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Abstract: Recent developments in intelligence surveillance camera systems have enabled more
research on the detection, tracking, and recognition of humans. Such systems typically use visible
light cameras and images, in which shadows make it difficult to detect and recognize the exact
human area. Near-infrared (NIR) light cameras and thermal cameras are used to mitigate this
problem. However, such instruments require a separate NIR illuminator, or are prohibitively
expensive. Existing research on shadow detection in images captured by visible light cameras
have utilized object and shadow color features for detection. Unfortunately, various environmental
factors such as illumination change and brightness of background cause detection to be a difficult
task. To overcome this problem, we propose a convolutional neural network-based shadow detection
method. Experimental results with a database built from various outdoor surveillance camera
environments, and from the context-aware vision using image-based active recognition (CAVIAR)
open database, show that our method outperforms previous works.

Keywords: intelligence surveillance camera; shadow detection; color feature; CNN

1. Introduction

Because the detection of moving objects is demanded in various areas, including surveillance
camera system functions, it is a very important research subject in computer vision. Surveillance camera
systems use the background subtraction operation, which detects the foreground to detect a moving
object. However, various environmental factors such as illumination change and brightness of
background cause the precise foreground detection to be a very difficult task. Particularly, the shadow
is a typical barrier that makes exact detection of foreground and recognition of objects difficult [1–6].
The detection error for a shadow may cause an object to be identified as a larger object. In the
real-time surveillance system for an outside environment, this error can cause a man to be mistaken
for a vehicle. Moreover, the shadow detection error causes another problem related to human
detection, because multiple people can be detected as one human. This is because size information is
a key factor in detecting and recognizing humans. Additionally, the effective removal of shadow is
essential to template-matching, histogram-matching, and other object detection algorithm functions.
Existing methods of detecting and removing shadow use shadow chromaticity of various color spaces,
or add further information (e.g., gradient), and then utilize reference values trained to detect shadow.
Further details are presented in Section 2.

In this study, we propose a convolutional neural network (CNN)-based shadow detection method,
and our research is novel in the following four ways, compared to previous works.
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1. This is the first CNN-based approach to shadow detection.
2. We convert input image of red-green-blue (RGB) color into that of hue-saturation-value (HSV)

coordinate to remove the effect of hue channel which causes the error of shadow classification.
As the input to CNN, we use an image of three channels including the saturation and value
images of input, and the ratio image of value images of input to background.

3. The searching region including a rough area of foreground and shadow is determined by
background subtraction. To reduce the processing time, only the 21 × 21 sliding window
extracted from this searching region is used for the input to VGG Net-16 model.

4. We open our CNN model trained in this research and the experimental database in [7], so that
other researchers can perform a fair comparison.

2. Related Works

There are various methods of shadow detection. In this research, we classify those methods
into non-learning-based and learning-based methods by referring to [2]. Section 2.1 explains
non-learning-based shadow detection algorithms using color and other information in various color
spaces. Section 2.2 explains learning-based algorithms for detecting shadow.

2.1. Non-Learning-Based Methods

Various algorithms have been proposed to detect and remove shadow. Among them, the algorithm
using shadow color information has been most widely applied [8–14]. Shadow brightness generally
decreases in the background but does not change its chromaticity value. This characteristic of shadow
is used to detect shadows in various color spaces, including hue, saturation, and value (HSV) [8], red,
green, and blue (RGB) [9], C1C2C3 [10], normalized RGB [11,12], luma and chrominance (YUV) [13],
and luma, blue-difference, and red-difference (YCbCr) [14]. The research selected HSV to detect shadow
considering the color perception of human [8]. Because a shadow darkens the background, whereas
the foreground varies depending on its color, HSV values were compared between the background
and each pixel of the input image to detect and remove shadow. The research of [9] proposed an
algorithm that calculates brightness and chromaticity in RGB color space and uses the calculations to
detect shadow. The shadow is then identified as a region where the chromaticity is similar, whereas the
brightness is lower than background. The research of [10] selected the C1C2C3 color space for shadow
detection. Along with the photometric color invariant property of shadow, the geometrical property
was also considered, which is the boundary property of shadow appearing alongside light and beside
an object. Because the conventional RGB color space is very sensitive to light, the normalized RGB
was used to minimize the light’s impact [11,12]. In this research, we also conduct normalization by
dividing each RGB value by the sum of pixel values of each RGB. The research of [13] used the YUV
color space used in conventional TV, image, and video encoding. Whereas other research required
transformation into HSV or another color space to create a system similar to the perceived color space
of a human, the research of [13] used YUV color space to remove the processing time needed for
the transformation. Thus, it obtained approximated values of color change, which, however, were
not absolute values of hue and saturation. The research of [14] selected the YCbCr color space for
shadow detection. Y is luminance, and Cb and Cr indicate color information. The Y value was used
for shadow detection. The information of Y channel was used to identify candidate shadow regions.
Then, the sliding window was applied to detect shadow.

