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Abstract: This paper proposes the automatic coast mode tracking of centroid trackers for infrared
images to overcome the target occlusion status. The centroid tracking method, using only the
brightness information of an image, is still widely used in infrared imaging tracking systems because
it is difficult to extract meaningful features from infrared images. However, centroid trackers are
likely to lose the track because they are highly vulnerable to screened status by the clutter or
background. Coast mode, one of the tracking modes, maintains the servo slew rate with the tracking
rate right before the loss of track. The proposed automatic coast mode tracking method makes
decisions regarding entering coast mode by the prediction of target occlusion and tries to re-lock
the target and resume the tracking after blind time. This algorithm comprises three steps. The first
step is the prediction process of the occlusion by checking both matters which have target-likelihood
brightness and which may screen the target despite different brightness. The second step is the process
making inertial tracking commands to the servo. The last step is the process of re-locking a target
based on the target modeling of histogram ratio. The effectiveness of the proposed algorithm is
addressed by presenting experimental results based on computer simulation with various test imagery
sequences compared to published tracking algorithms. The proposed algorithm is tested under a real
environment with a naval electro-optical tracking system (EOTS) and airborne EO/IR system.

Keywords: infrared image; automatic tracking; electro-optical tracking system; coast mode tracking

1. Introduction

Automatic tracking of an electro-optical system refers to keeping a target at the center of the
images by driving the sensor’s LOS (line of sight) according to the result of a video tracker that
calculates a change in the target’s position using acquired images. As shown in Figure 1, a video
tracker detects a target’s location from input images and sends the pixel error (difference between
target’s location and center in the image) to the servo controller. Then, the servo controller drives
gimbals as a mount of tracking error to locate the target at the center of images. Iteration of that process
keeps a target in the sensor’s line of sight. These kinds of automatic tracking systems have a variety
of uses in military and security systems because they provide automotive operation and a target’s
accurate position simultaneously.
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Figure 1. Automatic tracking procedure of an electro-optical system.

Although image tracking has been the focus of many studies over the world, there are still many
challenging issues such as overcoming target’s occlusions, appearance changes, significant motions,
background clutters, etc. Among the challenges in the image tracking area, the occlusion problem is
one of the most crucial problems.

In this paper, a novel automatic coast mode tracking method is proposed to prevent from target
loss against the target occlusion, which is one of the functions for improving the operability of
centroid tracker for infrared images, considering the computational cost of fast moving target tracking.
The proposed algorithm consists of three steps. The first step is to make a decision to enter the
coast mode that estimates when the target occlusion occurs. The second step is to perform memory
tracking using a prediction result of the target’s location rather than image tracking result during
the target’s blind time. The last step is to re-lock the target (or re-acquisition target) after the target
occlusion is released. This study shows effective performance according to the results based on
computer simulations with various test imagery compared with several published tracking algorithms.
It is tested under a real environment with an electro-optical tracking system (EOTS) mounted on ship
and airborne EO/IR (electro-optic/infrared) system.

Section 2 introduces the background of coast mode tracking and the proposed occlusion
aware–coast mode tracking (OA-CMT) method is explained in Section 3. In Section 4, experimental
results through the simulation and real EOTS dataset validate the feasibility of the proposed method
in various occlusion scenarios. Section 5 concludes this paper.

2. Background of Coast Mode Tracking

A video tracker finds a target’s location in the acquired images from imaging sensors and calculates
tracking error using image center information. There is a problem of tracking loss affected by abrupt
obstacles, because the tracking result is computed depending on the brightness of each pixels of
image. There have been various attempts to solve the occlusion problem in tracking. For example,
previous methods using appearance models [1–3], adaptive appearance modeling by statistical
analysis [4–6], and template matching of target models [7,8] showed good performance for limited
situations, but it is easy to degrade tracking performance because blind updates in long-term occlusion
status causes contamination of appearance models. Multi-camera-based methods [9–11] were also
proposed, but these methods require a complex multi-camera setup with high cost, which is not
appropriate for a moving camera platform such as EOTS. Patch matching-based methods [12–14]
can widely handle not only the occlusion problem but can also overcome appearance changes.
However, they can deal with a short-duration of partial occlusion and fail at severe occlusions
lasting for a long time. Probabilistic approaches [15–18] and L1 trackers [19,20] have been proposed
several times. State-of-the-art trackers, upgraded correlation trackers [21] and neural network-based
tracking methods [22–24], have been presented, which show outstanding tracking performance in
multiple target tracking, cluttered environments, changing of target’s shape, and occlusion. However,
these trackers require an on-line or off-line training process with an amount of data sets of targets to
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accommodate various situations, meaning they are not suitable for tracking systems that must track
arbitrary targets what the operator chooses.

