
sensors

Article

Convolutional Neural Network-Based Classification
of Driver’s Emotion during Aggressive and Smooth
Driving Using Multi-Modal Camera Sensors

Kwan Woo Lee, Hyo Sik Yoon, Jong Min Song and Kang Ryoung Park *

Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu,
Seoul 100-715, Korea; leekwanwoo@dgu.edu (K.W.L.); yoonhs@dongguk.edu (H.S.Y.);
whdwhd93@dongguk.edu (J.M.S.)
* Correspondence: parkgr@dongguk.edu; Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735

Received: 20 February 2018; Accepted: 21 March 2018; Published: 23 March 2018
����������
�������

Abstract: Because aggressive driving often causes large-scale loss of life and property, techniques
for advance detection of adverse driver emotional states have become important for the prevention
of aggressive driving behaviors. Previous studies have primarily focused on systems for detecting
aggressive driver emotion via smart-phone accelerometers and gyro-sensors, or they focused on
methods of detecting physiological signals using electroencephalography (EEG) or electrocardiogram
(ECG) sensors. Because EEG and ECG sensors cause discomfort to drivers and can be detached
from the driver’s body, it becomes difficult to focus on bio-signals to determine their emotional state.
Gyro-sensors and accelerometers depend on the performance of GPS receivers and cannot be used in
areas where GPS signals are blocked. Moreover, if driving on a mountain road with many quick turns,
a driver’s emotional state can easily be misrecognized as that of an aggressive driver. To resolve these
problems, we propose a convolutional neural network (CNN)-based method of detecting emotion
to identify aggressive driving using input images of the driver’s face, obtained using near-infrared
(NIR) light and thermal camera sensors. In this research, we conducted an experiment using our own
database, which provides a high classification accuracy for detecting driver emotion leading to either
aggressive or smooth (i.e., relaxed) driving. Our proposed method demonstrates better performance
than existing methods.

Keywords: aggressive driving emotion; near-infrared light camera sensor; thermal camera sensor;
convolutional neural network

1. Introduction

Aggressive driving causes most car accidents and accounts for the largest percentage of fatal
crashes [1]. For such a serious problem, detection of aggressive driving has been relegated mainly to
traffic police officers. Because there are too few police officers to monitor every road simultaneously [2],
intelligent surveillance systems are clearly needed. Most previous studies have attempted to
detect the drivers’ aggressive behaviors by observing vehicle movement using accelerometers and
gyro-sensors installed on a smart phone [2–6]. Although not aimed at detecting aggressive driving,
there was also a study on driving behavior using steering wheel angles as the input and output [7].
In addition, some works focused on fatigue or drowsy driver detection. Others used the drivers’ facial
features [8–11], voice signals, car–voice interactions [12,13], or bio-signals [11,14–16] to help recognize
up to six types of emotions.

Extant aggressive-driver detection methodologies are deficient for two reasons. First,
the construction of algorithms to extract complex facial feature points and accurate classification
into either smooth (i.e., relaxed) or aggressive driving has proven difficult. Secondly, we lack adequate
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hardware to accurately and quickly classify large amounts of visual data. However, recent algorithmic
and hardware developments indicate that intelligent surveillance systems are near-at-hand, and can
be used for human emotion recognition in complex environments. Notably, the application of
convolutional neural networks (CNN) has significantly improved the accuracy of human emotion
recognition [17–19]. Recently, more advanced methods based on the 2D or 3D inception-ResNet
model [20,21] and you only look once (YOLO) [22] were also used for facial expression recognition.
Therefore, we decided to research CNN-based aggressive driving detection using near-infrared (NIR)
light and thermal cameras. In Section 2, previous studies are reviewed to reveal opportunities
and limitations.

2. Related Works

Previous studies on vehicle movement mostly utilized accelerometers and gyro-sensors built into
smart phones for detecting driving behaviors [2–6]. The experimental methods that used gyro-sensors
and accelerometers involved the following: First, a two-axis accelerometer, built into a smart phone,
was used, and patterns of acceleration were classified into six abnormal driving behavior types.
Then, a support vector machine was used to detect abnormal driving [3]. Another study utilized
accelerometers and gyro-sensors to divide abnormal driving patterns into unsafe left and right
turns, lane departures, sudden braking, and speeding-up. A dynamic time-warping algorithm,
which compares two temporarily consecutive data sets and judges their similarity, was implemented
to evaluate the difference in patterns. A Bayesian classifier was then applied to classify the driving
behaviors [4]. Another method used a two-axis accelerometer and applied fuzzy logic to obtain x- and
y-axis scores of four driving behaviors (i.e., take off, brake, turn left, and turn right) measured on a
bus. Through this method, reckless driving could be detected [5]. The Gaussian mixture model (GMM)
classifier was also used to categorize driving behaviors of both young and senior drivers. The GMM
classifier used gyro-sensor values as inputs [6]. These methods used accelerometers and gyro-sensors
built into smartphones and did not demand any separate equipment. The sensors were portable and
collected real-time data. Having been integrated into a smart phone, researchers eliminated the need
for complicated installation of networked sensors. Despite these advantages, if the vehicle operated in
a GPS-deprived area, or if the GPS receiver demonstrated poor performance, accurate values could not
be utilized. Thus, aggressive driving remained difficult to detect. Additionally, driving on a mountain
road and other winding-type roads could be misrecognized as aggressive driving, owing to the quick
and irregular turns and frequent braking.
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Table 1. Comparison of proposed and previous works.

Category Methods Advantage Disadvantage

Gyro-sensor and
accelerometer-based method Aggressive driving detection [2–6]

An accelerometer and a gyro-sensor in a smart
phone are used. Accordingly, no device needs to
be purchased or installed. Highly portable.
Because the motion of a vehicle is directly
observed, it can be closely correlated to
aggressive driving.

Depending on the performance of a GPS receiver,
data values can be inaccurate. This method is not
applicable in GPS-unavailable areas.
The error rate of aggressive driving detection
increases on winding and mountain roads.

Voice-based method Detection of a driver’s emotion based on voice or
car–voice interaction [12,13] Data acquisition using inexpensive sensor. Surrounding noise influences performance.

Bio-signal-based method
Various bio-signals, including ECG, EEG, and pulse, are
measured to recognize a driver’s emotion or
fatigue [14–16]

Bio-signals that cannot be detected by the naked
eye are detected at high speed.
Because bio-signals are used as input data,
physiological changes can be detected.

Sensors can be detached by a driver’s
active motion.
The attachment of sensors may cause discomfort.
Expensive sensors are used.

Camera-based
method

Using single
camera

Using visible
light camera Yawning detection [10] An inexpensive camera is used.