Most of the above research used simple color or Y information. Therefore, if an object had a
similar color to shadow, accurate detection was expected. Thus, the research did not produce robust
results for more varied data. To solve this problem, other researchers have used additional shadow
properties and information. The research of [15] applied gradient information with color information
for shadow detection. Color information is used in HSV color space to obtain a candidate color
region. The candidate region is a large region including, ideally, the entire shadow. In this case,
after the candidate region was detected, the gradient magnitude and the gradient direction were
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used to distinguish the foreground, background, and shadow. The research of [16] also utilized the
generic properties of shadow and applied all the properties proposed by the other studies. Luminance,
chrominance, the difference in gradient density between shadow and background, and the boundary
characteristics of foreground were used to calculate a shadow confidence score in a candidate shadow
region. This score was then used to detect shadow. The research of [17] detected a candidate shadow
region under the assumption that the shadow region in gray images is half-transparent and has a
similar value to the corresponding region of the background. Thus, the Gabor filter, which is usually
applied to a small region, was used to extract features, and finally detect the shadow. Such shadow
detection at a region level is more robust than the shadow detection at a pixel level. The research [3]
proposed the method of shadow detection-based foreground detection, vertical histogram analysis,
foreground partitioning, calculation of the orientation of major axis, and decision, but it used the
assumption that the position of light source should be known in advance and the light source should
not exist at the upper position of pedestrian.

Because every research mentioned above mainly used only shadow color or gray texture
information, they were susceptible to changes in objects and illuminators, which have similarities to
shadow color and gray texture. All the above methods proposed by the existing research are limited in
their application to real-world environments containing lots of variables.

2.2. Learning-Based Methods

The learning-based shadow detection methods were proposed to solve the disadvantages of
the non-learning-based methods, which are explained in Section 2.1. In previous research [18–20],
the Gaussian shadow model or the Gaussian mixture model (GMM) was applied to design a statistical
model of shadow properties. For segmentation of shadow, the research of [18] used the attenuation
ratio of luminance and chrominance of shadow surfaces in YUV color space. The research of [20]
simulated shadow and background by using physics-based color features. GMM, which is based
on spectral ratio and gradient intensity distortion, was used to learn shadow models and to then
detect shadow. The research of [19] utilized geometrical properties of shadow and human regions.
A rough shadow region was initially detected, and a Gaussian shadow modeling was conducted by
using the center of gravity and the orientation of the detected region. In [21], shadow was detected by
statistical modeling based on a hidden Markov model (HMM). From the histograms of many shadow,
foreground, and background images, the average and deviation of each region were obtained. Then,
each region was modeled using an independent HMM for shadow detection. The research of [22]
proposed a shadow detection algorithm using a neural-fuzzy system. Based on color features obtained
in HSV color space, a self-organizing map with a fuzzy inference Sugeno system was used for shadow
detection. The research of [23] proposed a shadow detection method using the principal component
analysis (PCA) and GMM algorithm. GMM generated a background image from the input image,
and PCA extracted features of the input image and background image. Then, the shadow was detected
through a Euclidean distance. The research of [24] presented a shadow detection algorithm applying a
support vector machine (SVM) with a Gaussian kernel. Chromaticity, intensity, and edge were used as
learning features.

These learning-based methods showed better performance than non-learning-based methods,
but they could not manually extract optimal hand-craft features and were applicable only to specific
environments. Consequently, the learning-based methods cannot be applied to various environment
types for shadow detection. To solve this problem, our research proposes a convolutional neural
network (CNN)-based shadow detection method. Table 1 shows the summarized comparisons of
previous and proposed methods on shadow detection.
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Table 1. Comparisons of previous and proposed research on shadow detection.

Category Methods Strength Weakness

Non-learning-based
method

HSV [8]

Shorter processing time through
color information-centered
shadow detection

Because only color information or gray
texture are used, this method is
susceptible to changes in object and
illuminators which have similar color
and texture to shadow and is little
applicable to real world conditions
including many variables.

RGB [9]

YUV [13]

Normalized RGB [11,12]

C1C2C3 [10]

YCbCr [14]

Color + gradient
information [15]

Additional information except
color is used to improve the
detection accuracy.

Luminance,
chrominance,

the difference in gradient
density, and boundary

characteristics of
foreground [16]

Gabor texture feature
[17]

Vertical histogram
analysis and calculation

of orientation
considering the position

of light source [3]

Shorter processing time

It uses the assumption that the position
of light source should be known in
advance and the light source should not
exist at the upper position of pedestrian.

Learning-based
method

GMM [18,20], Gaussian
shadow model [19] Better shadow detection

performance than
non-learning-based method,
by the learning of various
features

Optimal hand-craft feature cannot be
manually extracted, and the application
of the method is restricted to a specific
type of environment. Thus, it can hardly
be applied to various environments.

HMM [21]

Neural-fuzzy system [22]

PCA + GMM [23]

SVM [24]

CNN (proposed method)

- Because massive data are
learned, good
performance of shadow
detection can be obtained
in various environments.

