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Abstract: Recently, nonlinear blind compensation technique has attracted growing attention in array
signal processing application. However, due to the nonlinear distortion stemming from array receiver
which consists of multi-channel radio frequency (RF) front-ends, it is too difficult to estimate the
parameters of array signal accurately. A novel nonlinear blind compensation algorithm aims at the
nonlinearity mitigation of array receiver and its spurious-free dynamic range (SFDR) improvement,
which will be more precise to estimate the parameters of target signals such as their two-dimensional
directions of arrival (2-D DOAs). Herein, the suggested method is designed as follows: the nonlinear
model parameters of any channel of RF front-end are extracted to synchronously compensate the
nonlinear distortion of the entire receiver. Furthermore, a verification experiment on the array
signal from a uniform circular array (UCA) is adopted to testify the validity of our approach.
The real-world experimental results show that the SFDR of the receiver is enhanced, leading to
a significant improvement of the 2-D DOAs estimation performance for weak target signals. And
these results demonstrate that our nonlinear blind compensation algorithm is effective to estimate
the parameters of weak array signal in concomitance with strong jammers.

Keywords: nonlinear blind compensation algorithm; array receiver; two-dimensional
direction-of-arrival; spurious-free dynamic range; array signal processing

1. Introduction

During the past few decades, array signal processing (ASP) has been a world-wide hot spot of
research [1,2], with discoveries as diverse in application as wireless communications, multiple-input
multiple-output (MIMO) radar and sonar [3–6]. ASP is concerned with the problem of extracting
high dimensional information of interest which is received from an array of spatially distributed
sensors and transmitted to a multi-channel array receiver. There are normally three units in an array
system: antenna arrays, array receiver and array signal processing unit [7]. Moreover, an array
receiver, comprising of multi-channel radio frequency (RF) front-ends, contains many nonlinear
circuits, bringing about the vast majority of nonlinear distortion components in an array signal
processing system.

Currently, much research regarding array signal processing focuses on the development of
parameter estimation methods [8–11]. Amongst them, two-dimensional direction-of-arrival (2-D DOA)
estimation is the hottest topic and most of the published literature focuses on parametric algorithms
to deal with it [9–11]. These methods are proven to perform well in source direction finding under
ideal settings, which ignore the negative effect of the nonlinear distortion components of an array
signal processing system on source localization accuracy. However, due to the nonlinearity of an
array receiver, the signal-to-interference-plus-noise ratio (SINR) of several target signals is reduced.
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Such imperfect methods lead to sharply deteriorated performance under a condition of low SINR.
Therefore, further research is required to better address the parameters estimation problem of an
array signal in such a scenario as an electromagnetic environment in which an array signal processing
system works.

Some effective methods [12,13] for such a scenario adopt high-order statistics to improve the
direction-finding performance of array signal which, however, increase the computational complexity
enormously compared with the methods such as the multiple signal classification (MUSIC) algorithm
applying second-order statistics. To resolve the difficulty without increasing the computation burdens
of the direction finding, the authors enhance the spurious-free dynamic range (SFDR) of an array
receiver, which leads to significant SINR improvements of weak target signals. Therefore, to promote
the development of array signal processing, an array receiver with high SFDR is a vital undertaking.
Fewer researches for blindly mitigating the nonlinear distortion of multi-channel array receiving
systems have been conducted, to the best of the authors’ knowledge.

The nonlinearity mitigation technique for a one-channel receiving system has been reported in
some papers [14–23]. Several preliminary ideas of Reference [14] offer some insight for this research.
This paper proposes a nonlinear blind compensation method to eliminate the distortion product of
band-limited signal by suppressing the out-of-band distorted signal. However, this method is only
applicable to compensating memoryless and monotonic nonlinearity under the premise of the known
input signal bandwidth. A digital post-compensation technique is adopted to mitigate the nonlinear
distortion of the multicarrier receiving system [15]. Moreover, for linearizing a direct-conversion
receiver (DCR), a full-band adaptive interference cancellation (FB-AIC) method has been proposed [16].
This method utilizes the out-band distortions to identify and extract the nonlinear model coefficients.
Furthermore, in Reference [17], some effective works have been done to degrade the third-order
intermodulation distortion of DCR severely. Recently, the paper [18] developed a blind nonlinear
post-distortion algorithm with follow-up blind finite impulse response (FIR) equalizers to compensate
for the distortion product in the concurrent dual-band receiver, the memory effects and the non-ideal
wireless channel response. Although References [15–19] mainly focus on cancelling the third-order
inter-modulation distortion, they fail to be applied to a wideband nonlinear system. The current
authors’ initial research [20] proposed that minimizing the short-time energy of the nonlinearity in
the frequency domain is regarded as the blind identification criterion. However, the identification
strategy might have difficultly to coping with the situation where multiple unknown signals with
different power levels exist simultaneously, due to the non-ideal frequency response characteristic of
FIR. Moreover, in References [18,20–23], the nonlinear behavior model parameters are identified and
extracted in the frequency domain, resulting in heavy computational costs.

To solve these identification problems, separating large signals (strong array signals) and small
signals (nonlinear distortion components and weak array signals) in time domain according to the
power level is appropriate. Large signals produce most of the nonlinear components and are usually
of far higher power level compared with small signals. Thereupon, the instantaneous power residual
error between the small signals and nonlinear model of large signals can be considered as an objective
function of nonlinear model kernels. Consequently, a blind identification criterion is designed to
adaptively resize nonlinear model coefficients and an improved weighed iterative method (IWI) is
presented to minimize the instantaneous power residual error based on the method in research [24].