Physical characteristics that cannot be observed by
the naked eye are not detected.
Measurement becomes difficult at night or
in tunnels.

Using thermal
camera Driver’s emotion recognition [8]

Night photography is possible without a separate
light source.
Subtle physical signals related to specific
emotions, which cannot be caught by visible light
or NIR cameras, can be detected.

The camera is expensive compared to visible light
or NIR cameras.
The camera is less effective for detecting facial
regions and facial feature points than with
NIR cameras.

Using multiple
cameras

Using dual
NIR cameras

Percentage of eye closure over
time (PERCLOS)- and average
eye-closure speed (AECS)-based
detection of driver fatigue [9]

In cases where more than two cameras are used,
driver fatigue is detected over a wide range.
NIR light makes detection possible at night or in
a tunnel.

Physical characteristics that cannot be observed by
the naked eye are not detected.

Using NIR and
thermal cameras

Aggressive driving emotion
detection-based convolutional
neural networks (CNN)
(Proposed method)

Thermal cameras can measure temperature
changes in a driver’s body, which cannot be
checked by the naked eye, whereas, a NIR camera
can detect facial feature points and measure
their changes.
An intensively trained CNN is robust in various
environmental and driver conditions.

The use of two cameras increases algorithm
complexity and processing time.
Intensive CNN training is required.
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Other studies used new techniques to recognize driver emotions [8,12–14,16] and to monitor
fatigue [9–11,15]. These researchers recognized or judged a driver’s emotional or physiological state
using microphones, recording the driver’s status as audio signals, or electrocardiograms (ECG) and
electroencephalography (EEG), storing bio signals. Video recording equipment (e.g., NIR light or
thermal cameras) have also been used. There have also been studies that examined a driver’s voice or
car–voice interactions [12,13]. Another group measured bio-signals (e.g., ECG, EEG, pulse) to correlate
emotions or sleepiness to abnormal driving behaviors [14–16]. Whereas bio-signals are useful to
directly identify a driver’s emotional or physiological responses, the required equipment is expensive
and must be attached directly to the driver’s skin. Accordingly, the driver may experience discomfort.
Additionally, any violent motions could detach sensors, making it very difficult to get accurate
measures. These problems were overcome by using camera-based emotion studies. Visible light
cameras, NIR cameras, and thermal cameras have been used to obtain drivers’ facial images, which are
then analyzed as input signals. From such analyses, driver fatigue and emotional state can be identified,
potentially detecting abnormal driving [8–10]. There was a study that used only a thermal camera
to recognize a driver’s emotion [8]. Color-based detection, morphology-based detection, and region
growing-based detection were applied to the images obtained by the thermal camera. An AND
operation was applied to the outcomes of the three methods to determine the face region, from which
features were extracted through a histogram of oriented gradients (HOG). Later, an experiment was
conducted to classify six basic emotional states using the modified Hausdorff distance. However,
the average classification accuracy was only about 66.8%. Alternatively, two NIR cameras and one
visible light camera were used for fatigue-driving detection, based on human physical conditions [9,10].
The percentage of eye-closure over time and the average eye-closure speed were measured to judge
driver fatigue [9]. Driver fatigue was also measured by designating the mouth as the region of interest
(ROI) to detect yawning [10]. Regarding the NIR camera, the difference between abnormal and normal
driving situations can be intuitively identified from its input images. Alternatively, a thermal camera
can also detect subtle changes in temperature, which could be attributed to a driver’s emotional state.
Recently, camera images and audio signals have been applied for the detection of driver fatigue and
emotion. Such an application has not yet been extended to distinguish between a driver’s aggressive
and smooth driving states. Research on driver emotion [8] has not considered its relationship with
aggressive driving. Moreover, because complex emotions can be involved in aggressive driving,
there has been no reliable method to match trigger emotions to aggressive driving. Camera-based
methods have used a single camera type. Consequently, it could not detect aggressive driving under
different situations. Table 1 shows the summarized comparisons of our method and previous works.

3. Motivation and Contributions

In view of the problems and constraints of previous works explained in Section 2, our research
proposes a CNN-based method for detecting a driver’s aggressive driving emotion using facial images
obtained from both NIR and thermal cameras. Our research is novel in the following four ways.

- This research is the first CNN-based attempt to classify aggressive and smooth driving emotions
using nonintrusive multimodal cameras (i.e., NIR and thermal cameras) and facial features
as inputs.

- From NIR images, both the eyes and mouth, which show the most remarkable changes of facial
expression, are extracted and converted into 3-channel images and used as inputs to the first CNN.
From thermal images, the middle-forehead and cheek areas, which show the largest temperature
changes, are extracted and converted into 3-channel images, to be used as inputs to the second
CNN. The two CNN output scores are then fused at the score-level to enhance the classification
accuracy for aggressive and smooth driving emotions.

- From 15 subjects carrying out aggressive and smooth driving experiments, a total of 58,926 images
were obtained using NIR and thermal cameras. The images were used to intensively train the
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CNN. Thus, CNN-based classification of aggressive and smooth driving emotion becomes more
accurate and robust over time, owing to correlating changes in drivers’ emotional status.

- A database of driver images is constructed in this research, using NIR and thermal cameras and a
trained CNN model. It is open to other researchers to ensure impartial performance evaluation.

The remainder of this paper is organized as follows: Section 4 explains the multimodal cameras
and CNN-based method for detecting aggressive driving. Sections 5 and 6 present the experimental
results and conclusions, respectively.

4. Proposed Method for CNN-Based Detection of Aggressive Driving Emotion

4.1. Proposed Device, Experimental Setup, and Method

Figure 1 shows the proposed emotion classification for smooth and aggressive driving.

Figure 1. Flowchart of proposed method.

As shown in steps (1) and (2) of Figure 1, the facial images of a user are simultaneously obtained
by NIR and thermal cameras. Figure 2 illustrates the experimental setup. NIR and thermal multimodal
cameras were installed atop a 24-inch monitor, which displays a driving simulator, and are used
to obtain facial images of drivers (see Figure 3). Because experimenting in a real car is dangerous,
we utilized two types of driving simulators to create aggressive and smooth driving conditions.
As shown in Figure 2, every subject used a steering wheel, gear shifter, and pedals to simulate real
driving. Simulator details are discussed in Section 5.1. NIR and thermal cameras were used for
data acquisition. Thermal energy from a person can be measured by long-wave IR (LWIR) and
medium-wave IR (MWIR) lights [23]. Thus, the images taken in these sub-bands are called “thermal
images.” This research used a Tau2 FLIR thermal camera, which has a spectral range of 7.5–13.5 µm,
like most LWIRs, including the upper MWIR range. The scene range (i.e., high gain) was from
−25 ◦C to +135 ◦C [24]. Additionally, the NIR camera used in the experiment was manufactured by
ELP-USB500W02M-L36 [25]. An 850 nm NIR band-pass filter was attached to receive light in the NIR
range [26]. An NIR illuminator was fabricated, consisting of six NIR light emitting diodes (LED),
each with an 850-nm wavelength [27]. Thus, each NIR image obtained 640 × 480 pixels of 8 bits each,
and the thermal image had 640 × 512 pixels of 14 bits each. In Step (3) of Figure 1, d-lib facial feature
tracker was used for NIR images [28] to extract 68 feature points, as shown in Figure 4. Based on
the extracted feature points, ROI was designated to classify the emotional states of aggressive and
smooth driving.
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Figure 2. Experimental setup for classifying aggressive and smooth driving emotion using
multimodal cameras.