- Optimal features are
automatically extracted in
learning, which does not
need manual extraction.

Time-consuming training is needed
which uses massive data.

The remainder of this paper proceeds as follows. Section 3 introduces the proposed CNN-based
shadow detection method; Section 4 presents experimental results and analysis; and Section 5
summarizes the conclusions of this research.

3. Proposed Method

3.1. Overall Procedure of Proposed Method

In Figure 1, we show the overall flowchart of our method. In the first step, a foreground region is
detected through background subtraction using the background image. Then, a window image with
a 21 × 21-pixel size is extracted from the detected foreground region. After the extracted window
image is resized to a 224 × 224-pixel size, it is input into a pre-trained CNN. A shadow region is then
detected based on the output of CNN. In this research, we use VGG Net-16, which is pre-trained with
ImageNet dataset [25,26], as CNN. Further fine-tuning with the experimental data used in this research
is conducted before testing.
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Figure 1. Overall flowchart of proposed method.

3.2. Extraction of Window Image for CNN Input

After obtaining a foreground region via background subtraction, as shown in Figure 2b,
non-shadow (i.e., human) and shadow areas are manually separated as ground-truth regions for CNN
training, as shown in Figure 2c. That is, the shadow pixels among the white pixels of Figure 2b are
manually painted as red color by the observation of human developer, and the remaining white pixels
are automatically converted into those of blue color as shown in Figure 2c. This is ground-truth data,
and it is used for CNN training and measuring the accuracy of shadow detection in our experiment.
In detail, based on the positions of ground-truth regions, the window images of 21 × 21 pixels are
extracted from the original input image of Figure 2a. For example, the window whose center belongs
to the blue region of Figure 2c is determined as a non-shadow area. Whereas, the window whose
center belongs to the red region of Figure 2c is determined as a shadow area. The window image of
21 × 21 pixels is extracted from the input image of HSV color space instead of RGB color space.

The existing researches have assumed that shadow darkens the background but retains its color,
whereas the chromaticity of a human figure shows a more diverse change against the background [8,15].
Based on the result of [8], we experimentally determine that the HSV color space is the most suitable
for representing shadow features. Accordingly, input and background images are transformed into an
HSV color space. If the input and background images transformed from RGB color space to HSV color
space are I and B, respectively, each channel value of the window image Fk,i(x, y) created is defined by
Equation (1).

Fk,i(x, y) =


F1

k (x, y) = Is
k(x, y)

F2
k (x, y) = Iv

k (x, y)

F3
k (x, y) = Iv

k (x, y)
Bv

k (x, y)

(1)

where, Fk,i(x , y) is the ith window image in the kth image frame, and F1
k (x, y), F2

k (x, y), F3
k (x, y)

are each a channel image of Fk,i(x , y). Ik(x, y) and Bk(x, y) are the input image and the background
image, respectively. s is saturation and v is intensity of the image in HSV. The size of generated window
image is 21 × 21 × 3 (i.e., width × height × channel), and the extraction uses x, y nominal coordinates.
Window images extracted from training data are used for CNN training. As shown in Figure 2b,
the window image extracted from testing data through background subtraction is used as input into
CNN. By this method, non-shadow and shadow regions are distinguished from each other.
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Figure 2. Example of input image, the result of foreground detection, and ground-truth image of
non-shadow (human) and shadow areas. (a) Input image; (b) Result of foreground detection; (c)
Ground-truth image of non-shadow (blue color) and shadow (red color) areas.

3.3. VGG Network for Classifying Non-Shadow and Shadow Regions

Figure 3 and Table 2 show the overall architecture of the VGG Net-16 [25] used in this research.
The VGG Net-16 consists of a total of 16 layers, including 13 convolutional layers and three fully
connected layers (FCL). Every convolution layer is connected to the rectified linear unit (ReLU) layer.
We apply fine-tuning to the network, which is pre-trained through the ImageNet dataset [27,28].
Further details are explained in Section 4.

Figure 3. VGG Net-16 architecture used in our research.
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Table 2. Detail explanations of CNN configuration.

Layer Type Number
of Filters

Size of Feature Map
(Height × Width × Channel)

Size of
Filters

Number
of Stride

Number of
Padding

Image input Layer 224 × 224 × 3

Group 1

1st convolutional layer 64 224 × 224 × 64 3 × 3 × 3 1 × 1 1 × 1
ReLU layer 224 × 224 × 64

2nd convolutional layer 64 224 × 224 × 64 3 × 3 × 64 1 × 1 1 × 1
ReLU layer 224 × 224 × 64
Max pooling layer 1 112 × 112 × 64 2 × 2 2 × 2 0 × 0

Group 2

3rd convolutional layer 128 112 × 112 × 128 3 × 3 × 64 1 × 1 1 × 1
ReLU layer 112 × 112 × 128

4th convolutional layer 128 112 × 112 × 128 3 × 3 × 128 1 × 1 1 × 1
ReLU layer 112 × 112 × 128
Max pooling layer 1 56 × 56 × 128 2 × 2 2 × 2 0 × 0

