with another one from a different NoSQL database
or even from a distributed data warehouse solution such as Hive. Query engines like Phoenix can
also be used to enable ACID (Atomicity, Consistency, Isolation, Durability) compliant tables over
NoSQL tables (set phoenix.transactions.enabled = true). With Hive, on the other hand, the data warehouse
solution can natively provide full ACID semantics at the row level [93]. Nonetheless, such distributed
solutions are not even mentioned in recent works where the authors test transactional services in
NoSQL databases, propose their own middleware layer over Riak [94], and test the solution using data
from the Council of London for public transportation of bus services [95].

We discussed all the main architectural needs: bulk data loading, data ingestion, data streaming,
OLTP and OLAP. For the architecture, we only considered components that are open-source and
have no license costs, and analyzed their performance in different scenarios. For each component
of the architecture, there can be tens of possible candidates, each with its strengths and weaknesses.
Consequently, we developed the framework described in Section 5, and used it to evaluate the
components described in Section 3 and in Figure 1, based upon the Smart Cities relevant datasets
described in Section 4.

The proposed architecture has taken into account the requirements for storing and processing large
data volumes associated with a smart city. Benchmarking any product, including desktop computers,
servers, data center architectures and mobile devices, always has its biases, fallacies and pitfalls [96],
partly because it is hard to classify and match real-life scenarios. This can mislead architects to identify
the wrong bottlenecks and make improper trade-offs [97]. When benchmarking distributed systems,
things are even more complicated because performance is dependent on data distribution, the path to
data of a given query, and the heterogeneous network that connects the nodes.

We aim to improve the results by testing on multiple sets of complex data and by developing
the framework to also take into considerations the optimization of combinations of components from
different categories. Also, one of the shortcomings of the tests was that we only tested scaling from a
three-node cluster to a five-node cluster. To get a better view of the scaling capabilities, tests should
also be conducted on clusters with substantially more nodes.

Machine learning based programs should be developed and benchmarked because they can offer
insights based on the data that is ingested by the cluster. For example, meteorological, environmental
and astronomical factors could be aggregated with the actual measured power of the power panels in
order to predict energy production at different lead times (usually up to 72 h). Having access to multiple
readings from different PV generators could lead to improved predictions by identifying clusters of
nearby generators that behave similarly. Many studies take into consideration only historical readings
together with other variables from the PV generator for which they generate predictions [25,98].
Having identifying generators that behave similarly could improve predictions by adjusting the
predictions using a collaborative algorithm for newly installed PV generators, for which there is



Sensors 2018, 18, 1181 16 of 20

limited historical data. Also, having continuous streams of weather data could help in highly focused,
customized nowcasting.

To expand the text and sentiment analyses problem, we are working on a key/value approach to
construct a dictionary (stored in a NoSQL database) in which every token from the corpus received
an index. The key is the position in the dictionary of the token and the value of its mean sentiment
rating. For sentiment values analyses, the order of the words is essential, so we need to store the
position in the text as an index. This approach makes storing text in a multi-dimensional vector space
model (VSM) possible. We can store for every word, besides the average sentiment rating, the number
of occurrences or the frequency-inverse document frequency (TF-IDF) that shows the importance of
the word in the document. This enables running supervised or non-supervised machine learning
techniques, in order to discover similar posts or connections between the posts using metrics like the
Euclidean distance or the Cosine similarity.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/4/1181/
s1.

Author Contributions: D.V., B.R. and B.A.-R., reviewed the relevant literature, developed the architecture,
acquired the datasets and tested the architecture components.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. United Nations. World Urbanization Prospects: The 2014 Revision, Highlights (ST/ESA/SER.A/352); United
Nations: New York, NY, USA, 2014; ISBN 9789211515176.