Figure 3. Examples of captured images by NIR (left images) and thermal (right images) cameras from
(a) person 1 and (b) person 2.

Figure 4. Cont.
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Figure 4. Examples of (a) detected facial feature points; and (b) the index numbers of facial feature points.

According to Ekman’s facial action coding system [29], emotional changes appear mainly in the
mouth and eye regions, as shown in Figure 5a. The ROI for the left eye was formed around facial
feature point 39. For the right eye, it was formed around point 33 (see Figure 4b). The multimodal
camera developed in this research is 10.5 × 5.5 × 3.7 cm3 in width, height, and depth, respectively,
as shown in Figure 2. Having such a small size, it can be installed on the dashboard or near the front
sun shade. The distance from this device to the driver’s face differs per sitting height. This fact was
mitigated by modifying the distance from 60 cm to 80 cm in the current experiment, as shown in
Figure 2. Therefore, the face size in the input NIR and thermal images changed, as seen in Figure 4a.
To prevent ROI from being affected by the size change, we adaptively measured ROI width and height
based on the distance between facial feature points, 0 and 16, as shown in Figure 4b. Thus, each ROI
adapted robustly to the changes in a user’s face. As shown in Step (4) of Figure 1, the NIR image feature
points positions were translated to those of the thermal image via geometric transform, as shown by
Equations (1) and (2) [30].

Tx0 Tx1 Tx2 Tx3

Ty0 Ty1 Ty2 Ty3

0 0 0 0
0 0 0 0

 =


a b c d
e f g h
0 0 0 0
0 0 0 0




Vx0 Vx1 Vx2 Vx3

Vy0 Vy1 Vy2 Vy3

Vx0Vy0 Vx1Vy1 Vx2Vy2 Vx3Vy3

1 1 1 1

 (1)


T′x
T′y
0
0

 =


a b
e f

c d
g h

0 0
0 0

0 0
0 0




V′x
V′y

V′xV′y
1

 (2)

where (Vx0, Vy0), . . . , (Vx3, Vy3) show the four positions in the visible light image.
(Tx0, Ty0), . . . , (Tx3, Ty3) show the corresponding four points in the thermal image. Based on the
obtained eight parameters of a, b, c, . . . , h from Equation (1), the positions, (T′x, T′y) can be computed
by Equation (2). To obtain these eight parameters, the calibration method based on [30] was performed.
After the positions of facial feature points were obtained from the thermal images, as in Step (5) of
Figure 1, both cheeks and the middle of the forehead were designated as ROIs (see [30]). Figure 5b
presents examples of the designated ROIs. The ROI of the left cheek is specified around the center
between facial feature points 31 and 2 in Figure 4b, whereas the right cheek ROI is formed at the
center between points 35 and 14 in Figure 4b. The ROI for the middle of the forehead is designated
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to be at the center between points 21 and 22 in Figure 4b. The width and height of each ROI were
adaptively determined based on the distance between facial feature points 0 and 16, shown in Figure 4b,
to enhance the robustness of ROI to the changing distance from the camera device to the driver’s face.

Figure 5. ROI regions in (a) NIR image; and (b) thermal image.

Next, images were extracted from three ROIs of the NIR image. The difference images were
obtained from the extracted images, plus those extracted from the three ROIs of the initial NIR image
of the driver (Step (6) in Figure 1). Although this cannot be valid in a real-world scenario, we assumed,
in our experimental setup, that the initial NIR image of the driver could be acquired when he started
the car, because, at this moment, a smooth driving emotion will be shown. Therefore, when a difference
image for the initial NIR image is obtained, the variations indicating aggressive driving emotion can be
deduced. Next, images were extracted from the three ROIs of the thermal image. The difference images
were obtained from the extracted images plus those extracted from three ROIs of the initial thermal
image of the driver (Step (7) in Figure 1). Each difference image was resized to 224 × 224 pixels
to be used as a CNN input. The reason for this resizing process will be explained in Section 4.2.
Three difference images were then obtained from the NIR image to form a 3-channel image (Step (8)
of Figure 1). Another was obtained from the thermal image (Step (9) in Figure 1). Two 3-channel
images were used as CNN inputs (Steps (10) and (11)), and the scores of two CNNs were fused at the
score-level, thereby judging aggressive and smooth driving emotions (Step (12) in Figure 1). The CNN
structure used in this research is explained in the following section.

4.2. CNN Structure

Table 2 shows the CNN structure adopted by this research. We used the VGG face-16 model.
The VGG face-16 model uses the same structure as the VGG Net-16 model [31], but the VGG
face-16 model was originally trained with huge numbers of face images (not by images for object
recognition) [32]. In addition, the pre-trained VGG face-16 model was finely tuned by our training
data (fine-tuning), and this was used for our experiment. Therefore, we can assume that the VGG
face-16 model used in our experiment shows the features for face representation.

Because the pre-trained VGG face-16 model is fine-tuned, the input data images were resized to
224 × 224 pixels via bilinear interpolation. The VGG face-16 model consists of 13 convolutional layers,
five pooling layers, and three fully connected layers (FCL).
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Table 2. CNN architecture used in our research (i.e., Conv, ReLU, and Pool mean convolutional layer,
rectified linear unit, and max pooling layer, respectively).