Group 3

5th convolutional layer 256 56 × 56 × 256 3 × 3 × 128 1 × 1 1 × 1
ReLU layer 56 × 56 × 256

6th convolutional layer 256 56 × 56 × 256 3 × 3 × 256 1 × 1 1 × 1
ReLU layer 56 × 56 × 256

7th convolutional layer 256 56 × 56 × 256 3 × 3 × 256 1 × 1 1 × 1
ReLU layer 56 × 56 × 256
Max pooling layer 1 28 × 28 × 256 2 × 2 2 × 2 0 × 0

Group 4

8th convolutional layer 512 28 × 28 × 512 3 × 3 × 256 1 × 1 1 × 1
ReLU layer 28 × 28 × 512

9th convolutional layer 512 28 × 28 × 512 3 × 3 × 512 1 × 1 1 × 1
ReLU layer 28 × 28 × 512

10th convolutional layer 512 28 × 28 × 512 3 × 3 × 512 1 × 1 1 × 1
ReLU layer 28 × 28 × 512
Max pooling layer 1 14 × 14 × 512 2 × 2 2 × 2 0 × 0

Group 5

11th convolutional layer 512 14 × 14 × 512 3 × 3 × 512 1 × 1 1 × 1
ReLU layer 14 × 14 × 512

12th convolutional layer 512 14 × 14 × 512 3 × 3 × 512 1 × 1 1 × 1
ReLU layer 14 × 14 × 512

13th convolutional layer 512 14 × 14 × 512 3 × 3 × 512 1 × 1 1 × 1
ReLU layer 14 × 14 × 512
Max pooling layer 1 7 × 7 × 512 2 × 2 2 × 2 0 × 0

1st FCL 4096 × 1
ReLU layer 4096 × 1
Dropout layer 4096 × 1

2nd FCL 4096 × 1
ReLU layer 4096 × 1
Dropout layer 4096 × 1

3rd FCL 2 × 1
SoftMax layer 2 × 1
Classification layer 2 × 1

The initial image size of this CNN is 224 × 224 × 3. Accordingly, as mentioned in Section 3.2,
we conduct bilinear interpolation to resize the three-channel 21 × 21 window image, which is obtained
from HSV color space, into the three-channel 224 × 224 image, which is used as the input of CNN.

In the first convolutional layer, 64 filters with of size 3 × 3 × 3 are used. The feature map
size is 224 × 224 × 64 in the first convolutional layer, such that 224 and 224 are the output height
and width, respectively, calculated based on (output height (or width) = (input height (or width) −
filter height (width) + 2 × (the number of padding))/(the number of stride) + 1 [29]). For example,
because the input height, the filter height, the number of paddings, and the number of strides in the
image input layer and first convolutional layer in Table 2 are 224, 3, 1, and 1, respectively, the output
height becomes 224 = (224 − 3 + 2 × 1)/1 + 1.

The output feature map for standard convolution based on stride one and padding is usually
obtained as [30]:

OFk,l,n = Σi,j,m (Ki,j,m,n · IFk+i−1,l+j−1,m) (2)
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In Equation (2), IFk+i−1,l+j−1,m is the input feature map of size, AF · AF · U. AF is the width and
height of square input feature map, and U is the number of input channels (i.e., input depth). OFk,l,n is
the output feature map of size, BF · BF · V. BF is the spatial width and height of a square output
feature map, and V is the number of output channels (i.e., output depth). In Equation (2), Ki,j,m,n is the
convolution kernel of size, AK · AK · U · V, and AK is the spatial dimension of the convolution kernel.
Then, standard convolutions take the following computational cost.

C = AK · AK · U · V·AF · AF (3)

Based on Equation (2), we find that the computational cost is dependent on multiplicatively on
the kernel size, AK · AK, the number of input channels of U, the number of output channels of V,
and the input feature map size, AF · AF [30].

The image is calculated by the above equation and the result is input into the next layer. As shown
in Equation (4), every convolution layer is connected to the ReLU layer, which has non-saturating
nonlinearity, and is faster than an activation function with saturating nonlinearity. For example,
f (x) = tanh(x) and f (x) = (1 + e−x)

−1, etc. thus, it can remove the vanishing gradient problem in the
back propagation at the time of training [31,32]. In [27], they showed that the speed of training by
ReLU with the CIFAR-10 dataset, based on the four-layered CNN, is six times faster than the tanh(x)
function with same dataset and network.

y = max(0, x), (4)

where x and y are input and output values of the ReLU function, respectively. As shown in Table 2,
the feature map obtained by conducting ReLU after the first convolutional layer passes through the
max pooling layer after the second convolutional layer and another ReLU. Here, as with the first
convolutional layer, the second applies the same filter height and height of 3 × 3, a padding of 1 × 1
and a stride of 1 × 1, and retains a feature map size of 224 × 224 × 64. It is clear in Table 2 that
13 convolutional layers commonly use the filter size (i.e., width and height) of 3 × 3 and the padding
of 1 × 1, thereby retaining the feature map size (i.e., width and height). Only the number of filters
is changed to 64, 128, 256, and 512. Each ReLU layer is connected to the back of each convolutional
layer, and the feature map size is retained after passing through convolutional layers. After the 2nd,
4th, 7th, 10th, and 13th convolutional layers with ReLU, a max pooling layer is connected. The max
pooling layer uses the maximum value within a filter of a specified size and performs a type of
subsampling work.