2. Ahvenniemi, H.; Huovila, A.; Pinto-Seppä, I.; Airaksinen, M. What are the differences between sustainable
and smart cities? Cities 2017, 60, 234–245. [CrossRef]

3. Vinod Kumar, T. (Ed.) Smart Economy in Smart Cities; Springer: Singapore, 2017; ISBN 9789811016103.
4. United Nation. Chapter 2: Towards Sustainable Development-A/42/427 Annex, Chapter 2-UN Documents:

Gathering a body of global agreements. In United Nation Our Common Future; United Nations: New York,
NY, USA, 1987.

5. Hadoop YARN. Available online: https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-
site/YARN.html (accessed on 5 April 2018).

6. Boyd, D.; Crawford, K. Critical questions for big data: Provocations for a cultural, technological, and scholarly
phenomenon. Inf. Commun. Soc. 2012, 15, 662–679. [CrossRef]

7. Lazer, D.; Kennedy, R.; King, G.; Vespignani, A. The Parable of Google Flu: Traps in Big Data Analysis.
Science 2014, 343, 1203–1205. [CrossRef] [PubMed]

8. Koren, Y.; Bell, R.; Volinsky, C. Matrix factorization techniques for recommender systems. Computer 2009, 42,
30–37. [CrossRef]

9. Ron, L. American Express Kept a (Very) Watchful Eye on Charges. Available online: http://www.
nytimes.com/2009/01/31/your-money/credit-and-debit-cards/31money.html?pagewanted=all (accessed
on 5 April 2018).

10. Hurley, M.; Adebayo, J. Credit Scoring in the Era of Big Data. Yale J. Law Technol. 2016, 18. [CrossRef]
11. McEvoy, M.J. Enabling Financial Inclusion through “Alternative Data”; Mastercard Advisors: Bentonville, AR,

USA, 2014.
12. Liu, X.; Wang, T.; Ding, W.; Liu, Y.; Xu, Q. A Credit Scoring Model Based on Alternative Mobile Data for

Financial Inclusion. In Proceedings of the 2017 Credit Scoring and Credit Control Conference, Edinburgh,
UK, 30 August–1 September 2017; University of Edinburgh Business School: Edinburgh, UK.

13. Sun, Y.; Song, H.; Jara, A.J.; Bie, R. Internet of Things and Big Data Analytics for Smart and Connected
Communities. IEEE Access 2016, 4, 766–773. [CrossRef]

14. Ahuja, S.P.; Moore, B. State of Big Data Analysis in the Cloud. Netw. Commun. Technol. 2013, 2. [CrossRef]
15. Strohbach, M.; Ziekow, H.; Gazis, V.; Akiva, N. Towards a Big Data Analytics Framework for IoT and Smart

City Applications. In Modeling and Optimization in Science and Technologies; Springer: Cham, Switzerland,
2015; Volume 4, pp. 257–282. ISBN 978-3-319-09176-1.

http://www.mdpi.com/1424-8220/18/4/1181/s1
http://www.mdpi.com/1424-8220/18/4/1181/s1
http://dx.doi.org/10.1016/j.cities.2016.09.009
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://dx.doi.org/10.1080/1369118X.2012.678878
http://dx.doi.org/10.1126/science.1248506
http://www.ncbi.nlm.nih.gov/pubmed/24626916
http://dx.doi.org/10.1109/MC.2009.263
http://www.nytimes.com/2009/01/31/your-money/credit-and-debit-cards/31money.html?pagewanted=all
http://www.nytimes.com/2009/01/31/your-money/credit-and-debit-cards/31money.html?pagewanted=all
http://dx.doi.org/10.3868/s050-004-015-0003-8
http://dx.doi.org/10.1109/ACCESS.2016.2529723
http://dx.doi.org/10.5539/nct.v2n1p62


Sensors 2018, 18, 1181 17 of 20

16. Pocero, L.; Amaxilatis, D.; Mylonas, G.; Chatzigiannakis, I. Open source IoT meter devices for smart and
energy-efficient school buildings. HardwareX 2017, 1, 54–67. [CrossRef]

17. Stoica, E.; Pitic, A. Alexandra Maria Ioana Florea A Novel Model for E-Business and E-Government Processes
on Social Media. In Proceedings of the 10th International Economic Conference—IECS 2013 Post Crisis
Economy: Challenges and Opportunities, Sibiu, Romania, 17–18 May 2013.