In References [25–29], some blind signal separation algorithms have been investigated;
for instance, the singular value decomposition (SVD)-based and the eigenvalue decomposition
(EVD)-based methods. The SVD-based algorithm is the standard due to its good performance
and applicability, as confirmed in References [26,28,29]. As learned from the References [26,28,29],
the performance for large signal extraction is mainly determined by an adequate choice of the number
of the largest singular values, r. However, it is hard to precisely determine r on account of the unknown
array signal. A smaller r will bring about a part of the large signals, while a bigger one will draw some
unwanted nonlinearity or weak array signals into the large signals. Both the conditions will result in
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incorrect extracted outcomes. Furthermore, the engineering implementation of a SVD-based algorithm
needs massive computational loads [29].

A novel nonlinear blind compensation algorithm is suggested to cope with array signal processing.
Under the existing semiconductor process levels and device performance status, this study focuses
on significantly improving the SFDR of an array receiver and the parameters estimation accuracy
of the weak target signals, (for example, their 2-D DOAs). To the best of the authors’ knowledge,
the MUSIC algorithm is one of the most widely-used high-resolution 2-D DOA estimation approaches.
Therefore, the authors consider it to be an efficient azimuth-elevation angles estimation method for
an array signal.

Additionally, the authors propose a novel blind signal separation algorithm, a spectrum reduction
algorithm based on time-frequency conversion (SRA-TFC) algorithms wherein large signals and small
signals are extracted based on the power level in the frequency domain. To follow, their time domain
waveforms are obtained by the Inverse Discrete Fourier transform (IDFT) technique. Comparing with
the traditional SVD-based method, the proposed method is only necessary to set the power threshold
rather than the number of the largest singular values of constant change. Therefore, the method is
highly suitable to blindly separate signals in the electromagnetic environment.

Moreover, the identification criterion should be applied to each channel for extracting its
identification coefficients if each channel is regarded to be an independent and irrelevant nonlinear
system. The disadvantages are as follows: first, the system hardware resource is increased significantly.
Most importantly, the inconsistent compensation performances of different channels, especially the
phase disturbance of the post-compensation array signal, are caused by the iterative computation error
of the proposed identification criterion. However, the input array signal and the linear/nonlinear
transfer functions of each channel are similar. A more suitable method is to blindly identify and
extract the nonlinear model kernel coefficients of any one of the channels and then to employ the
extracted kernel coefficients to synchronously mitigate the nonlinearity of all channels. Consequently,
the authors propose an effective digital compensation method for an array signal processing system.

The arrangement of this paper is as follows: Section 2 describes the nonlinear blind compensation
processing architecture for an array system and the theoretical demonstration of the proposed
algorithm. It is followed up in Section 3 with the nonlinear blind mitigation architecture.
The experimental results are given in Section 4 to demonstrate the performance improvement of
the proposed algorithm. Finally, a short conclusion is drawn in Section 5.

2. System Model and Problem Analysis

2.1. ASP Architecture Based on Nonlinear Blind Compensation

Figure 1 shows a structural diagram of the nonlinear blind compensation processing for an array
system, which is composed of an antenna arrays unit, array receiver and blind compensation unit.
Where, xi(t), yi(n) are the analog input, digital output in the ith channel RF front-end, respectively;
zi(n) is the ith channel post-compensation signal; fs means the sampling rate of the synchronous clock;
wc, Bt stands for the center frequency and bandwidth of the target signal.

Additionally, in the sub-figure across the top of Figure 1, it contains three power spectrum
schematic diagrams of different signals which are input signals, output signals and completely
compensated signals of an array receiver, separately. All red regions in these diagrams mean the power
spectrum of a large array signal, while all purple regions are that of weak target signals. Moreover,
the blue region shows the power spectrum of the nonlinear distortion stemming from the array signal
through the array receiver.

The antenna arrays unit exists at the head of the system, where it is to capture the array signal.
Then, the array data is transmitted to the array receiver. Each channel RF front-end of the array
receiver has some nonlinear analog circuits and an ADC (analog to digital converter). The analog
module usually consists of a bandpass filter (BPF) with high suppression ratio, a low-noise amplifier
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(LNA), a variable-gain amplifier (VGA), a low-pass filter (LPF) and more. The full-band array signal
is achieved by filtering the input signal with a BPF in each channel of the array receiver. It is then
amplified to the required level by a first-stage LNA and a first-stage VGA. Additionally, the amplified
signal without out-band clutter obtained by an LPF is transmitted to the synchronization ADC module
in which all ADCs’ sampling clocks are from the same crystal oscillator. These procedures are applied
to synchronously gather and output the array signal. The blind compensation unit is designed to
mitigate or even eliminate the distortion product supplied from the multi-channel array processing
system with the aim to improve the parametric estimation accuracy of the array signal.Sensors 2018, 18, 286 4 of 23 
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Figure 1. Block diagram of the nonlinear blind compensation processing for the array system. 

The antenna arrays unit exists at the head of the system, where it is to capture the array signal. 
Then, the array data is transmitted to the array receiver. Each channel RF front-end of the array 
receiver has some nonlinear analog circuits and an ADC (analog to digital converter). The analog 
module usually consists of a bandpass filter (BPF) with high suppression ratio, a low-noise 
amplifier (LNA), a variable-gain amplifier (VGA), a low-pass filter (LPF) and more. The full-band 
array signal is achieved by filtering the input signal with a BPF in each channel of the array receiver. 
It is then amplified to the required level by a first-stage LNA and a first-stage VGA. Additionally, 
the amplified signal without out-band clutter obtained by an LPF is transmitted to the 
synchronization ADC module in which all ADCs’ sampling clocks are from the same crystal 
oscillator. These procedures are applied to synchronously gather and output the array signal. The 
blind compensation unit is designed to mitigate or even eliminate the distortion product supplied 
from the multi-channel array processing system with the aim to improve the parametric estimation 
accuracy of the array signal.  