After the second convolutional layer with ReLU, when the max pooling layer operates, the input
feature map size is 224 × 224 × 64, the filter size is 2 × 2, and the number of stride is 2 × 2. When the
number of stride is 2 × 2, it implies a max pooling filter of 2 × 2. That is, there are pixel movements in
horizontal and vertical directions. Because there is no overlapped area during the movement of filters,
the feature map size is reduced to 1/4 (i.e., 1/2 in width and 1/2 in height). Ultimately, the feature
map size, which passes the max pooling layer, becomes 112 × 112 × 64 pixels. As in Table 2, this
max pooling layer consists of a filter of 2 × 2 and a stride of 2 × 2 in every case. For this reason,
the feature map size is reduced to 1/4 (i.e., 1/2 in width and 1/2 in height). After passing through
13 convolutional layers, 13 ReLU layers and 5 max pooling layers, the final feature map size becomes
7 × 7 × 512 pixels, and the map passes through an additional three FCLs. The output nodes of the
first, second, and third FCL are 4096, 4096, and 2, respectively.

Generally, CNN has the over-fitting problem, where the network is too dependent on training
data. This problem can cause low recognition accuracy with testing data, although the accuracy with
the training data is still high. To solve this problem, we use dropout methods [27,33], which can reduce
the effects of the over-fitting problem. For the dropout method, we use a dropout probability of 50% to
disconnect the previous layer from the next layers in the first and second FCL. After the third FCL,
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the probability of non-shadow and shadow is calculated by using the SoftMax layer, as shown in
Equation (5).

σ(s)j =
esj

∑K
n=1 esn

(5)

Given that the array of output neurons is set as s, we can obtain the probability of neurons
belonging to the jth class by dividing the value of the jth element by the summation of the values of
all the elements. Because only two ultimate classes of non-shadow and shadow exist in this research,
the output of classification layer after the third FCL is 2.

4. Experimental Results

Training and testing were conducted on a desktop computer with the following specifications:
Intel®Core™ i7-6700 CPU @ 3.40 GHz (i.e., 4 cores) [34], 64 GB memory, and the NVIDIA GeForce GTX
1070 graphic card (i.e., 1920 CUDA cores) (NVIDIA, Santa Clara, CA, USA) with 8 GB memory [35].
The CNN training and testing algorithms are implemented with Visual Studio 2013 [36] and Window
Caffe (version 1) [37].

4.1. Experimental Data

The experimental data are obtained by installing visual light cameras 5 to 10 m above the
ground [38], which approximates the conventional height of surveillance camera. As shown in Figure 4
and Table 3, images are shot in the morning, the afternoon, the evening, and on rainy days under
various weather conditions, temperature, and illumination. A total of 24,000 images, constituting
five sub-datasets, are obtained. The original image size is 800 × 600 pixels of the RGB three-channel.
For fair comparison to other research, the Dongguk Shadow Detection Database (DSDD-DB1) and the
trained CNN model are open to the public in [7].

Figure 4. Various images of the experimental database for this research: (a) Sub-database 1;
(b) Sub-database 2; (c) Sub-database 3; (d) Sub-database 4; and (e) Sub-database 5.
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Table 3. Description of five datasets.

Dataset Condition Detail Description

I (see Figure 4a) −0.9 ◦C, afternoon, sunny,
humidity 24%, wind 3.6 m/s - Shadow with dark color cast due to strong sunlight.

II (see Figure 4b) −6.0 ◦C, afternoon, cloudy,
humidity 39%, wind 1.9 m/s

- Sunlight weakened by cloud so that a shadow of
lighter color than in Figure 4a is cast.

III (see Figure 4c) 8.0 ◦C, evening, cloudy, humidity
42%, wind 3.5 m/s

- Darker image due to weak evening sunlight.
- Long and many shadows due to the sun position in the

evening and the reflection on buildings.

IV (see Figure 4d) −5.2 ◦C, morning, sunny
humidity 37%, wind 0.6 m/s

- Background and object become less distinguishable
due to strong morning sunlight.

V (see Figure 4e) 13.8 ◦C, afternoon, rainy, humidity
65%, wind 2.0 m/s

- Overall dark image due to rainy day.
- Many shadows generated by wet background floor.