Layer Type Number of
Filters Size of Feature Map Size of

Kernel
Number
of Stride

Number of
Padding

Image input layer 224 (height) × 224
(width) × 3 (channel)

Group 1

Conv1_1 (1st convolutional layer) 64 224 × 224 × 64 3 × 3 1 × 1 1 × 1
ReLU1_1 224 × 224 × 64

Conv1_2 (2nd convolutional layer) 64 224 × 224 × 64 3 × 3 1 × 1 1 × 1
ReLU1_2 224 × 224 × 64

Pool1 1 112 × 112 × 64 2 × 2 2 × 2 0 × 0

Group 2

Conv2_1 (3rd convolutional layer) 128 112 × 112 × 128 3 × 3 1 × 1 1 × 1
ReLU2_1 112 × 112 × 128

Conv2_2 (4th convolutional layer) 128 112 × 112 × 128 3 × 3 1 × 1 1 × 1
ReLU2_2 112 × 112 × 128

Pool2 1 56 × 56 × 128 2 × 2 2 × 2 0 × 0

Group 3

Conv3_1 (5th convolutional layer) 256 56 × 56 × 256 3 × 3 1 × 1 1 × 1
ReLU3_1 56 × 56 × 256

Conv3_2 (6th convolutional layer) 256 56 × 56 × 256 3 × 3 1 × 1 1 × 1
ReLU3_2 56 × 56 × 256

Conv3_3 (7th convolutional layer) 256 56 × 56 × 256 3 × 3 1 × 1 1 × 1
ReLU3_3 56 × 56 × 256

Pool3 1 28 × 28 × 256 2 × 2 2 × 2 0 × 0

Group 4

Conv4_1 (8th convolutional layer) 512 28 × 28 × 512 3 × 3 1 × 1 1 × 1
ReLU4_1 28 × 28 × 512

Conv4_2 (9th convolutional layer) 512 28 × 28 × 512 3 × 3 1 × 1 1 × 1
ReLU4_2 28 × 28 × 512

Conv4_3 (10th convolutional layer) 512 28 × 28 × 512 3 × 3 1 × 1 1 × 1
ReLU4_3 28 × 28 × 512

Pool4 1 14 × 14 × 512 2 × 2 2 × 2 0 × 0

Group 5

Conv5_1 (11th convolutional layer) 512 14 × 14 × 512 3 × 3 1 × 1 1 × 1
ReLU5_1 14 × 14 × 512

Conv5_2 (12th convolutional layer) 512 14 × 14 × 512 3 × 3 1 × 1 1 × 1
ReLU5_2 14 × 14 × 512

Conv5_3 (13th convolutional layer) 512 14 × 14 × 512 3 × 3 1 × 1 1 × 1
ReLU5_3 14 × 14 × 512

Pool5 1 7 × 7 × 512 2 × 2 2 × 2 0 × 0

Fc6 (1st FCL) 4096 × 1
ReLU6 4096 × 1

Dropout6 4096 × 1

Fc7 (2nd FCL) 4096 × 1
ReLU7 4096 × 1

Dropout7 4096 × 1

Fc8 (3rd FCL) 2 × 1
Softmax layer 2 × 1
Output layer 2 × 1

The feature map size obtained from the first convolutional layer was 224 × 224 × 64. The height
and width were calculated based on [33]. The output feature map (OFk,l,n) for a standard convolution,
based on stride 1 and padding, is generally obtained by the input feature map (IFk+i−1,l+j−1,m) and
convolution kernel (Ki,j,m,n) as [34]

OFk,l,n = Σi,j,m (Ki,j,m,n · IFk+i−1,l+j−1,m) (3)

Based on Equation (3), the computational cost is dependent on the multiplicatively of the number
of output channels, the input feature map size, the kernel size, and the number of input channels,
and [34]. As seen in Equation (4) (x and y are the input and output), every convolution layer was
connected to a rectified linear unit (ReLU) layer. The ReLU can also remove the back propagation
vanishing gradient problem during training, and it can reduce the training time [26,35–37].

y = max(0, x) (4)
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After the second, fourth, seventh, 10th, and 13th convolutional layers with the ReLU, a max
pooling layer followed. The max pooling layer uses the maximum value in the filter with a specified
size and conducts subsampling. After 13 convolutional layers, 13 ReLU layers, and five max pooling
layers, the ultimate feature map size was 7 × 7 × 512 pixels. Additionally, data passed through three
FCLs. The output nodes of the first, second, and third FCLs were 4096, 4096, and 2, respectively.
Because this research aimed to distinguish two classes driving emotions (smooth and aggressive),
the third FCL was composed of two nodes. Generally, a CNN becomes too dependent on training data
(i.e., “over-fitting”). To solve this problem, we used dropout methods based on a dropout probability
of 50% [31,35,38]. In the third FCL, a softmax function was applied [39].

4.3. Score-Level Fusion of the Outputs of Two CNNs

As shown in Step (12) of Figure 1, this research conducted score-level fusion for the CNN output
scores of NIR images (i.e., S1 of Equations (5) and (6)) and thermal images (i.e., S2 of Equations (5) and
(6)). The final score was used to classify smooth and aggressive driving emotions. Weighted SUM and
PRODUCT rules were compared, as seen in Equations (5) and (6).

WS = w1S1 + w2S2 (5)

WP = d1
S1 d2

S2 (6)

WS and WP, respectively, are the scores by weighted SUM and weighted PRODUCT rules. Si is
the CNN output score, and wi is the weight. Among weighted SUM and weighted PRODUCT rules,
the optimal rule with optimal weights was determined to have the least error in classifying smooth
and aggressive driving emotions via only training data.

5. Experimental Results

5.1. Experimental Scenario, Environment and Data

We used 15 subjects (10 Koreans, 2 Vietnamese, 2 Pakistanis, and 1 Mongolian) between ages
of 25 to 34 years, in the experiment. Eight subjects were male and the remaining seven were female.
All the subjects voluntarily participated in our experiments. Before the experiments, all the participants
were provided with sufficient explanations, including the purpose and procedure of our experiments,
and how the experimental data would be used, etc. Then, we obtained written consents from all of the
participants before experiments.

Because it was too risky to create an aggressive driving situation under real traffic conditions,
we utilized two types of driving simulator, as shown in Figure 2, to assess baseline aggressive and
smooth driving situations. As illustrated in Figure 6, the experiment included 5 min of smooth driving
and another 5 min of aggressive driving. Between each section of the experiment, every subject watched
a sequence of neutral images from the international affective picture system [40], thereby maintaining
neutral emotional input. After the experiment, the subjects rested for about 10 min. This procedure
was repeated three times. Figure 6 shows one example from the experimental procedure. The order
of “acquiring smooth driving image (about 5 min)” and “acquiring aggressive driving image (about
5 min)” were randomly changed for different participants (without notification in advance) in order to
prevent the experimental results from being biased by the order. The temperature and illumination
were set to about 26 ◦C and 385 lux, respectively.