2.2. Theoretical Analysis of the Proposed Method 

This section offers the feasibility analysis of the novel nonlinear blind compensation method 
which adaptively extracts the nonlinear model kernel coefficients of any one of the channels to 
mitigate the nonlinearity of all channels synchronously. 

The bandwidth of the multi-channel nonlinear systems, tens of MHz, is much bigger than that 
of the target signals, several KHz. Thereby a same memoryless nonlinear model representing for 
every single channel of the nonlinear systems could validate the presented nonlinear compensation 
method [30]. Additionally, it is well known that the p th order orthogonal polynomials with 
completely uncorrelated terms contributes to only the p th order nonlinear distortion term. Thus, 
the orthogonal polynomials modeling for nonlinear systems can offer an intuitive means of 
compensation improvement analysis to every nonlinear term. The authors adopt the Chebyshev 
polynomials, one of the most frequently used orthogonal polynomials. 

It is generally accepted that the second-order and third-order nonlinear terms are the key 
factors to exacerbate the SFDR performance of the nonlinear system [20]. Therefore, a Chebyshev 
nonlinear model with third-order non-linear terms could be modeled to approximate the 
multi-channel nonlinear systems. Therefore, the authors consider the i th channel RF front-end a 
discrete-time third–order Chebyshev orthogonal nonlinear system: 
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Figure 1. Block diagram of the nonlinear blind compensation processing for the array system.

2.2. Theoretical Analysis of the Proposed Method

This section offers the feasibility analysis of the novel nonlinear blind compensation method
which adaptively extracts the nonlinear model kernel coefficients of any one of the channels to mitigate
the nonlinearity of all channels synchronously.

The bandwidth of the multi-channel nonlinear systems, tens of MHz, is much bigger than that
of the target signals, several KHz. Thereby a same memoryless nonlinear model representing for
every single channel of the nonlinear systems could validate the presented nonlinear compensation
method [30]. Additionally, it is well known that the pth order orthogonal polynomials with
completely uncorrelated terms contributes to only the pth order nonlinear distortion term. Thus,
the orthogonal polynomials modeling for nonlinear systems can offer an intuitive means of
compensation improvement analysis to every nonlinear term. The authors adopt the Chebyshev
polynomials, one of the most frequently used orthogonal polynomials.

It is generally accepted that the second-order and third-order nonlinear terms are the key factors
to exacerbate the SFDR performance of the nonlinear system [20]. Therefore, a Chebyshev nonlinear
model with third-order non-linear terms could be modeled to approximate the multi-channel nonlinear
systems. Therefore, the authors consider the ith channel RF front-end a discrete-time third–order
Chebyshev orthogonal nonlinear system:

yi = fi(xi)

= aiT0(xi) + biT1(xi) + ciT2(xi) + diT3(xi)
(1)

where fi(•) represents the nonlinear transformation function of the ith channel RF front-end; Tp(•)
denotes pth order Chebyshev node; xi and yi are the simplified forms of xi(t) and yi(n), respectively;
ai means the coefficient of the direct-current (DC) component; bi represents the linear term parameter,
ci and di are the coefficients of the second-order and third-order nonlinear terms.
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The first three Chebyshev orthonormal polynomials are shown as:

T0(x) = 1
T1(x) = x
T2(x) = 2x2 − 1
T3(x) = 4x3 − 3x

(2)

substituting Equation (2) into Equation (1) gives:

yi = ai + bixi + ci(2x2
i − 1) + di(4x3

i − 3xi)

= (ai − ci) + (bi − 3di)xi + 2cix2
i + 4dix3

i
(3)

Equation (3) has its DC component assumed to be zero. Furthermore, the coefficient of linear term
(bi) is much bigger than that of nonlinear terms (ci, di) in a weak nonlinear system. Thus, Equation (3)
can be rewritten:

yi = (bi − 3di)xi + 2cix2
i + 4dix3

i
≈ bixi + 2cix2

i + 4dix3
i (ai = ci)

(4)

The model parameters of any one of the channels are extracted, in this paper the first channel for
an example. Via the blind compensation for the first channel nonlinear system, its inverse behavior
model of the nonlinear system is obtained approximately [20]. Therefore, according to the knowledge
of Reference [31], the inverse nonlinear behavior model can be defined as:

zi = g1(yi)

= ρ0T0(yi) + ρ1T1(yi) + ρ2T2(yi) + ρ3T3(yi)
(5)

where, zi(n) is reduced to zi; g1(•) is the inverse of f1(•) (the nonlinear transformation function
of the first channel) and its coefficient vector is represented by g = [ρ0, ρ1, ρ2, ρ3]

T; T denotes
transposition operation.

Corresponding to Equation (4), the vector of power series coefficients of the first channel F
is obtained:

F = [0, b1, 2c1, 4d1]
T (6)

The p-fold convolution vectors are calculated by:

F(p)(p = 0, 1, 2, 3)

and the matrix H assembled by juxtaposing these column vectors as shown below:

H = [F(0), F(1), F(2), F(3)] (7)

Normally, for inversion, the dimensions of H is truncated to a 4 × 4 matrix, denoted as:

H4×4 =


1 0 0 0
0 b1 0 0
0 2c1 (b1)

2 0
0 4d1 4b1c1 (b1)

3

 (8)

Furthermore, Chebyshev series-power series conversion matrix T is truncated as the following:

T =


1 0 −1 0
0 1 0 −3
0 0 2 0
0 0 0 4

 (9)
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g is gained by choosing from the second column of matrix Γ = T·(H−1)·(T−1) as described in
Reference [32]:

ρ0 = c1
b3

1

ρ1 =
b4

1−3b1d1+6c2
1

b5
1

ρ2 = − c1
b3

1

ρ3 =
2c2

1−b1d1
b5

1

(10)

Substituting Equation (10) into Equation (5) gives:

zi =
c1

b3
1

T0(yi) +
b4

1 − 3b1d1 + 6c2
1

b5
1

T1(yi)−
c1

b3
1

T2(yi) +
2c2

1 − b1d1

b5
1

T3(yi) (11)

According to the knowledge of Chebyshev polynomials:

T0(x) = 1
T1(x) = x
Tn(x)× Tm(x) = Tn+m(x)+Tn−m(x)

2 n ≥ m
(12)

Therefore, the result is:

T0(yi) = 1
T1(yi) = yi = ci + biT1(xi) + ciT2(xi) + diT3(xi)

T2(yi) = 2(yi)
2 − 1

= 2[(ci + biT1(xi) + ciT2(xi) + diT3(xi)]
2 − 1

= 2[c2
i + b2

i (T1(xi))
2 + c2

i (T2(xi))
2 + d2

i (T3(xi))
2

+2biciT1(xi) + 2c2
i T2(xi) + 2cidiT3(xi) + 2biciT1(xi)T2(xi)

+2bidiT1(xi)T3(xi) + 2cidiT2(xi)T3(xi)]− 1
T3(yi) = 4(yi)

3 − 3yi = yi[2(2(yi)
2 − 1)− 1) = T1(yi)[2T2(yi)− 1]

(13)

This process is just concerned about linear term and lower nonlinear terms (the second-order and
third-order ones).

Since:
|bi|>>|di|, |bi|>>|ci|,

Thereby, it can be obtained:

T1(yi) ≈ biT1(xi) + ciT2(xi) + diT3(xi) (14)

T2(yi) ≈ b2
i T2(xi) + 4biciT1(xi) + 4c2

i T2(xi) + 4cidiT3(xi)

+2bici(T1(xi) + T3(xi)) + 2bidiT2(xi) + 2cidiT1(xi)

= (6bici + 2cidi)T1(xi) + (b2
i + 4c2

i + 2bidi)T2(xi) + (4cidi + 2bici)T3(xi)

≈ 6biciT1(xi) + b2
i T2(xi) + 2biciT3(xi)

(15)
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T3(yi) ≈ [ci + biT1(xi) + ciT2(xi) + diT3(xi)][(12bici + 4cidi)T1(xi)

+(2b2
i + 8c2

i + 4bidi)T2(xi) + (8cidi + 4bici)T3(xi)

+2bidiT4(xi) + 2cidiT5(xi) + 6c2
i + 2b2

i + 2d2
i − 3]

≈ [ci + biT1(xi) + ciT2(xi) + diT3(xi)](12biciT1(xi) + 2b2
i T2(xi) + 4biciT3(xi)

+2bidiT4(xi) + 2cidiT5(xi) + 2b2
i − 3)

≈ 12bic2
i T1(xi) + 2b2

i ciT2(xi) + 4bic2
i T3(xi) + 6b2

i ciT2(xi) + b3
i T1(xi) + b3

i T3(xi)

+2b2
i ciT2(xi) + b2

i diT3(xi) + (2b2
i − 3)biT1(xi) + 6bic2

i T1(xi) + 6bic2
i T3(xi)

+2bic2
i T1(xi) + bicidiT2(xi) + c2

i diT3(xi) + (2b2
i − 3)ciT2(xi) + 6bicidiT2(xi)

+b2
i diT1(xi) + bid2

i T1(xi) + cid2
i T2(xi) + (2b2

i − 3)diT3(xi)

≈ (2b3
i − 3bi)T1(xi) + (12b2

i ci − 3ci)T2(xi) + (b3
i − 3di)T3(xi)

(16)

Substituting Equations (14)–(16) into Equation (11), the approximate value of the
post-compensation signal zi is expressed as:

zi ≈
b4

1−3b1d1
b5

1
(biT1(xi) + ciT2(xi) + diT3(xi))

− b2
1c1
b5

1
(6biciT1(xi) + b2

i T2(xi) + 2biciT3(xi))

− b1d1
b5

1
[(2b3

i − 3bi)T1(xi) + (12b2
i ci − 3ci)T2(xi) + (b3

i − 3di)T3(xi)]

≈ bi
b1

T1(xi) +
b2

1ci−b2
i c1

b3
1

T2(xi) +
b3

1di−b3
i d1

b4
1

T3(xi)

(17)

Normally, the approximate value of b1 is 1. Thereby, Equation (18) could be represented as:

zi ≈ biT1(xi) +
b2

1ci − b2
i c1

b3
1

T2(xi) +
b3

1di − b3
i d1

b4
1

T3(xi) (18)

Equation (18) allows for the conclusion that the nonlinear compensation process just suppresses
the distortion product without affecting linear components which contain the weak signals.

It can be known from Equations (1) and (17) that the uncompensated amplitudes of the
second-order and third-order terms are ci and di, respectively in the ith channel; while the

post-compensation amplitudes of the second-order and third-order terms are b2
1ci−b2

i c1

b3
1

and b3
1di−b3

i d1

b4
1

,

respectively. Therefore, the improvement degrees of the second-order and third-order nonlinear
distortion components in the ith channel, Ii2 and Ii3 are obtained:

Ii2 = 10lg (ci)
2

(
b2
1ci−b2

i c1
b3
1

)
2 = 20lg

∣∣∣∣∣∣∣ ci
b2
1ci−b2

i c1
b3
1

∣∣∣∣∣∣∣
= 20lg

∣∣∣∣ b3
1ci

b2
1ci−b2

i c1

∣∣∣∣
Ii3 = 10lg (di)

