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Abstract: The acoustic emission (AE) method is useful for structural health monitoring (SHM) of
composite structures due to its high sensitivity and real-time capability. The main challenge, however,
is how to classify the AE data into different failure mechanisms because the detected signals are
affected by various factors. Empirical wavelet transform (EWT) is a solution for analyzing the
multi-component signals and has been used to process the AE data. In order to solve the spectrum
separation problem of the AE signals, this paper proposes a novel modified separation method based
on local window maxima (LWM) algorithm. It searches the local maxima of the Fourier spectrum in a
proper window, and automatically determines the boundaries of spectrum segmentations, which
helps to eliminate the impact of noise interference or frequency dispersion in the detected signal
and obtain the meaningful empirical modes that are more related to the damage characteristics.
Additionally, both simulation signal and AE signal from the composite structures are used to verify
the effectiveness of the proposed method. Finally, the experimental results indicate that the proposed
method performs better than the original EWT method in identifying different damage mechanisms
of composite structures.

Keywords: structural health monitoring; acoustic emission; empirical wavelet transform

1. Introduction

Composite materials are widely used in aircraft structures because of their advantages of stiffness,
strength, light weight and excellent fatigue and corrosion resistance [1–3]. However, the various
damage mechanisms of composite structures are very difficult to predict. Structural health monitoring
(SHM), which can assess the structure status in real time and supply an early warning, has been
proposed to confront this challenge [4,5]. Acoustic emission (AE) is an attractive technique for SHM
which is sensitive, can detect various types of composite material damage and needs only a small
number of sensors [3,6,7]. The exact health state can be obtained by monitoring the AE signals.
Furthermore, damage information such as damage mechanisms, damage position and residual life
could also be extracted when the AE signals can be accurately collected and analyzed [8]. At present,
both traditional AE characteristic parameters and new signal processing methods can be used to
analyze AE signals.

When composite structures are exposed to an external load, AE signals will occur from matrix
cracking, matrix/fiber debonding, delamination, and fiber fracture [9]. Following the theory of plate
wave, the generated waves will propagate in all directions, and form different modes. The difference of
these modes is due to the particle displacement: in the plane (IP) for the symmetric or extensional mode
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and outside to the plane (OP) for the antisymmetric or flexural mode [10]. For the extensional mode,
all frequency components travel at the same velocity, but for the flexural mode, the high frequency
components travel faster than the low frequency components [11]. In practical structures, the signals
detected by AE sensors depend on various factors, such as the structures’ properties (including the
material, width, geometry, and so on), damage source orientation, damage location, signal attenuation,
wave dispersion, boundary reflections and other interference phenomenon. Therefore, all these factors
have to be taken into account during the AE data analysis [10].

A major issue is how to distinguish between the different damage mechanisms according to
the characteristics of the AE signal. Many studies have used time features, frequency characteristics,
or time-frequency methods to identify the damage mechanisms [10–14], but they were only applied in
simple laboratory experiments. For complex structures, Sause and Hamstad established an effective
finite element modeling (FEM) routine to interpret the AE signal behavior [15–20], which can give
advice about how to extend the laboratory results to a practical scenario. In order to assess the real-time
damage mechanisms, Martínez-Jequier et al. [21] designed appropriate hardware frequency filters
to split the extensional and flexural modes of the damage AE signals; Yaacoubi and Dahmene [22]
thought about the large data sets of the collected data during the composite SHM, and explored various
innovative processing techniques to save computing time. Additionally, based on the variety of signal
processing methods, a large number of studies have correlated specific AE signal features with the
progression of damage. Gutkin et al. [23] identified some damage mechanisms of CFRP through pattern
recognition algorithm based on five representative AE parameters (peak amplitude, peak frequency,
energy, rise time and duration). McCrory et al. [24] classified the damage of matrix and delamination
of CFRP based on AE signals through three classification techniques. Kumar et al. [25] considered
significant AE parameters, such as counts, energy, signal strength, absolute energy and hits, and used
an artificial neural network to predict the failure strength of composite laminates. Beheshtizaeh and
Mostafapour [26] indicated that wavelet analysis was suitable to process the AE signals in three-point
bending load of composites structure, but the proper wavelet type should be selected.