The aforementioned techniques have two limitations in EOTS applications. One is the
computational cost for real time processing on embedded system. They need more than 30 frames
per second to track a fast-moving target. Algorithms using complex calculation are useless for on-line
systems. The other problem is that those kinds of tracking method are not applicable very well in the
case of infrared images because they deal with features of imagery with clear edge or color information.
Infrared sensors, recording radiant intensity that is emitted by a targets’ thermal energy, are superior to
visible cameras in detecting and tracking small objects at long distance and can be used at night time,
which leads to the wide use of infrared sensors in military applications. However, it is difficult to extract
the feature points for tracking because the shapes of targets are usually shown blurred and blinked
due to atmospheric scattering and air turbulence between the target and sensor. Therefore, it is better
to use target intensity information for target detection and tracking in infrared images. The targets to
track are normally mapped to high intensity regions compared to the surrounding background.

The proposed algorithm can overcome the target occlusion status using centroid trackers for
infrared images where the extraction of meaningful feature is difficult. The centroid tracking method,
using only the brightness information of an image, is still used widely in infrared tracking systems
because of its computational simplicity.

The coast mode refers to one of the tracking modes preventing tracking loss against a target’s
occlusion [25]. As shown in Figure 2, the image tracker is halted for a while and turned to a memory
tracking status when the reliability of tracking becomes lower or the prediction of target occlusion
event happens on normal tracking status. The memory tracking refers to the status that a servo drives
a sensor’s line of sight in the predicted direction and speed from movement data is measured in normal
tracking status before the occlusion. Using predicted results rather than image tracking results during
occlusion status, which obtain meaningless results from the image tracker, helps to increase of the
possibility of resuming tracking after long-term occlusion while some trackers suffer from maintaining
image tracking over long periods of occlusion. After the blind time, it tries to find the target to resume
video tracking. When the target can be detected and becomes reliable enough to be re-locked, image
tracking is started. Otherwise, the video tracker stops if it fails to re-lock on the target after a certain
period of time.

Figure 2. State diagram of the coast mode tracking process.

In general, the coast tracking mode could be divided into forced coast tracking, automatic coast
tracking [25], and gun coast tracking [26] according to the system requirement. Forced coast tracking
runs by user’s decision and operation; it is also referred to as manual coast tracking mode. When the
operator selects forced coast mode, it starts memory tracking without image tracker until he locks on
the target to track. The automatic coast tracking means the automatic process of coast tracking for
user’s convenience, so the decision algorithm is required to enter coast status and use the re-locking
algorithm with image processing. The gun coast tracking is used to avoid tracking loss caused by
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gun firing. It enters coast status automatically with gun fire command input. In this case, the target
re-locking process is tried after the fixed time that is expected for disappearing gun smoke.

3. Proposed OA-CMT Based Infrared Target Tracker

The proposed occlusion-aware coast mode tracking (OA-CMT) is performed in the order shown
in Figure 3. In a newly inputted frame image, it predicts if the target is occluded by an obstacle through
image processing around the target being tracked. When there is no occlusion, it continues image
tracking and collects information of the brightness, shape and motion of the target. If any obstacle is
detected around the target, it stops image tracking, switches to memory tracking status, predicting
the target’s location using historically filtered data, and then tries to reacquire the target. When the
occlusion is ended and the target candidate is detected, the image tracking is resumed if the image
tracking result is reliable. Otherwise, it will continue maintaining memory tracking and attempting to
reacquire the target.

Figure 3. Flowchart of the coast mode tracking.