2

(
b3
1di−b3

i d1
b4
1

)
2 = 20lg

∣∣∣∣∣∣∣ di
b3
1di−b3

i d1
b4
1

∣∣∣∣∣∣∣
= 20lg

∣∣∣∣ b4
1di

b3
1di−b3

i d1

∣∣∣∣

(19)

where, “lg” represents Naperian logarithm in base 10.
Gi is defined as the ith channel’s gain. PEi means the difference between Gi and G1 (the first

channel’s gain) and it is represented by:

PEi = Gi − G1 (20)
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and:
Gi1 = 20 lg

∣∣∣ bi
b1

∣∣∣ = PEi

Gi2 = 20 lg
∣∣∣ ci

c1

∣∣∣
Gi3 = 20 lg

∣∣∣ di
d1

∣∣∣ (21)

where, Gi1, Gi2 and Gi3 are the linear, second-order and third-order components of PEi, respectively.
The authors make a group of experiments on the values of PEi under different signal frequencies.

The experimental results are from a widely-used 16-channel array receiver which is also applied to
the nonlinear blind compensation processing of the array system. Among the values of PEi for each
frequency point, for statistical convenience, only the maximum and minimum absolute values are
listed in Table 1 where the absolute values of PEi range from approximately 0 to near 1. Consequently,
in the real array receiving system, the reasonable estimation that Gi1 ranges from −1 dB to 1 dB can
be obtained. Moreover, as shown in Table 1, most of the measurements are much smaller than 1.
Therefore, for computational convenience, Gi2 and Gi3 both ranging from −1 dB to 1 dB is rational.

Table 1. The maximum and minimum absolute values of PEi versus different frequency points.

Signal Frequency (MHz)
Computational Complexity

Maximum |PEi| (dB) Minimum |PEi| (dB)

5.02 PE14 = 1.166 PE5 = 0.143
13.92 PE10 = 0.583 PE3 = 0.008
16.97 PE5 = 0.582 PE6 = 0.022

19 PE10 = 0.697 PE3 = 0.029
21.6 PE10 = 0.318 PE2 = 0.019

28.02 PE5 = 0.976 PE10 = 0.04

Based on Equations (19) and (21), the authors obtain the calculation results for Ii2 and Ii3, as shown
in Figure 2, which demonstrates that Ii2 is approximately 16–32 dB and Ii2 is about 12–24 dB. Therefore,
the results prove that this novel method could significantly compensate each channel’s nonlinear
distortion of array receiver.Sensors 2018, 18, 286 9 of 23 
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Figure 2. Computational results in the ith channel: (a) the improvement degrees of the second-order
nonlinear term (Ii2); (b) the improvement degrees of the third-order nonlinear term (Ii3).

3. Proposed Mitigation Architecture for Array Receiver

It is the principle of the proposed algorithm that large signals create significant distortion product.
The objective function is written as the minimal residual sum of squares between small signals and the
nonlinear model of large signals.
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This paper proposes, first, the blind compensation architecture in detail followed by the
proposed IWI method for calculating nonlinear model parameters. Second, a SRA-TFC algorithm
is given to separate time-domain large and small signals. Finally, the authors describe the
comparisons to traditional SVD-based algorithms regarding the compensation performance and
the computational complexity.

3.1. Nonlinear Blind Mitigation Structure

Figure 3 demonstrates the proposed structure implemented in the blind compensation unit is
made up of two basic modules of identification and compensation. The model parameters of the
first-channel are extracted adaptively.
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Figure 3. Proposed nonlinear blind mitigation structure for the array receiver.

To dramatically improve the SFDR of the multi-channel array receiver, the nonlinear behavior
model of the first channel RF front-end can be approximately expressed by the Hammerstein
model, which is a cascade of static nonlinearity blocks followed by linear dynamical blocks [33].
The relationship between input and output can be expressed as:

v(n) =
D

∑
d=1

Nd−1

∑
rd=0

h(rd, d)L1
d(n− rd) (22)

where v(n) is the output signals of the discrete Hammerstein model; L1(n) means large signals in the
first channel; D expresses the maximum value of the nonlinear order d (1 ≤ d ≤ D); Nd represents the
memory depth of the dth order Hammerstein kernel; h(rd, d) is the model kernel coefficient of the dth
order with memory depth rd; the total number of the Hammerstein kernel is:

P =
D

∑
d=1

Nd (23)

Furthermore, the major function of the identification module is to generate identification
parameters of a nonlinear model according to the objective function minimizing the power of N
points error signal e(n) where:

ω(n) = [h(0, 1) h(1, 1) . . . h(N1 − 1, 1) h(0, 2) h(1, 2) . . . h(ND − 1, D)]T are the kernel
coefficients of the nonlinear model whose original value is an P-dimensional zero column vector.
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The nonlinear model kernel u(n) is a P-dimensional column vector produced by large signals and
denoted as:

u(n) = [L1(n) L1(n− 1) . . . L1(n− N1 + 1)
(L1(n))

2 (L1(n− 1))2 . . . (L1(n− N2 + 1))2

. . . . . . . .
(L1(n))

D (L1(n− 1))D . . . (L1(n− ND + 1))D]T

(24)

and:

J(ω) = [e(n)]Te(n) =
N

∑
k=1

[e(k, ω)]2 (25)

where, e(k, ω) stands for the kth point e(n); e(n) = [e(1, ω), e(2, ω) . . . e(N, ω)]T (1 ≤ k ≤ N) is N × 1;
J(ω) means the power of N points e(n).

e(k, ω) = S1(n− k + 1)− uT(n− k + 1)ω(n) (26)

where, S1(n− k + 1) and u(n− k + 1) signify small signals and nonlinear model kernel of the kth point
in the first channel, respectively.