18. European Commission. Review of the Energy Performance of Buildings Directive, Including the Initiative, “Smart
Financing for Smart Buildings”; European Commission: Luxembourg, 2016.

19. Technologies, S.B. Building Automation–Impact on Energy Efficiency. Siemens Switz. 2008. Available
online: https://www.siemens.be/cmc/upload/cms/docs/sbt/Impact_of_building_automation_on_energy_
efficiency.pdf (accessed on 5 April 2018).

20. Francesco, F. BIPV Product Overview for Solar Facades and Roofs. Available online: http:
//www.seac.cc/fileadmin/seac/user/doc/SEAC-SUPSI_report_2015_BIPV_product_overview_for_
solar_facades_and_roofs_1_.pdf (accessed on 1 November 2017).

21. Grubler, A.; Bai, X.; Buettner, T.; Dhakal, S.; Fisk, D.J.; Ichinose, T.; Keirstead, J.E.; Sammer, G.;
Satterthwaite, D.; Schulz, N.B.; et al. Chapter 18-Urban Energy Systems. In Global Energy Assessment-Toward
a Sustainable Future; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; International
Institute for Applied Systems Analysis: Laxenburg, Austria, 2012; pp. 1307–1400, ISBN 9781-10700-5198.

22. Lobaccaro, G.; Frontini, F. Solar Energy in Urban Environment: How Urban Densification Affects Existing
Buildings. Energy Procedia 2014, 48, 1559–1569. [CrossRef]

23. Ito, K. CO2 emissions, renewable and non-renewable energy consumption, and economic growth: Evidence
from panel data for developing countries. Int. Econ. 2017, 151, 1–6. [CrossRef]

24. Afonso, T.L.; Marques, A.C.; Fuinhas, J.A. Strategies to make renewable energy sources compatible with
economic growth. Energy Strateg. Rev. 2017, 18, 121–126. [CrossRef]

25. Alessandrini, S.; Delle Monache, L.; Sperati, S.; Cervone, G. An analog ensemble for short-term probabilistic
solar power forecast. Appl. Energy 2015, 157, 95–110. [CrossRef]

26. Junk, C.; Monache, L.D.; Alessandrini, S. Predictor-weighting strategies for probabilistic wind power
forecasting with an analog ensemble. Meteorol. Z. 2015, 24, 361–379. [CrossRef]

27. Lin, J.; Yu, W.; Zhang, N.; Yang, X.; Zhang, H.; Zhao, W. A Survey on Internet of Things: Architecture,
Enabling Technologies, Security and Privacy, and Applications. IEEE Internet Things J. 2017, 4, 1125–1142.
[CrossRef]

28. Theodoridis, E.; Mylonas, G.; Chatzigiannakis, I. Developing an IoT Smart City framework. In Proceedings of
the IISA 2013-4th International Conference on Information, Intelligence, Systems and Applications, Athens,
Greece, 10–12 July 2013; pp. 180–185.

29. Sanchez, L.; Muñoz, L.; Galache, J.A.; Sotres, P.; Santana, J.R.; Gutierrez, V.; Ramdhany, R.; Gluhak, A.;
Krco, S.; Theodoridis, E.; et al. SmartSantander: IoT experimentation over a smart city testbed. Comput. Netw.
2014, 61, 217–238. [CrossRef]

30. Cheng, B.; Longo, S.; Cirillo, F.; Bauer, M.; Kovacs, E. Building a Big Data Platform for Smart Cities:
Experience and Lessons from Santander. In Proceedings of the 2015 IEEE International Congress on Big
Data, BigData Congress, Santa Clara, CA, USA, 29 October–1 November 2015; pp. 592–599.