4.2. Training of CNN Model

Window images are extracted from DSDD-DB1, as explained in Section 3.2. The total number
of extracted window images is 1008,254 (696,692 non-shadow images and 311,562 shadow images).
In this research, we divide our dataset in halves to perform the two-fold cross validation. If those
halves are called group 1 and group 2, respectively, as shown in Table 4, then group 1 uses
347,617 non-shadow images and 156,348 shadow images, whereas group 2 uses 349,075 non-shadow
images and 155,214 shadow images. In other words, in the first-fold cross validation, the training
applies the group 1 data and the testing applies the group 2 data. Alternatively, the second-fold cross
validation uses group 2 data for training and group 1 data for testing.

Table 4. Number of data for 2-fold cross validation in our experiments.

Non-Shadow Shadow

Group 1 347,617 156,348
Group 2 349,075 155,214

Total 696,692 311,562

The stochastic gradient descent (SGD) method [39] is used for CNN training. The SGD method is
a derivative-based method of finding an optimal weight to minimize the difference between desired
output and calculated output. Unlike the gradient descent method, the SGD method defines the
division of mini-batch by an iteration of size unit. One epoch is the duration where the iteration
number of training is completed. Training is conducted as many as a predetermined number of epochs.
In this research, we train CNN by ten epochs. CNN training parameters are as follows. The optimum
fine-tuning model is experimentally found, based on the optimal parameters of initial learning rates of
0.001, the momentum value of 0.9, and a mini-batch size of 20. Additionally, the learn-rate-drop is 0.01,
and the learning rate decreases by 1/10 of the previous value every 3.3 epochs.

Figure 5 is the loss and accuracy of each epoch during the training in our experiment. The loss is
the training loss, and the accuracy is the degree of training measure. That is, the accuracy obtained by
retesting the training data. The loss value depends on learning rate and batch size. If the learning rate
is set to a low value, the loss value gradually decreases in a linear form. If the learning rate is high,
the loss value decreases drastically and does not reach the desired optimal training result, thereby
retaining a loss value.

Figure 5a,b shows loss and accuracy obtained from training in the first- and second-fold cross
validations, respectively. Both cases reveal that the increase of training epoch is accompanied by the
convergence of loss and accuracy to 0 and 100%, respectively.
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Figure 5. Training loss and accuracy per epoch: (a) First-fold cross validation; (b) second-fold
cross validation.

Figure 6 illustrates the filters in the first convolutional layer of the trained CNN model. As shown
in Table 2, the first convolution layer has 64 kernels and the size of 3 × 3 (i.e., width × height).

Figure 6. Example of the obtained filters from the first convolutional layer through training.

4.3. Testing of Proposed Method

Table 5 is a confusion matrix showing the testing results. Testing 1 and 2 present the accuracy
of testing data for the first- and second-fold cross validations, respectively. If the shadow region
corresponds to positive data and the non-shadow region to negative data, the first row, from left to
right, indicates the true positive rate (TPR) of identifying shadow correctly and the false negative
rate of mistaking shadow as non-shadow. The second row, from left to right, indicates the false
positive rate of mistaking non-shadow as shadow and the true negative rate (TNR) of identifying
non-shadow correctly.

Table 5. The confusion matrix of testing results (unit: %).

Testing Predicted

Shadow Non-Shadow

Actual (Testing 1) Shadow 94.86 5.14
Non-shadow 1.60 98.40

Actual (Testing 2) Shadow 95.47 4.53
Non-shadow 1.74 98.26

Actual (Average) Shadow 95.17 4.83
Non-shadow 1.67 98.33
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We measure the testing accuracy by applying Equations (6)–(9), as shown in Table 6. The minimum
value and the maximum value are set to 0 and 100, respectively. The higher the value the more accurate.
As in Table 5, testing 1 and 2 show the accuracy for testing data in the first- and second-fold cross
validations, respectively. In Equations (6)–(9), #TP, #TN, #FP, and #FN indicate the number of true
positives (TPs), true negatives (TNs), false positives (FPs), and false negatives (FNs), respectively [40].
As shown in Tables 5 and 6, the proposed method produces the average shadow detection performance
of at least 96%.

TPR =
#TP

#TP + #FN
(6)

Positive predictive value (PPV) =
#TP

#TP + #FP
(7)

Accuracy (ACC) =
#TP + #TN

#TP + #TN + #FP + #FN
(8)

F1_score = 2 × PPV × TPR
PPV + TPR

(9)

Table 6. Accuracies of shadow detection by our method (unit: %).

TPR PPV ACC F1_score

Testing 1 94.86 96.34 97.31 95.59
Testing 2 95.47 96.10 97.39 95.79
Average 95.17 96.22 97.35 95.69

Figure 7 presents examples of result images for each phase, which are obtained by the proposed
method. As shown in Figure 7, we find that our method detects the correct human area by excluding
the shadow region, even with the images of various environments and humans at far distances.

Figure 7. Examples of resultant images of each phase, which are obtained via the proposed method.
(a) Input image; (b) Foreground area obtained by background subtraction; (c) Detected box of
foreground area; (d) Detected shadow (red color) and non-shadow (blue color) regions by our method;
(e) Final result of non-shadow (human) area excluding shadow region.
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In the next experiment, we compare the performance between the proposed method and the
methods [8,15,17,19,20].