It can be obtained from Equations (25) and (26):

J(ω) =
N
∑

k=1
[e(k, ω)]2 =

N
∑

k=1
[e(k, ω)]Te(k, ω)

=
N
∑

k=1
[S1(n− k + 1)− uT(n− k + 1)ω]

T
[S1(n− k + 1)− uT(n− k + 1)ω(n)]

=
N
∑

k=1
S1

T(n− k + 1)S1(n− k + 1)−
N
∑

k=1
S1

T(n− k + 1)uT(n− k + 1)ω(n)

−
N
∑

k=1
ωTu(n− k + 1)S1(n− k + 1) +

N
∑

k=1
ωTu(n− k + 1)uT(n− k + 1)ω(n)

(27)

The objective function is to minimize J(ω), therefore, the authors compute the gradient of J(ω)

with respect to ω(n):

−
N
∑

k=1
[S1

T(n− k + 1)uT(n− k + 1)]
T −

N
∑

k=1
u(n− k + 1)S1(n− k + 1)

+2[
N
∑

k=1
u(n− k + 1)uT(n− k + 1)]ωopt(n) = 0

(28)

Continuing to earn Equation (29):

K(n)KT(n)ωopt(n) = K(n)Y(n) (29)

where Y(n) = [S1(n), S1(n− 1), S1(n− 2), . . . S1(n− N + 1)]T is N × 1, K(n) = [u(n), u(n− 1), u(n−
2), . . . u(n− N + 1)] is P× N and the kernel vector of the nonlinear behavior model ωopt(n) means
the solution of the objective function.

Simplifying Equation (29) to earn Equation (30):

KKTωopt = KY (30)

where, K(n), ωopt(n) and Y(n) is abbreviated to K, ωopt and Y, respectively.
Last, based on the proposed compensation strategy, the authors acquire:

zi = yi −Ui
Tωopt 1 ≤ i ≤ m (31)
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where Ui (the facilitation form of Ui(n)) denotes the pipeline model kernel of the ith channel, while
Ui(n) is expressed as:

Ui(n) = [yi(n) yi(n− 1) . . . yi(n− N1 + 1)
(yi(n))

2 (yi(n− 1))2 . . . (yi(n− N2 + 1))2

. . . . . . . .
(yi(n))

D (yi(n− 1))D . . . (yi(n− ND + 1))D]T

(32)

The specific procedures to resolve Equation (30) are discussed as the following:
The orders of the Hammerstein series are set from 1 to 5 in Equation (30). Due to a very great

power difference among various order terms, obviously KKT is considered as an ill-conditioned
matrix. Consequently, the calculation of the model kernel vector can be converted into that of
ill-conditioned linear equations. Here, the IWI method is present to calculate the ill-conditioned
equations. Representing a given iteration l, the iterative formula is:

(A + λI)X(l+1) = b + λX(l) (A = KKT b = KY) (33)

where λ represents a non-zero constant, l expresses the iteration index, X(0) is the initial value of the
equations solution, X(l) is the approximate estimate at lth iteration.

Figure 4 illustrates the concrete steps of IWI algorithm, where A2 = A + λI, r(l) and e(l) indicate
the margin and error at iteration l, respectively, l ++ means l increasing by 1 in every iteration.
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3.2. SRA-TFC Method

The key point of the proposed nonlinear blind compensation method is to gain large signals L1(n)
and small signals S1(n) blindly and precisely. The following are the details regarding the proposed
blind signal separation method.

According to Figure 5, the SRA-TFC algorithm can be divided into the following four steps:
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1. The time domain distorted signal y1(n) and pure noise n1(n) from the first channel RF front-end
needs to be extracted.

2. y1(n) and n1(n) are both translated into the corresponding signal and noise in frequency-domain
via the Discrete Fourier transform (DFT) technique and denoted as Ys( f ) and Yn( f ), respectively.

3. Each point of Ys( f ) is compared with the setting power spectrum threshold. Next,
frequency-domain large signals L1( f ) are obtained with the method that the points in Ys( f ),
whose values are below the threshold, are replaced by the corresponding points in Yn( f ), whereas
the others remain. Conversely, frequency-domain small signals, S1( f ) is gained by the replaced
points in Ys( f ) whose values are above the threshold.

4. By the IDFT technique, the authors turn L1( f ) and S1( f ) to time-domain large signals, L1(n) and
time-domain small signals, S1(n), separately.
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3.3. Comparisons between SRA-TFC Method and Traditional SVD-Based Method

To demonstrate the advantages of the proposed method, the authors compare the SRA-TFC signal
separation method to the traditional SVD-based signal separation method in terms of the compensation
performance and the computational complexity.

3.3.1. Comparison of Compensation Results

The simulation compensation results are provided to testify the advantages of the SRA-TFC
signal separation method. To focus on the comparison of these two signal separation methods,
the parameters of any one of the channels are adaptively extracted to alleviate the nonlinearity of this
channel. It is noteworthy that the number of the sampling points for power spectrum analysis is 65,536
in Figures 6 and 7.

Figure 6a depicts that the original simulation signals cover the equal-amplitude three-tone strong
sinusoidal wave signal (large signals) and the weak 16-QAM (quadrature amplitude modulation)
modulation signal (target signal). The frequencies of large signals are 10.3 MHz, 10.6 MHz and
11.8 MHz and the center frequency and bandwidth of the weak modulation signal is 21.5 MHz
and 1 MHz, respectively. Moreover, the power spectrum difference between large signals and the
target signal is about 75 dB and the sample rate is 70 MHz. A Hammerstein model with D = 5 and
Nd = [2, 2, 2, 2, 2] is adopted. As shown in Figure 6b, the signal and carrier frequencies are chosen
arbitrarily, the only condition being that some large nonlinear distortion components should be in the
target signal region to dramatically reduce the SINR of the target signal.