31. Gutiérrez, V.; Theodoridis, E.; Mylonas, G.; Shi, F.; Adeel, U.; Diez, L.; Amaxilatis, D.; Choque, J.;
Camprodom, G.; McCann, J.; et al. Co-creating the cities of the future. Sensors 2016, 16. [CrossRef]
[PubMed]

32. Petrolo, R.; Loscrí, V.; Mitton, N. Towards a smart city based on cloud of things. In Proceedings of the
2014 ACM International Workshop on Wireless and Mobile Technologies for Smart Cities-WiMobCity’14,
Philadelphia, PA, USA, 11–14 August 2014; pp. 61–66.

33. Costa, C.; Santos, M.Y. BASIS: A big data architecture for smart cities. In Proceedings of the 2016 SAI
Computing Conference (SAI), London, UK, 13–15 July 2016; pp. 1247–1256.

34. Bain, M. Sentilo-Sensor and Actuator Platform for smart Cities. Retr. Febr. 2014, 20, 2015.
35. Rathore, M.M.; Ahmad, A.; Paul, A.; Rho, S. Urban planning and building smart cities based on the Internet

of Things using Big Data analytics. Comput. Netw. 2016, 101, 63–80. [CrossRef]
36. Khan, Z.; Anjum, A.; Soomro, K.; Tahir, M.A. Towards cloud based big data analytics for smart future cities.

J. Cloud Comput. 2015, 4. [CrossRef]

http://dx.doi.org/10.1016/j.ohx.2017.02.002
https://www.siemens.be/cmc/upload/cms/docs/sbt/Impact_of_building_automation_on_energy_efficiency.pdf
https://www.siemens.be/cmc/upload/cms/docs/sbt/Impact_of_building_automation_on_energy_efficiency.pdf
http://www. seac. cc/fileadmin/seac/user/doc/SEAC-SUPSI_report_2015_BIPV_product_overview_for_solar_facades_and_roofs_1_. pdf
http://www. seac. cc/fileadmin/seac/user/doc/SEAC-SUPSI_report_2015_BIPV_product_overview_for_solar_facades_and_roofs_1_. pdf
http://www. seac. cc/fileadmin/seac/user/doc/SEAC-SUPSI_report_2015_BIPV_product_overview_for_solar_facades_and_roofs_1_. pdf
http://dx.doi.org/10.1016/j.egypro.2014.02.176
http://dx.doi.org/10.1016/j.inteco.2017.02.001
http://dx.doi.org/10.1016/j.esr.2017.09.014
http://dx.doi.org/10.1016/j.apenergy.2015.08.011
http://dx.doi.org/10.1127/metz/2015/0659
http://dx.doi.org/10.1109/JIOT.2017.2683200
http://dx.doi.org/10.1016/j.bjp.2013.12.020
http://dx.doi.org/10.3390/s16111971
http://www.ncbi.nlm.nih.gov/pubmed/27886069
http://dx.doi.org/10.1016/j.comnet.2015.12.023
http://dx.doi.org/10.1186/s13677-015-0026-8


Sensors 2018, 18, 1181 18 of 20

37. Fernández-Rodríguez, J.Y.; Álvarez-García, J.A.; Arias Fisteus, J.; Luaces, M.R.; Corcoba Magaña, V.
Benchmarking real-time vehicle data streaming models for a smart city. Inf. Syst. 2017, 72, 62–76. [CrossRef]

38. Apache Kafka. Available online: https://kafka.apache.org/ (accessed on 5 April 2018).
39. Open Traffic v2 Platform. Available online: https://github.com/opentraffic/otv2-platform (accessed on

5 April 2018).
40. OpenStreetMap on AWS. Available online: https://aws.amazon.com/public-datasets/osm/ (accessed on

5 April 2018).
41. World Bank. World Bank Group Big Data in Transport Case Study: Open Traffic; World Bank: Washington, DC,

USA, 2015.
42. Perez, J.F.; Chen, L.Y.; Villari, M.; Ranjan, R. Holistic Workload Scaling: A New Approach to Compute

Acceleration in the Cloud. IEEE Cloud Comput. 2018, 5, 20–30. [CrossRef]
43. Díaz, J.L.; Entrialgo, J.; García, M.; García, J.; García, D.F. Optimal allocation of virtual machines in multi-cloud

environments with reserved and on-demand pricing. Future Gener. Comput. Syst. 2017, 71, 129–144.
[CrossRef]

44. FIWARE: A Standard Open Platform for Smart Cities. Available online: https://www.fiware.org/2015/03/
25/fiware-a-standard-open-platform-for-smart-cities/ (accessed on 5 April 2018).