Recently, inspired by wavelet transform and empirical mode decomposition (EMD) [27], the empirical
wavelet transform (EWT) has been developed by Gilles [28,29]. Amezquita-Sánchez et al. [30] employed
EWT to estimate both natural frequencies and damping ratios of large civil structures. Yuan and
Sadhu [31] used EWT to separate the closely-spaced natural frequencies of structures. The main idea of
EWT is to determine the Fourier segments and then design a series of wavelet filters to decompose the
signal into several sub-signals. EWT became adaptive when the Fourier segments were automatically
determined. The empirical rule was to find all the local maxima of the spectrum and then use the
center of the two adjacent local maxima as the boundaries of Fourier segments [32]. Some researchers
have proposed solutions to modify the Fourier segments. Zheng et al. [33] proposed a method of
adaptive parameterless EWT to fulfill an adaptive separation of the Fourier spectrum. Wang et al. [34]
developed the sparsity-guided EWT to automatically establish Fourier segments. Song et al. [35]
employed the scale-space histogram segmentation to determine the boundaries adaptively. However,
for damage AE signals, when strong noise or frequency dispersion exist in the Fourier spectrum of the
signals, such Fourier segmentation solutions are not always reliable and useful.

In this paper, local window maxima (LWM) algorithm is proposed to automatically determine the
boundaries of Fourier segments, and it is appropriate for EWT to analyze the damage AE signals of
composite structures. The key ideas of the algorithm are to search all the local maxima of the Fourier
spectrum in an optimal window and then to obtain the segmentation boundaries. Since different
damage mechanisms for composite structures have different frequency ranges, separating the different
damage mechanisms is equivalent to decomposing the AE signals in the Fourier spectrum. The analysis
results on a simulation signal show that this method can effectively obtain the peak frequency bands.
In addition, the pencil-lead breaks (PLB) and three-point bending experiments on the composite
structure is carried out to prove the applicability of the proposed solution.
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2. The Modified Empirical Wavelet Transform Method

The structure diagram of AE detection theory is shown in Figure 1. When any damage occurs in
the structure under the action of external forces, a transient wave which is the result of the sudden
release of stored energy, propagates from the damage location and eventually reaches the surface of
the structure. The surface displacement can be converted into an electrical signal by an AE sensor, and
the sensor signal can be pre-amplified, acquired, processed and analyzed by the AE system.
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More detailed information can be found in reference [28]. 
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Figure 1. The structure diagram of AE detection theory.

2.1. The EWT Method

As shown in Figure 1, data processing is an important procedure in the AE system. The aim of
EWT method was to extract the signal modes, therefore it could be applied to process the AE signals.
The EWT process contains three important aspects: (1) in segmenting the spectrum of the signal, the
first step was to detect all the local maxima of the spectrum, then get the boundaries which were the
midpoint of two consecutive maxima, using the algorithm given in Equation (1); (2) constructing the
empirical wavelets by defining a bank of wavelet filters composed of one low-pass filter and N − 1
band filters based on the boundaries, which is given in Equations (2)–(5); (3) extracting the empirical
modes by applying the wavelet filter banks to divide the signal into frequency sub-bands. More
detailed information can be found in reference [28].

wn =


0, n = 0
Ωn+Ωn+1

2 , n = 1, 2, . . . , N − 1
π, n = N

, (1)

where ωn is the segmentation boundaries; Ωn is the corresponding angular frequency of the
local maxima.

ψ̂n(ω) =


1, (1 + γ)ωn ≤ |ω| ≤ (1− γ)ωn+1

cos
[

π
2 β
(

1
2γωn+1

(|ω| − (1− γ)ωn+1)
)]

, (1− γ)ωn+1 ≤ |ω| ≤ (1 + γ)ωn+1

sin
[

π
2 β
(

1
2γωn

(|ω| − (1− γ)ωn)
)]

, (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0, otherwise

, (2)
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φ̂n(ω) =


1, |ω| ≤ (1− γ)ωn

cos
[

π
2 β
(

1
2γωn

(|ω| − (1− γ)ωn)
)]