Regarding Figure 7, the blue spectrum illustrates the compensation performance when the
SRA-TFC signal separation method is employed, while the red spectrum indicates the mitigation result
in the application of the SVD-based signal separation method. While both signal separation methods
perform adequately, the proposed method demonstrates slightly better overall mitigation performance.

Furthermore, as depicted in Figure 6b, the SINR of the weak 16-QAM signal is dramatically
reduced due to the large disturbance stemming from the large signals. Moreover, after the processes
of frequency selection, filtering and demodulation for the weak 16-QAM signal, its constellation
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is very messy, as shown in Figure 8a. However, as illustrated in Figure 8b,c, benefiting from the
proposed algorithm, the nonlinear distortion in the target signal region is obviously depressed. Finally,
a regularly-distributed constellation is obtained. Moreover, compared to Figure 8b, the constellation in
Figure 8c is more regular because the novel algorithm has better compensation performance in the
target signal region.
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Figure 6. Classic simulation results of a distorted spectrum: (a) original signal; (b) distorted signal.
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Figure 7. Nonlinearity mitigation results of typical simulation signals for two blind signal
separation algorithms.
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Figure 8. The constellations of the 16-QAM (quadrature amplitude modulation) signals: (a) distorted
weak 16-QAM; (b) weak 16-QAM after mitigation by singular value decomposition (SVD)-based signal
separation method; (c) weak 16-QAM after mitigation by the proposed signal separation method.
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This experiment illustrates that the nonlinear blind compensation method can improve the SINR
of the weak 16-QAM signal but not change the weak signal itself, which is a crucial capacity of the
parameter estimation for target signals.

3.3.2. Comparison between Computational Complexities

The computational complexities of the proposed method and the traditional SVD-based algorithm
are discussed in this section. Let the data length N = M×M where M is applied to be the measurement
base of complexity.

Separating large signals and small signals from the one-channel output signal, the required
calculations of the traditional SVD-based algorithm include O

(
M3) times addition, O

(
M3) iterations

of multiplication, O
(

M2) iterations of division and O
(

M2) times square-root, to the knowledge of
Reference [27].

According to the procedures described in Section 3.2, the required computational complexity of
the proposed method is displayed as the following:

1. N points y1(n) and N points n1(n) are first extracted and then separately converted into Ys( f )
and Yn( f ) via DFT. The N points DFT requires both N log N times of multiplication and N log N
times of addition. Therefore, the required calculations to acquire Ys( f ) and Yn( f ) are 2N log N
iterations of multiplication and addition.

2. It requires 2N times multiplication and N times addition to calculate the power spectral density of
Ys( f ). Moreover, with the application of above threshold detection method, it needs 2N iterations
of addition to achieve L1( f ) and S1( f ).

3. The authors separately convert L1( f ) and S1( f ) into L1(n) and S1(n) by IDFT. This step requires
2N log N iterations of multiplication and addition.

According to Steps 1–3, the proposed signal separation method requires O(N) = O
(

M2) iterations
of multiplication and addition. The authors summarize the computational complexities of the two
methods in Table 2. It can be observed that the computational complexity of the proposed method is
O(M) times less than that of SVD-based method.

Table 2. Comparisons of the computational complexities between two signal separation methods.

Signal Separation Method
Computational Complexity

Addition Multiplication Division Square-Root

traditional SVD-based method O
(

M3) O
(

M3) O
(

M2) O(M)
SRA-TFC method O

(
M2) O

(
M2) without without

Compared to the traditional SVD-based algorithm, in summary, the proposed method has much
lower computational loads but achieves a slightly better mitigation performance.

4. Experimental Results and Analysis

An experimental verification platform is built to validate the performance of the proposed
algorithm. Moreover, the real-world experimental results show the impact of the nonlinearity
mitigation of the array receiver on the source localization accuracy of target signals and evaluate
the performance of the proposed algorithm.

4.1. Nonlinearity Mitigation Performance for ASP System

Relative to the other array geometries, uniform circular array (UCA) has several advantages such
as its 360◦ azimuth angle coverage and additional elevation angle information [34,35]. Additionally,
it has wide application in 2-D DOA estimation. Therefore, according to Figure 1, the shortwave array
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signal used for testing is from an actual UCA with sixteen elements. The experimental array receiver is
a 16-channel receiver and its synchronous sampling rate is fs = 70 MHz.

The model parameters of the first channel are extracted and then to alleviate the nonlinear
distortion components of all channels in this experiment. Additionally, the nonlinear inverse
behavior model for all channels’ RF front-ends is employed by a Hammerstein model with D = 5
and Nd = [3, 3, 3, 3, 3]. Figure 9a,b show the power spectrum of the original and post-compensation
array signal in the first channel. Since the input array signals of all channels are similar and their
compensation results are also similar, it is only necessary to show the power spectrum of the signal
before and after compensation in other channels such as the second one, which are shown in Figure 9c,d.

Moreover, Figure 9a,b illustrates that the SFDR of the first channel has a 10–20 dB improvement in
the whole band by carrying out the presented compensation method. Meanwhile, the same conclusion
of the second channel from Figure 9c,d can be drawn. Therefore, it can be deduced that the SFDR
of the entire array receiver in in the full band rises by 10–20 dB through the implementation of the
proposed compensation method.
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Figure 9. Power spectrum comparison between the original and post-compensation of array signal
versus different channel: (a) the original result in the first channel; (b) post-compensation result in
the first channel; (c) the original result in the second channel; (d) post-compensation result in the
second channel.