3.1. Prediction of Target’s Obstruction

The awareness of target occlusion is made by two steps. In the first step, the “target likelihood
obstacle check” predicts a target’s occlusion by checking the brightness similarity of the background in
the direction of the target’s movement: if the background brightness around a target is similar to that
of the target’s, the centroid tracker would miss the target. In the second step, “background screening
check” predicts the loss of the tracking situation where the background appears which can hide the
target. If any target likelihood obstacles and background likelihood obstacles are detected, it stops the
centroid tracking for the target, turns the tracking status to the coast mode and starts memory tracking.

The target likelihood obstacle check consists of the steps of searching for targeted candidates with
similar brightness, carrying the history of the candidates over frames, and determining the occlusion
alarm for target likelihood, as shown in Figure 4.

Figure 4. Procedure of target likelihood brightness check.
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During the tracking, it is more likely to be affected by an object which has similar brightness to
the target and is located close to the target. The first step, searching for candidates, is to detect the
objects of particular brightness that are likely to be classified as a target by the centroid tracker. For the
efficiency of computation time, it is necessary to set an appropriate searching area around the target
and divide it into several blocks. The brightness comparison for screening the target likelihood area
is performed on a block related to the target size (set as a quarter of the target’s size) rather than on
a pixel-by-pixel basis. The searching area is set to a multiple of the block’s size considering target’s
speed and moving direction. Then, it classifies an area as a “bright block” if the count of pixels brighter
than the threshold value is more than 50% of the block area. Then, it registers a candidate by clustering
the adjacent “bright blocks” with the information such as the size, location, average brightness, and
the “true distance (Dtrue)”. True distance means the distance between the outer surfaces of target and
obstacle, as shown in Figure 5. With the similar triangles rule, Dmin (minimum distance from center
of the target to outer surface of obstacle) and (Dmin − Dtrue) have a proportional relation with their
x-components, Dmin and HalfTgX (half of target size), then Dtrue could be approximately calculated
as Equation (1).

Figure 5. Calculating true distance (Dtrue) between the target and an obstacle.

Dtrue = Dmin ×
(
DminX −HalfTgX

)
DminX

, (1)

The second step is to manage the histories of each candidate over frames to predict whether
candidates affect the centroid tracking process. The matching of candidates between the current frame
and previous frame is performed by comparing the registered information with the effective distance.
In this step, the process is carried out with three cases: (1) the observed candidate having no history
(that means it is first observed candidate); (2) having history but not being an observed candidate
(that means a disappeared candidate); (3) observed candidate having history. If a candidate has history,
the effective distance that the candidate is expected to move in the next frame is set to manage the
change trend of the candidate over frames and used for matching between the observed candidate and
history in the next frame.

The occlusion alarm is determined by the candidate’s approaching distance to the target.
First, it computes average velocity for each of the candidates, calculates the “estimated distance (Dest)”
that reflects the prediction of the obstacle’s movement on the Dtrue, such as in Equation (2), then checks
if the estimated distance is smaller than a distance threshold value. At this time, the distance threshold
value is set to be proportional to the block size considering the block unit operation in the first step.
It makes an alarm of target likelihood occlusion when the candidate is present and the estimated
distance is smaller than the threshold value.

Dest = Dtrue + ScaleFactor×
(

Dtrue −Dtrue, history

)
, (2)
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Figure 6 shows the results of the target likelihood obstacle check in the test image sequence which
is made to for computer simulation. (a–c) are partial views of a test image sequence where a 16 × 16
pixel-sized target approaches the obstacle with an average brightness of target. (d–f) are the results
of searching candidates for (a–c) with magnifying interested area. In (d–f), the square box represents
the search area, and a white spot means a bright block. The operational interval of blocks could be
guessed from the distance between spots. There are two clusters of spots: the smaller one is the target
and the bigger one is the obstacle. The calculation results of estimated distance are 16, 11, 6 for (d–f),
respectively. An occlusion alarm is made at (f).

Figure 6. Result of target likelihood obstacle check in test image sequence (a–c) are test image sequences,
and (d–f) show the results of searching candidates for (a–c) with magnifying interested area. In (d–f),
the square box represents the search area spots, meaning a bright block. Calculation result of estimated
distance is (d) 16, (e) 11, (f) 6.

The background screening check is a process to determine if the track is difficult to keep because
an obstacle located between the IR camera and the target obscures the view of the camera even though
its brightness is not similar the target. It consists of three steps: the first step is the brightness change
check of four guard gates and four background gates as shown in Figure 7. The second step is to make
a pre-alarm with a synchronization check of sequential occurrence of brightness changes between
guard gate and background gate. The last step is to determine the occlusion alarm for background
screening with pre-alarm and size tracking window. Figure 7 presents the procedure of the background
screening check.