As mentioned in Section 2, the method of [8] detects shadow in HSV color space by utilizing the
fact that shadows reduce the brightness of the background, whereas its chromaticity does not change
much. The method of [15] uses gradient information, along with the existing HSV color information for
shadow detection. The method of [17] finds a candidate shadow region under the assumption that the
shadow region of a gray image is half-transparent, having a similar value to that of the corresponding
background region. The Gabor filter, which is applied to a small region, is used to extract features
and to finally detect shadow. The method of [19] uses the geometric properties of shadow and human
regions. A rough shadow region is initially detected, and then the orientation and the center of gravity
of the detected region are used for the Gaussian shadow modeling of shadow. The method of [20]
utilizes physics-based color features to model shadow and background. A shadow model is trained by
GMM, based on gradient intensity distortion and spectral ratio, and then shadow is detected.

Additionally, as shown in Table 2, the final two outputs of the classification layer are not used
to distinguish shadow and non-shadow, but 4096 features extracted from the first FCL are used to
calculate the mean Euclidean distance for each of shadow and non-shadow classes, which are obtained
from training data, thereby detecting shadow and non-shadow regions. This scheme is also widely
adopted by existing CNN-based recognition research [41]. Besides, apart from VGG Net-16, which
is used in this research, AlexNet [27], which has lower depth and CNN architecture, was used to
compare performance.

The previous researches [8,15,17,19,20,27,41] have been widely compared for measuring the
accuracy of shadow detection in previous works. Except for these researches, there is no more
recent method focused on the topic of shadow detection. The methods [5,6] used the method of
shadow detection of [8]. In [4], their method of shadow detection was used for detecting only the
shadow of building (not pedestrian), and their experimental images were obtained from bird-eye
view (like the images captured by airplane) with light detection and ranging (LiDAR) information.
The consequent shadows in these images are much darker and larger than those of pedestrian in
our research. Therefore, they used the simple method of shadow detection which selected the area
whose brightness was lower than pre-determined threshold. This method causes lots of error for
shadow detection in our experimental images because the brightness of pedestrian is lower than that
of shadow in many cases of our experimental images. Therefore, this method was not compared in
our experiment.

As additional comparison, the method of [3] was also evaluated. The research [3] proposes the
method of shadow detection based on foreground detection, vertical histogram analysis, foreground
partitioning, calculation of the orientation of major axis, and decision. However, this method has the
assumption that the position of light source should be known in advance. In addition, the authors
assume that the case that the light source exists at the upper position of pedestrian (which can make
the shadow at the lower position of the pedestrian) does not happen. However, in the outdoor at
noon, this can occur frequently. Because the self-collected database in [3] is not available as open
dataset, we applied their method to our database and CAVIAR open database which were used in our
experiments. Following the 1st assumption of this method, we used the position of light source for
experiment, which was manually labelled in each image frame.

As shown in Table 7, the accuracies by previous methods including the method [3] are lower than
those by our method.

Figure 8 shows detected images of the proposed method and other compared methods along
with the ground truth. In Figure 8a,b, 10 images of each group are, from left to right: input image
and ground truth image in the first row; the result images of Cucchiara et al. [8], Sanin et al. [15] and
Leone et al. [17] in the second row; the result images of Hsieh et al. [19], Huang et al. [20], Euclidean
distance by 4096 features of first FCL [41] in the third row; and the resultant images of AlexNet [27],
Lee et al. [3], and the proposed method in the fourth row.
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Figure 8. Detection results in experimental images: (a) Sub-database 1; (b) Sub-database 3. From (a)
and (b), 10 images of each group are, from left to right: input image and ground truth image in the first
row; the resultant images of Cucchiara et al. [8], Sanin et al. [15], and Leone et al. [17] in the second row;
the resultant images of Hsieh et al. [19], Huang et al. [20], and the Euclidean distance by 4096 features
of the first FCL [41] in the third row; and the resultant images of AlexNet [27], Lee et al. [3], and the
proposed method in the fourth row. Non-shadow and shadow regions are shown as blue and red
colors, respectively.
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Table 7. Comparisons of accuracy of classification by our method to previous methods (unit: %).