, (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0, otherwise

, (3)

where ψ̂n(ω) is the empirical wavelets, φ̂n(ω) is the empirical scaling function; γ ensures no overlap
between two consecutive segments, β(x) is an arbitrary function, they are given as follows:

γ < minn

(
ωn+1 −ωn

ωn+1 + ωn

)
(4)

β(x) =


x4(35− 84x + 70x2 − 20x3), 0 < x < 1
0, x ≤ 0
1, x ≥ 1

(5)

2.2. The LWM-EWT Method

The process of spectrum segmentation is the basis and is very important for the EWT algorithm
to achieve ideal separation results. When the signal has a relatively obvious peak frequency,
the above-mentioned segmentation method is effective. However, when AE signals from the damage
characteristics that have some frequency bands are processed, some local maxima which are from
noise or frequency dispersion might appear and be mistakenly kept in the peak frequency sequence,
then this method may lead to a false segmentation. Another drawback of the spectrum segmentation
is that the boundary method, which is to obtain the midpoint of the two adjacent local maxima, is too
simple, especially when the distance of two local maxima is far, and the extracted signal bandwidth
will be too wide.

When the EWT method is used to process the AE signals, a modified method is proposed in
this paper. This method can avoid the improper segments, detect the local maxima and obtain the
frequency boundaries. The method is the local window maxima (LWM) segmentation algorithm which
means finding the local maxima in a proper window which can be determined according the damage
signal features. The process is as follows:

1. Use the FFT algorithm to obtain the spectrum of the AE sensor signal.
2. According to the characteristics of the AE signals from composite structures, set the window

value W and the segmentation numbers N (the two parameters are discussed in Section 3).
3. Set the counts of local window maxima m = 0.
4. Search all the local maxima of the signal spectrum.
5. Sort descending the local maxima, save the first one as one LWM and set m = m + 1.
6. Center on the LWM which is generated from step 5 and zero other spectrum values in W.
7. If m is not equal N, go back to step 4.
8. Calculate the minimum distance L of all the two consecutive LWM.
9. Obtain the boundaries according to the L and each LWM, for example, if LWM-1 is the first LWM

and Ω1 is the frequency of LWM-1, then boundaries for LWM1 are given in Equation (6):{
ω0 = Ω1 − L

2
ω1 = Ω1 +

L
2

(6)

The procedure of the LWM-EWT method is compared with the EWT method in Figure 2 and the
improvements are highlighted in the dotted red area.

The purpose of the proposed method is to find the proper local maxima and how to obtain
boundaries. Here the details are discussed. To detect the LWM, the idea is that the most important
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maxima in the magnitude of the Fourier transform of the sensor signal is significantly larger than the
other existing maxima.Sensors 2018, 18, x FOR PEER REVIEW  5 of 18 
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2.2.1. Picking Out the LWM

Here the example how to pick out the first LWM is given to explain the detection theory of LWM.
First, the detected local maxima in the magnitude of the Fourier spectrum is sorted descending and
the set can be described as:

{Mk}N
k=1, M1 ≥ M2 ≥ . . . ≥ MN , (7)

where Mk is one of the local maxima.
The corresponding angular frequencies of these maxima are given as:

Ω = {Ωk}k=1,2,...,N , (8)

where Ωk is the angular frequency of Mk.
If M1 is the first LWM, denoted by LWM-1, then zero the amplitude that the frequency is in the

window of W, except for the center frequency of Ω1. The equation is as follows:

|X(ω)| = 0, Ω1 −
W
2
≤ ω ≤ Ω1 +

W
2

, ω 6= Ω1, (9)

where |X(ω)| is the spectrum amplitude; ω is the angular frequency.
When there are four LWM that need to be detected, the detection process of the first LWM is

illustrated in Figure 3.
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2.2.2. Detecting the Boundaries

All the LWM can be obtained based on the solution in Section 2.2.1, then the minimum distance
of all the two adjacent LWM can be calculated by the following equation:

L = min(Ωi+1 −Ωi) i = 1, 2, 3, . . . , N (10)

And the boundaries are given as:

Bj =

{
Ωi − L

2
Ωi +

L
2

i = 1, 2, . . . , N; j = 1, 2, . . . , 2N − 1 (11)

when there are four LWM, the boundaries are shown in Figure 4.
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3. Numerical Simulation Signal Analysis and Discussion

A numerical simulation is done to verify the proposed method. Without loss of generality,
the modulated sine burst, which is a narrow-band signal, is employed in the simulation. From [36],
the simulation signal can be expressed as follows:
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x(t) = A[H(t)− H(t− N
fC
)][1− cos(

2π fct
N

)] sin(2π fct), (12)

where A is the signal amplitude; fc is the central frequency; t is the time; H(t) is the Heaviside step
response; N is the wave numbers.