Figure 7. Procedure of background screening check.

During the first step, brightness change around the target is determined using χ2 distribution for
their brightness. First of all, four background gates and four guard gates about four directions are
set around the target as shown in Figure 8. The cumulative distribution function (CDF) of average
(µ) and standard deviation (σ) for brightness on each gate over frames are computed. As shown in
Figure 9, a region of α sized area is set as polluted criteria that brightness change is detected; otherwise,
the region of (1–α) sized area is set normal criteria. As represented in Equation (3), if the chi-square
distribution value is smaller than ε, it is determined as a normal situation, otherwise the gate is
determined to be polluted by an obstacle in the case of greater than ε. To solve the scintillation problem
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of IR imagery, applying a normalization factor considering global intensity is recommended, as in
Equation (3).

p(X ∈ normal status) = p( [X/NF−µ]T
σ ∑−1 [X/NF−µ]

σ ≤ ε)
p(X ∈ pollusion status) = p( [X/NF−µ]T

σ ∑−1 [X/NF−µ]
σ ≥ ε),

(3)

Figure 8. Shape of background gates and guard gates. There are four gates for each direction: up, down,
left, and right side around target. Both background gate and guard gate are 1/4 size of target gate.

Figure 9. Cumulative distribution function of χ2 distribution.

In the second step, a pre-alarm is made when the synchronicity of polluted gates with the
sequence is admitted. There is an observed sequence because the first guard gate is polluted and then
the background gate in the same direction will be polluted within several frames when an obstacle
approaches to the target. Synchronization of gate pollution is determined more accurately when
considering a target’s moving direction and speed.

The last step is to make a final decision of the background screening check regarding the size
reduction of the target gate of the same direction with gate pollution under pre-alarm situation.

Figure 10 shows the result of the background screening check for a test image sequence which
is made to perform a computer simulation, as in the case of a target likelihood obstacle check but
with a darker obstacle than target. (a–d) show the process of gates’ pollution over frames by obstacle,
while (e–h) present the status of image tracking. With this sequence, the brightness of the right
side of the target changes as the target approaches the obstacle, as in Figure 11. χ value increases
when the intensity mean of the frame (x-axis) of the background gate definitely changes compared
to intensity mean over sequence (µ). As the target is being hidden behind the obstacle, the gate size
becomes smaller than its average size. With those clues, it can be seen that background screening
alarm occurs in Figure 10h, as the target tracking gate disappears because the obscuring alarm makes
image tracking stop.



Sensors 2018, 18, 996 8 of 18

Figure 10. Result of background screening obstacle check in test image sequence. (a–d) show the
process of gates’ pollution over frames by obstacle; (e–h) present the status of image tracking.
In (h), the background screening alarm finally occurs.

Figure 11. Brightness change histories of the right side gate among four-directional background gates
are shown when the target moves in the right direction. χ value (chi) increases as the intensity mean
of the frame mean (right gate frame mean) definitely changes compared to intensity mean over the
sequence (right gate sequence mean). As the target is being hidden behind an obstacle, gate size became
smaller than its average size.

3.2. Memory Tracking Using Tracking Filter

If a target’s obstruction is predicted with the process described in the previous chapter, it stops
the image tracker and performs memory tracking with inertia until the target is re-locked. In the
memory tracking status, the image tracker cannot output the pixel error, and the target’s location
must be predicted with tracking filter. Of course, it is possible to acquire more accurate location of
the target using advanced tracking filters such as the interactive multiple model (IMM) filter [27]
or particle filter with three-dimensional information [28] if it can obtain the distance to the target.
However in this study, α-β-γ filter [29] is simply selected to get a position for re-locking process
without range information.