45. Sneps-Sneppe, M.; Namiot, D. On Mobile Cloud for Smart City Applications. arXiv 2016.
46. Erickson, T.; Li, M.; Kim, Y.; Deshpande, A.; Sahu, S.; Chao, T.; Sukaviriya, P.; Naphade, M. The Dubuque

Electricity Portal: Evaluation of a City-Scale Residential Electricity Consumption Feedback System.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’13), Paris, France,
27 April–2 May 2013; Volume 2013, pp. 1203–1212. [CrossRef]

47. Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of Things for Smart Cities. IEEE Internet
Things J. 2014, 1, 22–32. [CrossRef]

48. Hernández-Muñoz, J.M.; Vercher, J.B.; Muñoz, L.; Galache, J.A.; Presser, M.; Hernández Gómez, L.A.;
Pettersson, J. Smart cities at the forefront of the future internet. In Lecture Notes in Computer Science; Springer:
Berlin, Germany, 2011; Volume 6656, pp. 447–462.

49. Mulligan, C.E.A.; Olsson, M. Architectural implications of smart city business models: An evolutionary
perspective. IEEE Commun. Mag. 2013, 51, 80–85. [CrossRef]

50. Apache Sqoop. Available online: http://sqoop.apache.org/ (accessed on 5 April 2018).
51. Oracle Hadoop Loader. Available online: http://www.oracle.com/technetwork/database/database-

technologies/bdc/hadoop-loader/overview/index.html (accessed on 5 April 2018).
52. Liu, G.; Zhu, X.; Wang, J.; Guo, D.; Bao, W.; Guo, H. SP-Partitioner: A novel partition method to handle

intermediate data skew in spark streaming. Future Gener. Comput. Syst. 2017. [CrossRef]
53. Karunaratne, P.; Karunasekera, S.; Harwood, A. Distributed stream clustering using micro-clusters on

Apache Storm. J. Parallel Distrib. Comput. 2017, 108, 74–84. [CrossRef]
54. George, L. HBase: The Definitive Guide: Random Access to Your Planet-Size Data; O’Reilly Media, Inc.: Newton,

MA, USA, 2011.
55. Laksham, A.; Malik, P. Cassandra: A decentralized structured storage system. ACM SIGOPS Oper. Syst. Rev.

2010, 35–40. [CrossRef]
56. Apache Phoenix. Available online: https://phoenix.apache.org/index.html (accessed on 5 April 2018).
57. Presto. Available online: https://prestodb.io/docs/current/ (accessed on 5 April 2018).
58. Hive. Available online: https://cwiki.apache.org/confluence/collector/pages.action?key=Hive (accessed

on 5 April 2018).
59. Zhang, X.; Xin, R. Hive on Spark. Available online: https://issues.apache.org/jira/secure/attachment/

12652517/Hive-on-Spark.pdf (accessed on 5 April 2018).
60. Chiang, M.; Zhang, T. Fog and IoT: An Overview of Research Opportunities. IEEE Internet Things J. 2016, 3,

854–864. [CrossRef]
61. Díaz, M.; Martín, C.; Rubio, B. State-of-the-art, challenges, and open issues in the integration of Internet of

things and cloud computing. J. Netw. Comput. Appl. 2016, 67, 99–117. [CrossRef]
62. Merlino, G.; Bruneo, D.; Distefano, S.; Longo, F.; Puliafito, A.; Al-Anbuky, A. A smart city lighting case study

on an OpenStack-powered infrastructure. Sensors 2015, 15, 16314–16335. [CrossRef] [PubMed]
63. Openstack Ceilometer. Available online: https://docs.openstack.org/ceilometer/latest/ (accessed on