For example, when A = 5, N = 20, t = 1 ms, fC = 40 kHz, and the sample rate is 1 MHz,
the simulation signal is shown in Figure 5.
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Figure 5. The (a) waveform and (b) spectrum of the simulation signal.

During the simulation process, the first step is to generate the mixed signal according to the
Equation (12), if it is composed of n different modes, then it can be expressed as:

s(t) =
n

∑
i=1

xi(t) (13)

When n = 9, and all the simulation parameters are as given in Equation (14), the simulated sensor
signal is shown in Figure 6.

A =
[

4 3 2 3 2 1 2 1 0.5
]

N =
[

30 30 30 40 40 40 50 50 50
]

fc =
[

40 35 45 70 65 75 110 105 115
] (14)

It is difficult to separate the simulated sensor signal into different components only from the
waveform information in Figure 6a. But there are nine different frequency peaks in the spectrum
(Figure 6b). Here the parameters of window value and segmentation numbers will be discussed. The
window value relies on the practical requirement and experience, for example if the three components
of 35, 40 and 45 kHz can be regarded as only one component, the window will be 10 kHz, but the
segmentation numbers can be obtained by the energy of the component, if the energy proportion of
one component is larger than a specify value, then the component can be considered as a segmentation.

When the window value is 10 kHz and the segmentation numbers are three, the detected local
maxima of the original EWT and the LWM method, which are the red circles and red stars, respectively,
are illustrated in Figure 7. As shown in Figure 7a, the first two local maxima are very close, which
may generate two narrow bands in the decomposition results, and this is not applicable for analyzing
the non-stationary AE signals which have the dispersion phenomenon when they propagate on the
composite structure. Therefore, compared with the original EWT method, the proposed LWM approach
gives better results for the local maxima, which are shown in Figure 7b.

Based on the local maxima, segmentation boundaries are obtained which are the red dashed lines
in Figure 7b, and three spectrum segmentations are shown, denoted by the gray, cyan and green colors.
This indicates that the proposed LWM algorithm performs well in searching for the local maxima and
segmenting the spectrum.
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Figure 6. The (a) waveform and (b) spectrum of simulation signal which is generated by adding 9
different modulated sine burst signals together (the simulation parameters are in Equation (14) and the
expression of each signal is in Equation (12)).
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Figure 7. Local maxima by (a) the original EWT method denoted by red circles and (b) the LWM
method denoted by red stars; the spectrum segmentation results are shown by the color of gray, cyan
and green.

The decomposition results of the LWM-EWT method are depicted in Figures 8 and 9, in order to
have a more obvious contrast, the original signals with offset of 20 V (each of which is the mixed signal
of three nearest frequency simulation signal), the separated signals and error with offset of −20 V
between them are depicted in one figure.
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Figure 8. Decomposition signals of the proposed LWM-EWT method: the red curves are the original
signals (with offset of 20 V); the blue curves are the separated signals and the green curves are the error
(with offset of −20 V) between separated signals and original signals.
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Figure 9. The difference value between separated signals and original signals calculated by
20*log_10(|E(t)|), the difference values are all less than 0.1 V.
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4. Experimental Results and Discussion

4.1. Pencil-Lead Breaks Experiment

Pencil-lead breaks (PLB) in plates were used as the typical AE test source in literature [19,21].
In order to verify the effectiveness of the proposed approach, here a PLB signal is captured by an
AE detection system. The schematic diagram of the experimental system is displayed in Figure 10.
It consists of a CFRP plate, PLB (on the top surface of the plate), AE sensor, pre-amplifier, AE system
and industrial computer. The AE sensor is mounted on the top surface of CFRP plate, and the AE
signal is captured in the experiment. During the experiment, the original AE signal is amplified by
40 dB, and the sample rate is 10 MHz.
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The detailed information of the experimental system is shown in Table 1.