The α-β-γ filter is a simplified form of the Kalman filter for estimation, data smoothing and
control applications. It is suitable for predicting a target’s location in memory tracking because it
keeps the effect of Kalman filter in a time-invariant state without a detailed system model. Starting
from a one-dimensional, linear, time-invariant, ideal target motion model described in Equation (4),
where y(k) is the target state vector (composed of location x(k), velocity v(k), and acceleration a(k))
at time k, w(k) is the unknown target maneuver, and their transition matrix ϕ(k), ψ(k). Normally,
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measurement z(k) is composed by sum of position and noise n(k) as in Equation (5), the target
prediction and correction are solved like Equation (6), and prediction Equation (7).

y(k + 1) = ϕ·y(k) +ψ·w(k) x(k + 1)
v(k + 1)
a(k + 1)

 =

 1 T T2/2
0 1 T
0 0 1


 x(k)

v(k)
a(k)

+

 T2/2
T
1

w(k),
(4)

z(k) = h·y(k) + n(k)

z(k) =
[

1 0 0
] x(k)

v(k)
a(k)

+ n(k),
(5)

y̌(k + 1|k + 1) = y̌(k + 1|k) + K(k + 1)[z(k + 1)− h·y̌(k + 1|k), (6)

y̌(k + 1|k) = ϕ·y̌(k|k), (7)

K =

 Kx
Kv
Ka

 =

 α

β/T
γ/T2

 (8)

K, steady state Kalman gain, is related to the α-β-γ parameters as shown in Equation (8). The optimal
α-β-γ relationships are previously reported [29].

A tracking filter is implemented using the tracking index parameter of time period T = 1/30 s,
target maneuverability = 3 g (m/s2), and measurement noise = 0.2 m. The tracking result with test
imagery sequences is shown in Figure 12. While the target is under occlusion, the location of the target
is predicted by the α-β-γ filter. The dotted square represents the prediction of the target’s position
regarded as being hidden by an obstacle in Figure 12. The performance of the filter can be verified from
the result that the dotted square appears superimposed on the location of the target after blind time.

Figure 12. Result of memory tracking using α-β-γ filter in test imagery sequences. Dotted square is
the prediction of target’s position.

3.3. Target’s Re-Locking

When the target is seen in the image after blind time, the process of re-locking target is performed
in order to resume image tracking. The proposed method is designed using the target brightness value,
which is the main characteristic of infrared images.

Spatial or temporal filters are often applied for target detection in the case of dealing with intensity
information. However, these methods are likely to fail to detect targets when the brightness of the
target is changed by the AGC (automatic gain control) function of infrared cameras. Therefore, in the
proposed study, the computing histogram ratio is used between the target and background.

Figure 13 shows the procedure of the proposed target re-locking algorithm. First, the target
model is established by gathering information of the target during image tracking. When a decision
of occlusion is made, it starts screening the blocks which have a high probability of being the target
within the search area divided into blocks. The probability of each block is calculated by the sum
of the histogram ratio modeled in the previous step, and blocks having a probability higher than
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the threshold value are selected as the target candidates. Next, the selected candidates are scored by
comparison to target model, and the highest scored candidate is picked as the target.

Figure 13. Procedure of target re-locking.

In the first step of the target re-locking algorithm, on-line training of the target model is performed
during image tracking status. This method calculates the histogram ratio between the target gate and
four background gates (except guard gates in Figure 8), while the original histogram back-projection
method [30] is computed for the entire image. It causes not only heavy computation but also
less accuracy because the background histogram of the whole image may change according to the
target’s movement.

Equation (9) [31] shows the formula for target model with a histogram ratio of target model
Hr(i), target’s histogram value Ht(i), sum of background gates’ histogram value, for gray level i.
In Equation (9), a high histogram ratio of grey level i means a high probability that level I belongs to
the target [32]. To get a more accurate target model, Hr(i) must be averaged over frames, especially in
the case of using a histogram stretched image.

Hr(i) =
Ht(i)

Ht(i) + Ht(i) + 1
, (9)

Other information such as target size, location, shape, and intensity variance are collected and
statistically modeled in this step to be applied for the scoring process.

A transition to the coast mode occurs by determining occlusion, and the image process for
detecting target candidates is activated until image tracking resumes. The searching candidate process
works within the searching area considering target’s moving speed and direction. For reduced
computation time and de-noising effect, it is performed by the unit of blocks referred in the previous
section, “prediction of target’s obstruction”.

For each block, the average is computed of the extracted value of the histogram ratio model
corresponding to the brightness of each pixel within the block. This average value presents the
probability of how similar the block is to the target. Figure 14b shows the target probabilities of the
test image, a higher intensity block presents a higher probability of being the target.