5 April 2018).

http://dx.doi.org/10.1016/j.is.2017.09.002
https://kafka.apache.org/
https://github.com/opentraffic/otv2-platform
https://aws.amazon.com/public-datasets/osm/
http://dx.doi.org/10.1109/MCC.2018.011791711
http://dx.doi.org/10.1016/j.future.2017.02.004
https://www.fiware.org/2015/03/25/fiware-a-standard-open-platform-for-smart-cities/
https://www.fiware.org/2015/03/25/fiware-a-standard-open-platform-for-smart-cities/
http://dx.doi.org/10.1145/2470654.2466155
http://dx.doi.org/10.1109/JIOT.2014.2306328
http://dx.doi.org/10.1109/MCOM.2013.6525599
http://sqoop.apache.org/
http://www.oracle.com/technetwork/database/database-technologies/bdc/hadoop-loader/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/bdc/hadoop-loader/overview/index.html
http://dx.doi.org/10.1016/j.future.2017.07.014
http://dx.doi.org/10.1016/j.jpdc.2016.06.004
http://dx.doi.org/10.1145/1773912.1773922
https://phoenix.apache.org/index.html
https://prestodb.io/docs/current/
https://cwiki.apache.org/confluence/collector/pages.action?key=Hive
https://issues.apache.org/jira/secure/attachment/12652517/Hive-on-Spark.pdf
https://issues.apache.org/jira/secure/attachment/12652517/Hive-on-Spark.pdf
http://dx.doi.org/10.1109/JIOT.2016.2584538
http://dx.doi.org/10.1016/j.jnca.2016.01.010
http://dx.doi.org/10.3390/s150716314
http://www.ncbi.nlm.nih.gov/pubmed/26153775
https://docs.openstack.org/ceilometer/latest/


Sensors 2018, 18, 1181 19 of 20

64. Soualhia, M.; Khomh, F.; Tahar, S. Task Scheduling in Big Data Platforms: A Systematic Literature Review.
J. Syst. Softw. 2017, 134, 170–189. [CrossRef]

65. Apache Myriad. Available online: http://myriad.apache.org/ (accessed on 5 April 2018).
66. Oussous, A.; Benjelloun, F.-Z.; Ait Lahcen, A.; Belfkih, S. Big Data technologies: A survey. J. King Saud

Univ.-Comput. Inf. Sci. 2017. [CrossRef]
67. Spark Programming Guide. Available online: http://spark.apache.org/docs/latest/programming-guide.

html (accessed on 5 April 2018).
68. Arias, J.; Gamez, J.A.; Puerta, J.M. Knowle dge-Base d Systems Learning distributed discrete Bayesian

Network Classifiers under MapReduce with Apache Spark. Knowl.-Based Syst. 2017, 16–26. [CrossRef]
69. Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A. Resilient distributed datasets: A fault-tolerant abstraction for

in-memory cluster computing. Nsdi 2012, 2. [CrossRef]
70. Panigrahi, S.; Lenka, R.K.; Stitipragyan, A. A Hybrid Distributed Collaborative Filtering Recommender

Engine Using Apache Spark. Procedia Comput. Sci. 2016, 83, 1000–1006. [CrossRef]
71. Diaconita, V. Approaches for parallel data loading and data querying. Database Syst. J. 2015, VI, 78–85.
72. Chang, F.; Dean, J.; Ghemawat, S.; Hsieh, W.C.; Wallach, D.A.; Burrows, M.; Chandra, T.; Fikes, A.;

Gruber, R.E. Bigtable: A Distributed Storage System for Structured Data. ACM Trans. Comput. Syst.
2008, 26, 1–26. [CrossRef]

73. DB Engines. Available online: https://db-engines.com/en/ranking (accessed on 5 April 2018).
74. Elasticsearch. Available online: https://www.elastic.co/guide/en/elasticsearch/guide/current/getting-

started.html (accessed on 5 April 2018).
75. Chen, D.; Chen, Y.; Brownlow, B.N.; Kanjamala, P.P.; Arredondo, C.A.G.; Radspinner, B.L.; Raveling, M.A.