The autonomous driving mode of Euro Truck Simulator 2 [41] was selected as the smooth driving
simulator, because it was the most appropriate. For the simulation game involving the acquisition of
input from aggressive driving, the competition mode of Need for Speed (Deluxe Edition) [42] was
used, because it was the most suitable. We aimed to measuring real emotion (not disguised or not
pretended expression) of the drivers. Therefore, we did not collect our data from actors. Our goal was
to measure the actual emotions of drivers in environments most similar to actual driving situations.
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Therefore, to induce aggressiveness in the subjects by causing them to make mistakes or introducing
another person into the simulation which would induce aggressive behavior is different from actual
driving situations. Because it was too risky to create an aggressive driving situation under real
traffic conditions, we utilized two types of driving simulator. The two simulators of the autonomous
driving mode of Euro Truck Simulator 2 and the competition mode of Need for Speed (Deluxe Edition)
have been widely used for experiments because they can represent the actual driving environment.
Therefore, we performed the experiments on these two simulators.

Figure 6. Experimental procedure. Smooth and aggressive driving images refer to images acquired
while the participant is operating the smooth and aggressive driving simulators, respectively.

In this experiment, a Samsung S24C450 24-in monitor [43] was used. As shown in Figure 2,
the distance from a user to the monitor and the dual camera device was 60–70 cm.

Table 3 presents the database used in this research. Two-fold cross validation was conducted for
the performance evaluation as follows: During the first validation, a sub-data set of eight subjects
was used for training, and that of the remaining seven was used for testing. Alternatively, during the
second validation, a sub-data set of seven subjects was used for training, and that of the remaining
eight was used for testing.

Table 3. Image database.

NIR Images Thermal Images

Smooth Driving Aggressive Driving Smooth Driving Aggressive Driving

Number of images 29,463 29,463 29,463 29,463

For CNN training and testing, we used a desktop computer with an Intel® Core™ i7-3770 CPU
@3.50 GHz (Intel Corp., Santa Clara, CA, USA) [44], 16-GB memory and an NVIDIA GeForce GTX
1070 (Intel Corp., Santa Clara, CA, USA) (i.e., computer-unified device architecture cores of 1920) with
memory of 8 GB [45]. The CNN algorithm was implemented using Windows Caffe (Version 1) [46].
We have opened our thermal and NIR camera database (i.e., Dongguk aggressive and smooth
driving database (DASD-DB1)) and the trained CNN model to other researchers (see [47]) for fair
performance evaluation.

5.2. Features of NIR and Thermal Images and the Comparison of Performance

As mentioned in Section 4.1, images were extracted from three ROIs of a NIR image (see Figure 5a).
The difference images were acquired using these extracted images and others were extracted from
three NIR image ROIs, taken while a driver watched the initial neutral image shown in Figure 6.
Additionally, images were extracted from three ROIs of the thermal image shown in Figure 5a, and the
difference images were acquired from these extracted images and the images extracted from three
ROIs of the initial thermal image, taken when a driver watched the initial neutral image of Figure 6.
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We compared the ROI features with other drivers’ facial image features to verify the effectiveness of
classifying smooth and aggressive driving emotions. For a comparison of performance, we conducted
a t-test [48] and Cohen’s d analysis [49,50] against the difference features of the initial images obtained
while a driver watched the neutral image shown in Figure 6 and those of images taken during smooth
and aggressive driving situations. The null hypothesis for the t-test assumed that there was no
difference among features of images in smooth and aggressive driving situations [48]. If the p-value
was 0.05 or below in the t-test, the null-hypothesis was rejected at a 95% confidence level, indicating a
difference in features between smooth and aggressive driving at a 95% confidence level. If the p-value
was 0.01 or below, the null-hypothesis was rejected at a 99% confidence level, indicating a difference in
features between smooth and aggressive driving at a 99% confidence level. Therefore, as the p-value
decreases, the difference between two measured datasets increases at a statistically significant level.

Other features, extracted from facial images, were used introduced in [51]. Table 4 and Figure 7
present the mean, standard deviation, p-value, Cohen’s d value, and effect size for the five feature
values. Table 5 and Figure 8 show the means, standard deviations, p-values, Cohen’s d values, and effect
sizes for the feature values used in Figure 5. In Tables 4 and 5 and Figures 7 and 8, “smooth” and
“aggressive” indicate smooth driving and aggressive driving, respectively. In Table 5 and Figure 8,
the left eye, right eye, and mouth come from three ROIs of the NIR image shown in Figure 5a. Whereas,
the middle of forehead, left cheek, and right cheek are from three ROIs of the thermal image shown in
Figure 5b.

Figure 7. Graphs of mean and standard deviation for 5 features between smooth and aggressive driving
(a) euclidean distance change between left and right lip corners (DLRL); (b) euclidean distance change
between upper and lower lips (DULL); (c) facial temperature-based heart rate (HR); (d) eye-blinking
rate (EBR); (e) eyebrow movement (EM).
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Figure 8. Graphs of means and standard deviations for pixel values of NIR and thermal ROIs between
smooth and aggressive driving. ROIs of (a) left eye; (b) right eye; (c) mouth; (d) middle of forehead;
(e) left check; and (f) right cheek.

Table 4. p-Value, Cohen’s d value, and effect size of five features between smooth and aggressive driving.

DLRL DULL HR

Smooth Aggressive Smooth Aggressive Smooth Aggressive

p-value 0.2582 0.1441 0.7308
Cohen’s d value 0.4233 0.5487 0.1325

Effect size medium medium Small

EBR EM

Smooth Aggressive Smooth Aggressive

p-value 0.9490 0.6715
Cohen’s d value 0.0236 0.1565

Effect size Small Small

Table 5. p-Value, Cohen’s d value and effect size for pixel values of NIR and thermal ROIs between
smooth and aggressive driving.

Left Eye Right Eye Mouth

Smooth Aggressive Smooth Aggressive Smooth Aggressive

p-value 0.0046 0.0123 0.0021
Cohen’s d value 1.1234 0.9842 1.2355

Effect size Large Large Large

Middle of Forehead Left Cheek Right Cheek

Smooth Aggressive Smooth Aggressive Smooth Aggressive

p-value 0.0139 0.0450 0.0476
Cohen’s d value 0.9770 0.7662 0.7565

Effect size Large Large Large
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As shown in Tables 4 and 5 and Figures 7 and 8, the p-value for the pixel values of NIR and
thermal ROIs between smooth and aggressive driving was lower than that of the other five features.
As shown in Table 5, the p-values of the left eye and mouth ROIs of the NIR image were 0.0046 and
0.0021, respectively, which are lower than 0.01. These features were reliable for classifying smooth
and aggressive driving at a 99% confidence level. The remaining four features were reliable at
95% confidence levels. Additionally, as shown in Tables 4 and 5, Cohen’s d value, between smooth
and aggressive driving of the pixel values in NIR and thermal ROIs, wais larger than those of the five
features. In the case of the pixel values of NIR and thermal ROIs, as shown in Table 5, the effect size
was large in every case. Consequently, six p-values of NIR and thermal ROIs turned out to be more
effective for identifying the difference between smooth and aggressive driving.