Figure 14. Result of screening target candidates.

After the probability values are acquired about all blocks, clustering is performed for the adjacent
blocks which are screened by the probability threshold. These clusters are regarded as target candidates:
bigger or smaller clusters are excluded compared to the target’s size.

In the final step of the target re-locking algorithm, the score is calculated to determine the target
to track and decide whether to resume tracking. For the target candidates, the similarity with the
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target is scored by comparison to the target model including size, intensity variation, aspect ratio, and
target probability (i.e., average value of histogram ratio over pixels) that are statically collected in
image tracking status. The candidate with the highest score is selected as the target, and the tracking
reliability is checked to make a decision whether to switching to image tracking status.

Figure 15 shows the result of the target’s re-locking process. Figure 15a shows that the re-locking
algorithm is being executed during blind time. After blind time, the target appears, the target gate is
located on the target as a result of the re-locking algorithm. Figure 15c shows that image tracking is
resumed through the checking track ability.

Figure 15. Result of target re-locking. During blind time, the re-locking algorithm is being executed as
shown in (a). It is shown that the target is re-locked after blind time in (b). In (c), image tracking is
resumed through checking ability of tracking.

4. Experimental Results

In this section, to verify the performance of the proposed method, OA-CMT, computer simulations
have been carried out on several infrared and visible images. Table 1 shows the list of the test imagery
sequences including descriptions about sensor types, targets, and obstacles.

Table 1. Lists of the test imagery sequences.

ID Imagery Sequences Sensor Obstacle Type Description

1 IR Background screening Car screened by bush

2 IR Background screening Truck screened by street lamp & trees

3 IR Target likelihood obstacle Tank screened by human

4 IR Background screening Car screened by building

5 EO Background obstacle Car screened by trees

6 EO Background screening Bus screened by trees & bridge

7 IR Target likelihood obstacle Car screened by traffic sign
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Figures 16–22 show the results of the computer simulations compared to other published
trackers dealing with target occlusion. In each figure, (a–d) are selected scenes showing meaningful
results among sequences, including tracking result of Tracking Learning Detection (TLD) [33]
(red box), L1 tracker using Accelerated Proximal Gradient (L1-APG) [20] (violet box), Sparsity-Based
Collaborative Model (SCM) [18] (cyan box), and OA-CMT (green box and green dot during
coast status).

Each tracking result also includes tracking trajectories of vertical and horizontal locations over
frames. In the case of OA-CMT, there are no big differences between the predicted results (presented
as green dots) and re-locked locations during target occlusion. It is not desirable for EOTS that the
tracking result includes abrupt changes of target’s location as in Figures 18, 19 and 22, because the
servo controller may cause difficulties in driving gimbals according to the tracking result.

Figure 16. Computer simulation result of imagery ID 1. (a) Normal tracking status (original image);
(b) magnifying interested area; (c) TLD loses track while the car is partially hidden by a street lamp;
(d) OA-CMT turns to memory tracking status because the car is hidden by a bush; (e) tracking
trajectories of each tracker. The green dot says OA-CMT turns to memory tracking status while other
trackers are tracking the wrong position.

To verify applications for real time embedded systems, computational cost must be
considered. With the computer platform Intel® Core™ i5 CPU @2.27GHz, manufactured by HP
(Palo Alto, CA, USA), computation costs were measured. As shown in Table 2, OA-CMT is fastest
compared with other trackers for all test images. In addition, since the computation time required to
perform the proposed algorithm depends on the image size, the specification of the embedded board
can be determined according to the image resolution of the sensor.

Table 2. Comparison of computational cost.