Real-time or near real-time persisting daily healthcare data into HDFS and elasticsearch index inside a big
data platform. IEEE Trans. Ind. Inform. 2017, 13, 595–606. [CrossRef]

76. Elasticsearch X-PACK. Available online: https://www.elastic.co/guide/en/x-pack/6.x/xpack-introduction.
html (accessed on 5 April 2018).

77. Kibana. Available online: https://www.elastic.co/webinars/getting-started-kibana (accessed on
5 April 2018).

78. Elasticsearch-Hadoop. Available online: https://www.elastic.co/products/hadoop (accessed on
5 April 2018).

79. Dall’O, G.; Bruni, E.; Panza, A.; Sarto, L.; Khayatian, F. Evaluation of cities’ smartness by means of indicators
for small and medium cities and communities: A methodology for Northern Italy. Sustain. Cities Soc. 2017,
34, 193–202. [CrossRef]

80. Hall, R.E.; Bowerman, B.; Braverman, J.; Taylor, J.; Todosow, H. The vision of a smart city. In Proceedings
of the 2nd International Life Extension Technology Workshop, Paris, France, 28 September 2000; Volume 7.
[CrossRef]

81. Hultquist, C.; Cervone, G. Citizen monitoring during hazards: Validation of Fukushima radiation
measurements. GeoJournal 2017, 1–18. [CrossRef]

82. Sprake, J.; Rogers, P. Crowds, citizens and sensors: Process and practice for mobilising learning.
Pers. Ubiquitous Comput. 2014, 18, 753–764. [CrossRef]

83. Huang, Q.; Cervone, G. Chapter 15–Usage of Social Media and Cloud Computing During Natural Hazards.
Cloud Comput. Ocean Atmos. Sci. 2016, 297–324. [CrossRef]

84. Zheng, Y.; Capra, L.; Wolfson, O.; Yang, H. Urban Computing: Concepts, Methodologies, and Applications.
ACM Trans. Intell. Syst. Technol. 2014, 5, 1–55. [CrossRef]

85. Shang, J.; Zheng, Y.; Tong, W.; Chang, E.; Yu, Y. Inferring gas consumption and pollution emission of
vehicles throughout a city. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining-KDD’14, New York, NY, USA, 24–27 August 2014; pp. 1027–1036.

86. Dataset. Available online: https://onedrive.live.com/?authkey=%21ADgmvTgfqs4hn4Q&id=
CF159105855090C5%211438&cid=CF159105855090C5 (accessed on 5 April 2018).

87. Updated Reddit Comment Dataset as Torrents. Available online: https://www.reddit.com/r/datasets/
comments/65o7py/updated_reddit_comment_dataset_as_torrents/ (accessed on 5 April 2018).

88. Hutto, C.J.; Gilbert, E. Vader: A parsimonious rule-based model for sentiment analysis of social media text.
In Proceedings of the 8th International AAAI Conference on Weblogs and Social Media, Ann Arbor, MI,
USA, 1–4 June 2014; pp. 216–225.