Methods TPR PPV ACC F1_Score

Cucchiara et al. [8] 19.98 30.96 61.51 24.29
Sanin et al. [15] 17.95 57.25 70.51 27.33
Leone et al. [17] 44.07 48.89 68.46 46.36
Hsieh et al. [19] 63.39 52.45 70.94 57.41
Huang et al. [20] 47.19 50.40 69.34 48.74

Euclidean distance by 4096 features of first FCL [41] 84.67 91.26 92.76 87.84
AlexNet [27] 94.18 95.59 96.86 94.88
Lee et al. [3] 81.49 43.48 61.35 56.70
Our method 95.17 96.22 97.35 95.69

As shown in Figure 8, the method of Cucchiara et al. [8] cannot discriminate shadow and
non-shadow pixels, in most cases. The method of Sanin et al. [15] shows good results, showing
light shadows. However, it does not show good results when a shadow is dark and similar to an
object. Leone et al. [17] proposed a method showing better detection performance than the method
by Cucchiara et al. [8], but still produces frequent errors. The method of Hsieh et al. [19], as shown
in Figure 8a, produces good detection performance when a shadow cast beside a man, but degrades
when the shadow is cast under a man, as shown in Figure 8b. The method of Huang et al. [20] shows
better detection performance than using only color information, but still does not produce a good
result. The Euclidean distance by 4096 features of the first FCL [41] also contains detection errors.
This is because, although optimal features are obtained by CNN, the Euclidean distance-based linear
classifier is used without the FCL nonlinear classifier of the third column of Table 2, which increases
the detection errors. In the case where AlexNet [27] is used, the result image is close to the ground
truth image and the result image of the proposed method. However, as shown in Table 7, the proposed
method has higher detection accuracy. The accuracy by [3] is lower than our method as shown in
Figure 8. That is because in their method [3], the separation of shadow region from pedestrian is done
only by vertical line, and accurate position of shadow pixel in various direction cannot be detected
as shown in the second image of the 4th row ones of Figure 8a. In addition, the shadow at the lower
position of the pedestrian cannot be detected as shown in the second image of the 4th row ones of
Figure 8b.

4.4. Testing with Another Open Database

We conduct another performance evaluation by applying the context aware vision using
image-based active recognition (CAVIAR) open dataset [42]. The experiment is conducted as two-fold
cross validation the same way as with DSDD-DB1 in Sections 4.2 and 4.3. Figure 9 contains the
result images obtained by experimenting with the CAVIAR dataset using the proposed method.
The first row is the input frame, the second and third rows are the ground truth and the result image
detected by the proposed method, respectively, for each input frame of the corresponding column.
As shown in Figure 9, the proposed method’s detection results are very close to the ground truth image.
Consequently, it turns out that the proposed method is applicable to various data environments.

The next experiment compares the detection accuracy between the proposed method and the
existing methods [2,15,17,19,20]. To use the shadow detection rate (i.e., TPR) and the shadow
discrimination rate (i.e., TNR), which are the metric of the existing researches [2,15] for comparing
performance, this research also uses TPR and TNR as in Equations (6) and (10).

TNR =
#TN

#TN + #FP
(10)

As Table 8 indicates, the mean accuracy of the proposed method is 97.67%, which is higher than
those of the existing methods [2,3,15,17,19,20]. The most of shadows exist at the lower position of
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pedestrian in CAVIAR open database as shown in Figure 9. Therefore, the most pixels of pedestrian
were incorrectly identified as shadow (FP case), which increased #FP and the consequent TNR of
Equation (10) was decreased as shown in Table 8.

Figure 9. Experimental images using CAVIAR dataset: (a) Input images; (b) Ground truth images; and
(c) Result images by our method.

Table 8. Comparison of accuracy for CAVIAR dataset (unit: %).

Methods TPR TNR Average

Sanin et al. [2] (Chromaticity-based method) 92 * 56 * 74
Sanin et al. [15] 92.05 97.85 94.95
Leone et al. [17] 72 * 83 * 77.5
Hsieh et al. [19] 54 * 65 * 59.5
Huang et al. [20] 79 * 75 * 77

AlexNet [27] 97.09 97.15 97.12
Lee et al. [3] 77.53 21.08 49.3
Our method 97.96 97.38 97.67

* approximate value reported in [2].

5. Conclusions

This research proposed a shadow detection and removal method that uses 21 × 21 sliding
window-based VGG Net-16 CNN and showed a high accuracy, even in a high-definition surveillance
condition. The experiments were conducted with an open database and our own database, collected
at various times of day (i.e., morning, afternoon, and evening) under diverse weather, temperature,
and illumination conditions. The proposed method’s robustness was demonstrated through various
environmental changes. The proposed method was also compared to many of the existing methods.
Our method had higher accuracy. Additionally, we opened the CNN model trained in this research
and our own experimental database [7] so that other researchers can conduct fair comparisons.

A stronger network such as ResNet or DenseNet can enhance the accuracy of shadow classification.
However, they have lots of additional interconnections (short-cuts) with parameters, which can increase
processing time. In addition, as shown in Tables 7 and 8, the accuracies by our shallow CNN-based
method are sufficiently higher than 95% and 97%, respectively. Therefore, considering both the
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processing speed and accuracy, we used a shallower CNN of VGG Net-16 than ResNet or DenseNet
which has deeper and stronger networks.

Our future research will consider a method of using various types of CNN, such as a semantic
segmentation network to detect shadow and non-shadow regions directly from the entire input image
without background subtraction. We also will examine a detection method considering information in
continuous images and a method of classifying shadow and non-shadow pixels by combining CNN
features and hand-crafted features.
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