5.3. Training of CNN Model

We used the stochastic gradient descent (SGD) [52] method for training. SGD defines the division
of the training set via mini-batch size iterations and specifies the operation of training duration as
1 epoch. Training occurs for a predetermined number of epochs. We used the following parameters for
the SGD method: base learning rate = 0.0001, gamma = 0.1 (i.e., drop learning rate factor), batch size
(i.e., mini-batch size) = 20, momentum = 0.9, weight decay = 0.0005, and epoch = 30. The weights
used were initially set based on Gaussian random distribution (mean = 0 and standard deviation of
0.01 with the biases of 0).

Figure 9 illustrates the loss and accuracy per epoch number in the training and validation
procedures. As the number of epoch increased, the loss and accuracy converged to almost 0% and
100%, respectively. This indicates successful CNN training without overfitting.

Figure 9. Accuracy and loss during CNN training in two-fold cross validation: (a,c) accuracy
and loss in two-fold cross validation for NIR image training and validation datasets, respectively;
and (b,d) accuracy and loss in two-fold cross validation for the thermal image training and validation
datasets, respectively. In (a–d), “loss 1” and “accuracy 1” are from the first-fold validation, respectively.
“Loss 2” and “accuracy 2” are from the second-fold validation, respectively.

5.4. Testing of the Proposed CNN-Based Classification of Smooth and Aggressive Driving Emotion

Testing performance was evaluated by defining aggressive and smooth driving emotions as
positive and negative data, respectively. Based on this definition, true positives (TP) (cases where the
positive data is correctly identified) and true negatives (TN) (cases where the negative data is correctly
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identified) were defined. In addition, false negatives (FN) (cases where the positive data is incorrectly
identified as negative) and false positives (FP) (case where the negative data is incorrectly identified as
positive) were defined. Then, the true negative rate (TNR) (100–false positive rate (FPR) (%)) and true
positive rate (TPR) (100–false negative rate (FNR) (%)) were calculated.

The first experiment compared the accuracy between the VGG face-16 model proposed in this
research and AlexNet [35], which had fewer layers. Table 6 presents the structures of VGG face-16
(i.e., fine tuning) and AlexNet. AlexNet uses a larger filter and consists of five convolutional layers and
three fully connected layers. Because this research aimed to distinguish two classes driving emotions
(smooth and aggressive), the final, third, FCL consisted of two nodes.

Tables 7 and 8 present TPR, TNR, FNR, and FPR in the confusion matrices of the VGG face-16
model and AlexNet. The actual and predicted items indicate the ground-truth emotion and the
estimated emotion, respectively, by our method. As shown in Tables 7 and 8, the proposed VGG
face-16 model (i.e., fine tuning) has higher accuracy than AlexNet.

Table 6. CNN models for comparison. ConvN is the filter of N × N size (e.g., Conv3 represents a
3 × 3 filter).

Net Configuration VGG face-16 (Fine Tuning) (Proposed Method) AlexNet

# of layers 16 8

Filter size (# of filters) Conv3 (64)
Conv3 (64) Conv11 (96)

Pooling type MAX MAX

Filter size (# of filters) Conv3 (128)
Conv3 (128) Conv5 (256)

Pooling type MAX MAX

Filter size (# of filters)
Conv3 (256)
Conv3 (256)
Conv3 (256)

Conv3 (384)

Pooling type MAX -

Filter size (# of filters)
Conv3 (512)
Conv3 (512)
Conv3 (512)

Conv3 (384)

Pooling type MAX -

Filter size (# of filters)
Conv3 (512)
Conv3 (512)
Conv3 (512)

Conv3 (256)

Pooling Type MAX MAX

Fc6 (1st FCL)
Fc7 (2nd FCL)
Fc8 (3rd FCL)

409
6409
62

409
6409
62

Table 7. Classification accuracies by proposed VGG face-16 model (%).

VGG Face-16 Model (NIR Images)

Actual

Predicted

First fold Second fold Average

Aggressive Smooth Aggressive Smooth Aggressive Smooth

Aggressive 95.913 4.087 95.941 4.059 95.927 4.073
Smooth 4.06 95.94 4.057 95.943 4.0585 95.9415

VGG Face-16 Model (Thermal Images)

Actual

Predicted

First fold Second fold Average

Aggressive Smooth Aggressive Smooth Aggressive Smooth

Aggressive 95.859 4.141 94.773 5.227 95.316 4.684
Smooth 5.143 94.857 5.217 94.783 5.18 94.82
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Table 8. Classification accuracies by AlexNet model (unit: %).

AlexNet (NIR Images)

Actual

Predicted

First fold Second fold Average

Aggressive Smooth Aggressive Smooth Aggressive Smooth

Aggressive 94.885 5.115 94.931 5.069 94.908 5.092
Smooth 5.057 94.943 5.080 94.920 5.0685 94.9315

AlexNet (Thermal Images)

Actual

Predicted

First fold Second fold Average

Aggressive Smooth Aggressive Smooth Aggressive Smooth

Aggressive 94.076 5.924 94.008 5.992 94.042 5.958
Smooth 5.964 94.036 5.884 94.116 5.924 94.076

As mentioned in Section 4.3, CNN scores of NIR and thermal images, based on the proposed
VGG face-16 model, were fused at the score-level to improve the classification accuracy of smooth and
aggressive driving emotions. The experimental results show that the fusion by the weighted SUM rule
produced the highest accuracy, and the optimal weights for NIR and thermal CNN scores were 2 and
1, respectively. As shown in Tables 7 and 9, score-level fusion enhanced the classification accuracy.

Table 9. Classification accuracies by score-level fusion, based on weighted SUM rule of the proposed
method (%).

Actual

Predicted

First fold Second fold Average

Aggressive Smooth Aggressive Smooth Aggressive Smooth

Aggressive 99.955 0.045 99.972 0.028 99.9635 0.0365
Smooth 0.053 99.947 0.027 99.973 0.04 99.96

Figure 10 compares performances by using the receiver operation characteristic (ROC) curves.
The horizontal and vertical axes indicate FRP and TPR, respectively. Figure 10 also compares the
classification accuracy obtained by using the HOG with a modified Hausdoff distance [8]. The graphs
show the average of two results obtained from second fold cross-validation. The CNN-based score-level
fusion proposed in this research had the highest accuracy.

Based on TP, TN, FP, and FN, the following four criteria were used to measure accuracy [53].