Meanwhile, three target signals (two weak ones and a strong one) are chosen to dissect the effect of
the nonlinearity mitigation of array signal processing system on the 2-D DOA estimation performance
of array signal. Displayed in Figure 10a–c (the local power spectrum graphs of the first channel), there
are three array signals of which center frequencies are 16.97 MHz, 19 MHz and 13.92 MHz, respectively.
Meanwhile, the powers of the two array signals in Figure 10a,b are both almost 20 dB lower than the
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power of the array signal in Figure 10c. Therefore, the three targets are named weak target signal-1,
weak target signal-2 and strong target signal, respectively.

Figure 10a,b illustrate that the two weak array signals are both seriously interfered by unwanted
in-band nonlinearity and that the SINRs of the two signals are below 0 dB. However, after
compensation, the SINRs of the two signals are both increased by approximately 10 dB. Therefore,
the two array signals are the typical examples the authors research.

Contrarily, as shown in Figure 10c, the power spectrums of the strong array signal before and
after compensation are almost similar, owing to a total lack of the nonlinear distortion components.
Additionally, the SINRs of the original and post-compensation signals are approximately 20 dB.
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Figure 10. Power spectrum comparison between the original and post-compensation of three target
signals in the first channel: (a) weak target signal-1; (b) weak target signal-2; (c) strong target signal.

4.2. 2-D DOA Performances of Target Signals

The direction-finding performances of the above-mentioned array signals before compensation
versus after compensation are discussed. Figure 11 shows the 16-channel array receiver output
before compensation is processed through the frequency selection and channelization before their 2-D
DOAs (elevation angle α and azimuth angle β) are estimated as is the compensated array receiver
output where, the channelized sampling rate and bandwidth are fn = 10 KHz and 8 KHz, respectively.
Moreover, the authors employ the MUSIC algorithm to estimate their 2-D DOAs of array signal
before and after compensation. Ultimately, the authors provide explicit comparisons about these two
estimation results.

The array receiver output with 118 s in succession is used to estimate the 2-D DOA parameters
based on the MUSIC algorithm. Where one-second array signal data is estimated at a time. Thereupon,
one hundred and eighteen independent Monte Carlo trials are performed for the following experiments.
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Moreover, the root mean square error (RMSE) is used for the performance measure. The RMSE of
elevation and azimuth DOA (RMSE(α) and RMSE(β)) are defined as:

RMSE(α) =

√√√√ 1
118

118

∑
t=1

(αt − α̃)2 (34)

RMSE(β) =

√√√√ 1
118

118

∑
t=1

(βt − β̃)
2 (35)

where αt and βt mean the estimation of the elevation angle and azimuth angle at the tth second (the tth
Monte Carlo trial), separately, while α̃ and β̃ stand for the corresponding average ones.
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4.2.1. 2-D DOA Performance in the Case of Weak Target Signals

These two experiments are to compare the 2-D DOA estimation results of weak target signals
before and after compensation.

Figure 12 depicts the DOA estimation performances of weak target signal-1 before and after
compensation by 118 trials and demonstrates that the estimation result of the post-compensation
signal is much more accurate than that of the original signal. Meanwhile, the same phenomenon also
happens on weak target signal-2, as shown in Figure 13. These phenomena are observed more directly
from the azimuth-elevation scatter figures, Figures 14 and 15.

Moreover, by carrying out the compensation algorithm, the RMSE(α) of weak target signal-1
is reduced from 15.62◦ to 3.31◦ and the RMSE(β) is decreased from 65.81◦ to 10.03◦. Concurrently,
for weak target signal-2, its RMSE(α) and RMSE(β) are reduced from 25.66◦ to 3.94◦ and from 34.98◦

to 2.48◦ by employing the blind compensation algorithm.
The above two experimental results indicate that the proposed algorithm can dramatically increase

the 2-D DOA estimation accuracy of the weak target signals.
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4.2.2. 2-D DOA Performance in the Case of Strong Target Signal

Another crucial concern to the authors is the azimuth-elevation direction finding performance
analysis of strong array signal before compensation versus after compensation.

It can be seen in Figure 16 that the azimuth-elevation angle estimation results of strong target
signal before and after compensation are identical. The experimental result suggests that the
proposed method just eliminates the nonlinearity without affecting the strong signal and its parametric
estimation accuracy.
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5. Conclusions

Rather than developing different parametric estimation methods, the authors investigated a
nonlinear blind compensation technique in array signal processing. A novel blind compensation
algorithm was presented to improve the SFDR of an array receiver and to obtain remarkable
improvements of the parameters estimation performances for weak target signals such as their 2-D
DOAs employing the MUSIC algorithm. These purposes have already been verified by the repeated
experiments on a real-world array signal from a UCA. The main advantages of the proposed algorithm
are summed up in the following points:

1. During the blind compensation process, the parameters of the identification module and the
compensation module are totally independent of each other, which can improve the efficiency of
array signal processing and increase its dependability.
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2. The suggested algorithm accomplished in pure time-domain saves a great deal of the system
hardware scale. In addition, the proposed algorithm is only necessary to set power threshold
rather than multi-stopband/multi-passband digital filters with extremely high performance of
constant change, which is apparently more flexible and convenient to handle the situation of
multiple signals with different power levels or wide ranges of bandwidth.

3. The blind compensation strategy for multi-channel RF front-ends designed is that the model
parameters of any one of the channels are extracted to mitigate the nonlinear distortion
components of all channels synchronously. It has the advantages of reducing a mountain of
computational loads and avoiding the inconsistency of the array compensation performance
caused by the iterative computation error, especially the phase disturbance of the array signal
after compensation.

In conclusion, the proposed algorithm can improve the SFDR of the array receiver, achieving high
parameters estimation accuracy of array signal with low computational complexity. It is predicted to
have wide and promising applications in array signal processing.
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