ID Image Size Target Size
Frames Per Second

TLD L1-APG SCM OA-CMT (Proposed)

1 720 × 480(336 frames) 56 × 48 7.05 0.03 0.98 42
2 720 × 480(831 frames) 28 × 24 6.39 0.02 1.09 30.81
3 640 × 480(130 frames) 36 × 14 3.88 2.54 2.89 71.5
4 640 × 480(283 frames) 10 × 8 10.5 3.42 1.48 71
5 320 × 240(300 frames) 90 × 40 9.87 2.92 2.18 149.5
6 1280 × 1024(310 frames) 94 × 26 2.13 2.64 1.18 6.6
7 1280 × 1024(480 frames) 24 × 16 1.37 0.3 1.43 6.67



Sensors 2018, 18, 996 13 of 18

Figure 17. Computer simulation result of imagery ID 2. (a) Normal tracking status (original image);
(b) magnifying interested area; (c) L1-APG loses track while the car is partially hidden by a street
lamp while OA-CMT turns to memory tracking status and will re-lock successfully after several
frames; (d) TLD tracks wrong target;(e) tracking trajectories of each tracker. Around the 600th frame,
TLD presents a very different position because of tracking the wrong target (at the time of (d)). After the
700th frame, the car is hidden by trees, OA-CMT turns to memory tracking status, while other trackers
give wandering positions.

Figure 18. Computer simulation result of imagery ID 3. (a) Normal tracking status (original image);
(b) magnifying interested area; (c) OA-CMT turns to memory tracking status when the tank is hidden
by a human; (d) TLD, L1-APG and OA-CMT re-lock target successfully; (e) tracking trajectories of each
trackers During blind time, tracking results of TLD are hopping because it tracks the human. SCM lost
tracking with the changing shape of the target when tank turned its direction.
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Figure 19. Computer simulation result of imagery ID 4. (a) Normal tracking status (original image);
(b) magnifying interested area; (c) OA-CMT turns to memory tracking status as the car is hidden by
a building (d) TLD and OA-CMT re-lock target successfully; (e) tracking trajectories of each tracker.
Predicted position of target of OA-CMT has no big difference with the position of the target after
blind time.

Figure 20. Computer simulation result of imagery ID 5. (a) Normal tracking status (original image);
(b) OA-CMT turns to memory tracking status when the tank is hidden by trees; (c) other trackers
are wandering; (d) TLD, SCM and OA-CMT re-lock target successfully after blind time; (e) tracking
trajectories of each tracker. TLD follows the wrong target during blind time.
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Figure 21. Computer simulation result of imagery ID 6. (a) normal tracking status (original image);
(b) magnifying interested area; (c) OA-CMT turns to memory tracking status while the bus is hidden by
the overpass (bridge) but other trackers are tracking the bridge; (d) OA-CMT re-locks target successfully,
TLD re-locks the back side of the target while other tracker loses track; (e) tracking trajectories of each
tracker. After blind time (from 250th frame) tracking positions of TLD are hopping because it confused
the target with the other bus.

Figure 22. Computer simulation result of imagery ID 7. (a) Normal tracking status (original image);
(b) magnifying interested area; (c) OA-CMT turns to memory tracking status as the car is hidden by the
traffic sign; (d) L1-APG and OA-CMT re-locks target successfully while TLD and SCM lost the target;
(e) tracking trajectories of each tracker.

5. Conclusions

This paper proposes an occlusion aware-coast mode tracking algorithm for infrared imagers.
OA-CMT includes the decision algorithm of predicting target occlusion with image processing,
the tracking filter to output predictions of target position in blind time, and post-blind time automatic
re-locking for user’s convenience. The proposed algorithm helps the sensor driving unit to continue
its movement during blind time caused by target occlusion.
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The prediction of target obstruction is designed by checking the occlusion both of target
likelihood brightness and background screening around the target considering the target’s size, moving
direction and speed. For memory tracking, the α-β-γ filter is used to predict the target’s position.
The target re-locking algorithm is proposed using target modeling of histogram ratio between target
and background.

Computer simulations with various test imagery sequences are carried out and their results
are compared to other occlusion-related published tracking algorithms, TLD, L1-APG, and
SCM. Computational costs are also presented for considering real time embedded systems.
After implementation on a video tracking board, the proposed algorithm is undergoing validation tests
in real environment for applications for naval EOTS (shown in Figure 23) and airborne EO/IR system
(shown in Figure 24) After implementation on the video tracking board of EOTS, the performance of
the proposed algorithm is validated through tests under real environment.

Figure 23. Result of application for naval EOTS: (a) shape of naval EOTS (b–d) operational images of
testing coast mode tracking.

Figure 24. Result of application for airborne EO/IR: (a) shape of airborne EO/IR (b–d) operational
images of testing coast mode tracking.
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