Positive predictive value (PPV) =
#TP

#TP + #FP
, (7)

TPR =
#TP

#TP + #FN
, (8)

Accuracy (ACC) =
#TP + #TN

#TP + #TN + #FP + #FN
, (9)

F_score = 2· PPV·TPR
PPV + TPR

, (10)

where, # means the number of cases. The maximum and minimum values of PPV, TPR, ACC,
and F_score were 0% and 100%, respectively. These values indicate the lowest and highest accuracy,
respectively. PPV is same as precision and TPR is identical to recall [53].
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In addition, we measured the accuracy using the whole cropped face as input to the CNN.
In Figure 1, the whole cropped faces from NIR and thermal images were respectively used as
inputs to left and right CNN models. For that, we performed training and testing of CNN models
again. Because VGG face-16 shows higher accuracy than AlexNet, VGG face-16 was used for
these experiments. The experimental results showed that the PPV, TPR, ACC, and F_score of the
method using the whole cropped face (weighted SUM rule) were 87.31%, 87.28%, 87.29% and 87.29%,
respectively. The PPV, TPR, ACC, and F_score of the method using the whole cropped face (weighted
PRODUCT rule) were 85.48%, 85.45%, 85.48%, and 85.46%, respectively, as shown in Table 10. From this,
we can confirm that our method, based on the selected ROI, showed the better accuracy than that
based on the whole cropped face.

Figure 10. Comparisons of ROC curves of proposed and previous methods. “VGG” represents the
VGG-face 16 (i.e., fine tuning).

Table 10. Comparisons of positive predictive value (PPV), true positive rate (TPR), accuracy
(ACC), and F_score of the proposed and previous methods. “VGG” represents VGG-face 16 (i.e.,
fine tuning) (%).

PPV TPR ACC F_Score

Proposed 99.96 99.97 99.96 99.97
VGG (NIR) 95.94 95.92 95.93 95.93

VGG (Thermal) 95.08 95.07 95.07 95.08
AlexNet (NIR) 94.92 94.91 94.92 94.91

AlexNet (Thermal) 94.07 94.06 94.06 94.07
Method using whole face (weight SUM rule) 87.31 87.28 87.29 87.29

Method using whole face (weight PRODUCT rule) 85.48 85.45 85.48 85.46
Multi-channel-based method [54,55] 83.24 83.27 83.26 83.25

[8] (NIR) 54.01 54.1 54.05 54.05
[8] (Thermal) 58.39 58.29 58.34 58.33
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As another comparison, we compared the accuracies from our method with those by
multi-channel-based methods [54,55]. For this, we performed training and testing of the CNN model,
again. Because VGG face-16 shows higher accuracy than AlexNet, VGG face-16 was used for these
experiments. The experimental results showed that the PPV, TPR, ACC, and F_score of the method
using these multi-channel images were 83.24%, 83.27%, 83.26%, and 83.25%, respectively, as shown in
Table 10. From this, we can confirm that our method showed better accuracy than multi-channel-based
methods [54,55]. As a whole, the proposed method from this research produced the highest accuracy,
as shown in Table 10.

Most previous research on facial expression recognition using the information of RGB pixels values
was performed to recognize the disguised (pretended) expressions by actors. However, we aimed
to measure real emotion (not disguised or not pretended expression) of drivers. Therefore, we used
information from both NIR and thermal images.

As the next experiment, we measured the dynamic changes in the NIR and thermal face images
which were captured during aggressive or smooth driving (not using the images captured while
watching neutral images). Our experiments showed that dynamic changes were similar during both
aggressive and smooth driving. Consequently, the average classification accuracy of aggressive and
smooth driving based on the dynamic change was about 62.3%, which is much lower than that shown
by our method in Tables 7–9. The reason why the dynamic change showed low accuracy is that there
was no significant difference in the dynamic changes in thermal images.

Temporal modeling as a 3D cube or a recurrent neural network (or LSTM) can be considered
for emotion recognition. However, this is based on the dynamic changes in successive images,
which increases the complexity of system structure and training and processing time.

As the next experiment, we performed the experiments based on 10-fold cross validation.
As shown in Table 11, the results from our method and previous works based on 10-fold cross
validation were similar to those based on two-fold cross validation of Table 10, and we can confirm
that our method outperforms other methods and previous works.

Table 11. Comparisons of PPV, TPR, ACC, and F_score of proposed and previous methods based on
10-fold cross validation. “VGG” represents VGG-face 16 (i.e., fine tuning) (%).

PPV TPR ACC F_Score

Proposed 99.94 99.95 99.95 99.94
VGG (NIR) 95.87 95.85 95.85 95.86

VGG (Thermal) 95.11 95.1 95.1 95.1
AlexNet (NIR) 94.85 94.87 94.86 94.86

AlexNet (Thermal) 94.12 94.1 94.11 94.11
Method using whole face (weight SUM rule) 86.11 86.09 87.1 86.1

Method using whole face (weight PRODUCT rule) 85.28 85.25 87.27 85.26
Multi-channel-based method [54,55] 82.19 82.17 82.17 82.18

[8] (NIR) 55.21 55.24 54.22 55.22
[8] (Thermal) 59.28 59.25 59.27 59.26

As the last experiment, we measured the human accuracies of five participants who did not take
part in our experiments. Each participant manually discriminated between aggressive and smooth
driving emotion after looking at the videos of NIR and thermal face images which were used for testing
in our experiments. Sufficient explanations for our experiments were provided to all the participants,
and we obtained written consent from all the participants before experiments.

Experimental results showed that the PPV, TPR, ACC, and F_score from human observation
(human accuracies) were 76.29%, 76.32%, 76.33%, and 76.31%, respectively. By comparing the
accuracies of Tables 10 and 11, we can confirm that our method based on CNN shows the better
accuracy than that by human observation. This is, because humans failed to observe tiny and fine
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changes in the facial images, whereas CNN could successfully extract these changes as features for
emotion recognition.

6. Conclusions

In this research, we proposed a CNN-based method for detecting a driver’s aggressive driving
emotion. The proposed CNN model uses a driver’s facial images obtained with an NIR light camera
and a thermal camera. CNN scores of the images simultaneously taken by with the NIR and thermal
cameras were fused at score-level to improve accuracy. The experiment with our own database showed
that the proposed method produced high classification accuracy for drivers’ emotions for aggressive
and smooth driving, indicating better performance compared to conventional methods. Although the
accuracy with our method is close to 100%, those by other methods and previous works [8,54,55] are
in the range of about 54% to about 95%, as shown in Tables 10 and 11. From this, we can confirm the
superiority of our method and that our database is not too simple. Because there is no previous open
database for drivers’ emotion recognition, we would like to collect a new database while driving in an
actual vehicle in real traffic. Then, we would have to test this additional database in order to check the
robustness of our method in various databases. Moreover, apart from aggressive driving detection,
we also expect that the proposed CNN-based method would be useful not only for detecting driver
fatigue and drunken driving, but also for recognizing a broader range of emotional states.