Table 1. The detailed information of the experimental system.

Name Type Parameter

CFRP plate with
stiffeners TR50S12L 650 mm × 650 mm × 3 mm, 20 layers, [0, 90]10S; T shape

stiffeners (cross section): 40 mm × 20 mm × 3 mm

Pencil-lead Mitsu Nano Dia Diameter: 0.5 mm

AE sensor PAC 1 WS α

Wide-band (WD) Sensor;
Operating Frequency Range: 100–1000 kHz;
Temperature Range: −65–175 ◦C.

Pre-amplifier PAC 2/4/6
Gain Selectable: 20/40/60 dB
Bandwidth: 10 kHz–2.5 MHz (20 dB), 10 kHz–2.0 MHz (40 dB),
10 kHz–900 kHz (60 dB); Temperature Range: −40–65 ◦C

AE system PAC PCI-2 2 simultaneous channels, 18 bit resolution, 40 MS/s

Industrial computer IEI RACK-360GBATX E5800 3.2 GHz, 4G memory, 7 PCI slots
1 Physical Acoustics Corporation.

From the acquired AE signal, the waveform and spectrum of PLB can be obtained. The waveform
in Figure 11 shows the duration of PLB signal is about 0.4 ms, and it can be seen that both the
extensional mode and flexural mode are present. There are many peak frequencies, due to the big
difference of the amplitude, the high frequency components are not obvious in Figure 12a, but from
the power spectral density (PSD) in Figure 12b, it can be seen that the three main spectrum bands
are in the near zone of 100, 200 and 500 kHz. Then the main difficulty of analyzing this signal
would be separating the three main components from the high level of noise, especially the nearby
peak frequencies.
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Figure 12. (a) The spectrum and (b) the PSD of PLB signal. (Include three different main spectrum
bands, which are near the 100, 200 and 500 kHz marks).

When the window value is 50 kHz and the segmentation numbers are three, the detected local
maxima using the original EWT and LWM methods are shown in Figure 13, where they are denoted
by the red circles and red stars, respectively.
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Figure 13. Local maxima of (a) the original EWT method and (b) the proposed LWM method.
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In Figure 13a, the three maxima are very close to each other, they should not be separated to
three different components, but by using the traditional method, they could be roughly separated.
Therefore, the results through the proposed LWM method are better than the original EWT, where the
three local maxima are located in the three main frequency bands. The separated results based on the
proposed LWM-EWT method are depicted in Figure 14. It contains the waveform and spectrum of
three dominant components decomposed from the PLB signal.
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Figure 14. (a) The waveforms and (b) the spectrum of separated signals by the LWM-EWT method.
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4.2. Three-Point Bending Experiment

According to the ASTM-D790-10 specification, a specimen of glass fiber reinforced plastics (GFRP)
laminates plate with dimension of 120 mm × 15 mm × 2.5 mm is tested on the three-point bending
load rig. The experimental system is seen in Figure 15.
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The load speed is 5 mm/min, AE signals happen on the load force of 200 N, and the plate is
broken when the load force is about 220 N. The spectrum and local maxima by the proposed method
are shown in Figure 17. In addition, the spectrum of separated signals from two sensors are depicted
in Figures 18 and 19.
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Figure 17. The spectrum and local maxima of (a) sensor 1 and (b) sensor 2.
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Figure 18. The spectrum of separated signals of sensor 1.
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5. Conclusions

This paper presents a novel signal decomposition method which is applied to AE signal processing.
To eliminate the impact of noise interference or frequency dispersion, the LWM segmentation approach
is used to search the dominant local maxima and the segmentation boundaries. Through the presented
algorithm, useful components for damage analysis are decomposed. The decomposition results from
the simulation and practical experiment show that the meaningful empirical modes, which are more
reflective of damage characteristics, are obtained. Additionally, compared with the original EWT,
components decomposed by the proposed LWM-EWT are much more reasonable for the AE signals.
Since the frequency of AE signals can be influenced by different structures, further research work
should concentrate on acquiring more signals from other structures, to validate the proposed method.
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