http://dx.doi.org/10.1016/j.jss.2017.09.001
http://myriad.apache.org/
http://dx.doi.org/10.1016/j.jksuci.2017.06.001
http://spark.apache.org/docs/latest/programming-guide.html
http://spark.apache.org/docs/latest/programming-guide.html
http://dx.doi.org/10.1016/j.knosys.2016.06.013
http://dx.doi.org/10.1111/j.1095-8649.2005.00662.x
http://dx.doi.org/10.1016/j.procs.2016.04.214
http://dx.doi.org/10.1145/1365815.1365816
https://db-engines.com/en/ranking
https://www.elastic.co/guide/en/elasticsearch/guide/current/getting-started.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/getting-started.html
http://dx.doi.org/10.1109/TII.2016.2645606
https://www.elastic.co/guide/en/x-pack/6.x/xpack-introduction.html
https://www.elastic.co/guide/en/x-pack/6.x/xpack-introduction.html
https://www.elastic.co/webinars/getting-started-kibana
https://www.elastic.co/products/hadoop
http://dx.doi.org/10.1016/j.scs.2017.06.021
http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/10.1007/s10708-017-9767-x
http://dx.doi.org/10.1007/s00779-013-0715-6
http://dx.doi.org/10.1016/B978-0-12-803192-6.00015-3
http://dx.doi.org/10.1145/2629592
https://onedrive.live.com/?authkey=%21ADgmvTgfqs4hn4Q&id=CF159105855090C5%211438&cid=CF159105855090C5
https://onedrive.live.com/?authkey=%21ADgmvTgfqs4hn4Q&id=CF159105855090C5%211438&cid=CF159105855090C5
https://www.reddit.com/r/datasets/comments/65o7py/updated_reddit_comment_dataset_as_torrents/
https://www.reddit.com/r/datasets/comments/65o7py/updated_reddit_comment_dataset_as_torrents/


Sensors 2018, 18, 1181 20 of 20

89. Wunderground API. Available online: https://www.wunderground.com/weather/api (accessed on
5 April 2018).

90. Structured Streaming. Available online: https://spark.apache.org/docs/2.1.0/structured-streaming-
programming-guide.html (accessed on 5 April 2018).

91. Bibri, S.E. The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big
data applications for environmental sustainability. Sustain. Cities Soc. 2018, 38, 230–253. [CrossRef]

92. Mylonas, G.; Theodoridis, E. Developments and challenges ahead in smart city frameworks-lessons from
SmartSantander. Int. J. Intell. Eng. Inform. 2015, 3, 95. [CrossRef]

93. Hive Transactions. Available online: https://cwiki.apache.org/confluence/display/Hive/Hive+
Transactions (accessed on 5 April 2018).

94. Riak. Available online: http://basho.com/products/ (accessed on 5 April 2018).
95. González-Aparicio, M.T.; Younas, M.; Tuya, J.; Casado, R. Testing of transactional services in NoSQL

key-value databases. Future Gener. Comput. Syst. 2018, 80, 384–399. [CrossRef]
96. Hennessy, J.L.; Patterson, D.A. Computer Architecture: A Quantitative Approach; Morgan Kaufmann: Burlington,

MA, USA, 2012; ISBN 978-0-12-383872-8.
97. Reddi, V.J.; Yoon, H.; Knies, A. Two Billion Devices and Counting. IEEE Micro 2018, 38, 6–21. [CrossRef]
98. Cervone, G.; Clemente, L.; Alessandrini, S.; Delle, L. Short-term photovoltaic power forecasting using

Artificial Neural Networks and an Analog Ensemble. Renew. Energy 2017, 108, 274–286. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.wunderground.com/weather/api
https://spark.apache.org/docs/2.1.0/structured-streaming-programming-guide.html
https://spark.apache.org/docs/2.1.0/structured-streaming-programming-guide.html
http://dx.doi.org/10.1016/j.scs.2017.12.034
http://dx.doi.org/10.1504/IJIEI.2015.069882
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions
https://cwiki.apache.org/confluence/display/Hive/Hive+Transactions
http://basho.com/products/
http://dx.doi.org/10.1016/j.future.2017.07.004
http://dx.doi.org/10.1109/MM.2018.011441560
http://dx.doi.org/10.1016/j.renene.2017.02.052
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	System Architecture and Components 
	Resource Negotiator 
	Relational Stores and Bulk Data Transfers 
	Sensors Data Ingestion and Streaming 
	Large-Scale Data Processing 
	Data Storage for OLAP and OLTP 

	Data and Methods 
	Results and Evaluation 
	Discussions and Further Research 
	References