Acknowledgments: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the
ITRC (Information Technology Research Center) support program (IITP-2017-2013-0-00684) supervised by the
IITP (Institute for Information & communications Technology Promotion), and by the Bio & Medical Technology
Development Program of the NRF funded by the Korean government, MSIT (NRF-2016M3A9E1915855).

Author Contributions: Kwan Woo Lee and Kang Ryoung Park designed the proposed CNN-based classification
system of driver’s emotion and wrote the paper. Hyo Sik Yoon and Jong Min Song helped to implement the
algorithm of facial feature detection and experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Driving Behaviors Reported for Drivers and Motorcycle Operators Involved in Fatal Crashes. 2015.
Available online: http://www.iii.org/table-archive/21313 (accessed on 16 December 2017).

2. Bhoyar, V.; Lata, P.; Katkar, J.; Patil, A.; Javale, D. Symbian Based Rash Driving Detection System. Int. J.
Emerg. Trends Technol. Comput. Sci. 2013, 2, 124–126.

3. Chen, Z.; Yu, J.; Zhu, Y.; Chen, Y.; Li, M. D3: Abnormal Driving Behaviors Detection and Identification
Using Smartphone Sensors. In Proceedings of the 12th Annual IEEE International Conference on Sensing,
Communication, and Networking, Seattle, WA, USA, 22–25 June 2015; pp. 524–532.

4. Eren, H.; Makinist, S.; Akin, E.; Yilmaz, A. Estimating Driving Behavior by a Smartphone. In Proceedings of
the Intelligent Vehicles Symposium, Alcalá de Henares, Spain, 3–7 June 2012; pp. 234–239.

5. Boonmee, S.; Tangamchit, P. Portable Reckless Driving Detection System. In Proceedings of the 6th
IEEE International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and
Information Technology, Pattaya, Chonburi, Thailand, 6–9 May 2009; pp. 412–415.

6. Koh, D.-W.; Kang, H.-B. Smartphone-Based Modeling and Detection of Aggressiveness Reactions in Senior
Drivers. In Proceedings of the IEEE Intelligent Vehicles Symposium, Seoul, Korea, 28 June–1 July 2015;
pp. 12–17.

7. Zhang, W.; Fan, Q. Identification of Abnormal Driving State Based on Driver’s Model. In Proceedings of the
International Conference on Control, Automation and Systems, Gyeonggi-do, Korea, 27–30 October 2010;
pp. 14–18.

8. Kolli, A.; Fasih, A.; Machot, F.A.; Kyamakya, K. Non-intrusive Car Driver’s Emotion Recognition Using
Thermal Camera. In Proceedings of the IEEE Joint International Workshop on Nonlinear Dynamics and
Synchronization & the 16th International Symposium on Theoretical Electrical Engineering, Klagenfurt,
Austria, 25–27 July 2011; pp. 1–5.

http://www.iii.org/table-archive/21313


Sensors 2018, 18, 957 20 of 22

9. Ji, Q.; Zhu, Z.; Lan, P. Real-Time Nonintrusive Monitoring and Prediction of Driver Fatigue. IEEE Trans.
Veh. Technol. 2004, 53, 1052–1068. [CrossRef]

10. Hariri, B.; Abtahi, S.; Shirmohammadi, S.; Martel, L. Demo: Vision Based Smart In-Car Camera System for
Driver Yawning Detection. In Proceedings of the 5th ACM/IEEE International Conference on Distributed
Smart Cameras, Ghent, Belgium, 22–25 August 2011; pp. 1–2.

11. Wang, Q.; Yang, J.; Ren, M.; Zheng, Y. Driver Fatigue Detection: A Survey. In Proceedings of the 6th World
Congress on Intelligent Control and Automation, Dalian, China, 21–23 June 2006; pp. 8587–8591.

12. Kamaruddin, N.; Wahab, A. Driver Behavior Analysis through Speech Emotion Understanding.
In Proceedings of the IEEE Intelligent Vehicles Symposium, San Diego, CA, USA, 21–24 June 2010;
pp. 238–243.

13. Nass, C.; Jonsson, I.-M.; Harris, H.; Reaves, B.; Endo, J.; Brave, S.; Takayama, L. Improving Automotive
Safety by Pairing Driver Emotion and Car Voice Emotion. In Proceedings of the Conference on Human
Factors in Computing Systems, Portland, OR, USA, 2–7 April 2005; pp. 1973–1976.

14. Lisetti, C.L.; Nasoz, F. Affective Intelligent Car Interfaces with Emotion Recognition. In Proceedings of
the 11th International Conference on Human Computer Interaction, Las Vegas, NV, USA, 22–27 July 2005;
pp. 1–10.

15. Hu, S.; Bowlds, R.L.; Gu, Y.; Yu, X. Pulse Wave Sensor for Non-Intrusive Driver’s Drowsiness Detection.
In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, Minneapolis, MN, USA, 2–6 September 2009; pp. 2312–2315.

16. Katsis, C.D.; Katertsidis, N.; Ganiatsas, G.; Fotiadis, D.I. Toward Emotion Recognition in Car-Racing Drivers:
A Biosignal Processing Approach. IEEE Trans. Syst. Man Cybern. Part A 2008, 38, 502–512. [CrossRef]

17. Fasel, B. Head-Pose Invariant Facial Expression Recognition Using Convolutional Neural Networks.
In Proceedings of the 4th IEEE International Conference on Multimodal Interfaces, Pittsburgh, PA, USA,
16 October 2002; pp. 529–534.

18. Fasel, B. Robust Face Analysis Using Convolutional Neural Networks. In Proceedings of the 16th IEEE
International Conference on Pattern Recognition, Quebec City, QC, Canada, 11–15 August 2002; pp. 40–43.

19. Matsugu, M.; Mori, K.; Mitari, Y.; Kaneda, Y. Subject Independent Facial Expression Recognition with Robust
Face Detection Using a Convolutional Neural Network. Neural Netw. 2003, 16, 555–559. [CrossRef]

20. Hasani, B.; Mahoor, M.H. Spatio-temporal facial expression recognition using convolutional neural networks
and conditional random fields. arXiv, 2017.

21. Hasani, B.; Mahoor, M.H. Facial expression recognition using enhanced deep 3D convolutional neural
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
Honolulu, HI, USA, 21–26 July 2017; pp. 2278–2288.

22. YOLO for Real-Time Facial Expression Detection. Available online: https://www.youtube.com/watch?v=
GMy0Zs8LX-o (accessed on 18 March 2018).
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