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Abstract: Machine learning approaches for human emotion recognition have recently demonstrated
high performance. However, only/mostly for subject-dependent approaches, in a variety of
applications like advanced driver assisted systems, smart homes and medical environments.
Therefore, now the focus is shifted more towards subject-independent approaches, which are
more universal and where the emotion recognition system is trained using a specific group of
subjects and then tested on totally new persons and thereby possibly while using other sensors
of same physiological signals in order to recognize their emotions. In this paper, we explore a
novel robust subject-independent human emotion recognition system, which consists of two major
models. The first one is an automatic feature calibration model and the second one is a classification
model based on Cellular Neural Networks (CNN). The proposed system produces state-of-the-art
results with an accuracy rate between 80% and 89% when using the same elicitation materials and
physiological sensors brands for both training and testing and an accuracy rate of 71.05% when the
elicitation materials and physiological sensors brands used in training are different from those used
in training. Here, the following physiological signals are involved: ECG (Electrocardiogram), EDA
(Electrodermal activity) and ST (Skin-Temperature).

Keywords: emotion recognition; classification; dynamic calibration; cellular neural networks (CNN);
physiological signals

1. Introduction

Emotion is a complex phenomenon which involves various physical structures. It plays an
important role in decision-making, behavior and other social communication. The ability to understand
and recognize human emotion has been identified as one of the key focus areas listed by research
groups in different fields of intelligent systems [1] such as safe driving [2], health care [3], social
security [4], multimedia digital entertainment [5] and other fields. Moreover, human emotions can
be extracted from measured appropriate physiological sensor date. Most researchers in the field of
emotion recognition have focused on the analysis of data originating from a single sensor, such as audio
(speech) or video (facial expression) data [6,7]. Lately, many studies in the emotion recognition field
have started to combine multiple sensors data to build a robust emotion recognition system. The main
target of using the fusion of multiple sensors is that humans use a combination of different modalities
in our body to express emotional states during human interaction [8]. The human modalities are
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divided into audiovisual (facial expression, voice, gesture, posture, etc.) and physiological (respiration,
skin temperature, etc.) [8]. However, the recognition of the emotional state is still a complex scientific
challenge. One of the main difficulties is that the emotion-relevant signal patterns may widely
differ from person to person or from a specific situation to another. Moreover, it is hard to find
the exact correlation between the classes (patterns) due to the problem of the precise definition of
emotions and their meanings [9]. Additionally, emotions are complex sets of interactions among
subjective and objective factors, mediated by neural/hormonal systems in the physiological system
of the subject, which can be affected by experiences to rise the arousal, pleasure and displeasure and
consequently lead to behaviors that are often expressive, goal-oriented and adaptive. Thus, they
might differ and depend on age, culture and many other social issues. Based on the previous points,
computers can be made to understand human emotions by capturing these modalities, extracting a set
of useful features from them and fusing those features in order to infer an accurate emotional state [9].
There is a growing number of sensors that can capture various physical manifestations of emotion:
video recordings of facial expressions [10], vocal inflection changes [7], recording of brain waves
using Electroencephalogram EEG [3], skin-surface sensing of muscle tension [11], electrocardiogram
(ECG) [12], electrodermal activity (EDA) [13], skin temperature (ST) [14], etc.

As a result, the recognition of human emotions has reached promising results. However, such a
high performance is mostly related to subject-dependent cases and not for subject-independent
scenarios. Thus, due to the challenges in this perspective, which make the recognition more complex,
it is required from the research community to focus on developing universal systems that can detect
human emotions generally using once pre-trained machine learning models. Therefore, in this paper,
we try to overcome such challenges.

Consequently, the importance of this work is due to the fact that developing a universal emotion
recognition system is challenging, which can be trained locally once and after that tested considering
different data that are collected based on different lab settings. In other words, where subjects,
elicitation materials and physiological sensors brands are different from the ones involved in the
initial training.

This paper is organized as follows: in Section 2, an overview of emotions and related works are
provided. Section 3 is about the physiological signals involved in this work. Then, Section 4 introduces
the overall architecture of our proposed system. Section 5 describes the research methodology.
The emotion recognition performance and a benchmark evaluation are then presented in Section 6.
Finally, the conclusion of this work is given in Section 7.

2. Background

2.1. Definition of Emotion

The emotion is a complex concept involving two components [15]:

• Subjective experience: several works have categorized emotions into different states, whereby all
humans regardless of culture and race can experience them. However, the way of experiencing
these emotions is highly subjective [9].

• Emotion expressions: most expressions are observable and nonverbal behaviors, which illustrate
an affective or internal emotional state. For example, happiness and pleasure can be expressed
by a smile, whereby sadness or displeasure by a frown. In general, emotion expressions include
human audiovisual activities such as gesture, posture, voice intonation, breathing noise, etc.

Emotions can be classified in various ways. The most applied two models for emotion
classification are the “discrete emotion model” proposed by Ekman [16] and the “emotion dimensional
model” proposed by Lang [17]. The discrete emotional model categorizes emotions into six basic
emotion states: happiness, sadness, surprise, anger, disgust and fear [16]. These emotions are universal,
biologically experienced by all humans and widely accepted in this research field. On the other
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hand, the dimensional model assumes that the emotions are a combination of several psychological
dimensions. The most well-known dimensional model is the “valance-arousal dimensional model”.
The valance represents a form of pleasure level and ranges from negative to positive. However,
the arousal indicates the physiological and/or psychological level of being awake and ranges from
low to high [11].

2.2. Related Works

Several emotion recognition studies have been conducted in the field of human–machine
interaction using different physiological signals. Initially, those studies used some emotion elicitation
materials such as video, images or music to elicit certain emotions from a subject(s), while the related
physiological measures have been recorded. Then, meaningful features are extracted from these
physiological measures and classified into emotional states using diverse classifiers.

For the purpose of building reference databases to be used for both training and validation
testings, different works used images [18,19], music [11], cognitive tasks [20], complicated mathematical
problems [21], movie clips [22], questionnaires [9] and other methods to elicit emotions. The benefit
of using images is that they are easy and fast to apply and can also be self-reported by participants.
However, the disadvantages of this method are that the images might not be able to evoke some strong
emotions and the time for stimulating emotion is too short.

Lin et al. [11,23] have applied music to stimulate emotions and used an electrocardiogram (ECG),
respiration, skin conductance and electromyogram signals to identify the induced emotions. In general,
the advantages of using music to induce emotions is simple, highly standardized and emotions develop
thereby over time (15–20 min). On the other hand, the disadvantages of this later approach are related
to participants music taste, which might influence the experienced emotions. Therefore, this method
gives only the moods (positive or negative) [24]. Moreover, Wen et al. [22,25] have used a set of
short movies as an emotion elicitation method, which is a rich instrument to induce strong emotions
(love, anger, fear, joy, etc.), which can also be self-reported by participants. The drawback is, however,
that it is necessary to extract particular periods of interest from the movie. Additionally, due to the fact
that emotions are considered as evanescent phenomena, any delay between emotion activation and its
assessment by an experimenter can introduce an error in the measurement [24].

After gathering the referenced (annotated) affective data, many feature extraction and
classification techniques have been used in literature. First works have mostly focused on
subject-dependent approaches, where the emotion recognition system is performed only on one
subject and the system needs to be retrained in order to perform well on another subject. Currently,
the focus has shifted more towards subject-independent approaches, where the emotion recognition
system should perform well on different subjects without the need to retrain the model, i.e., the system
is tested with unknown physiological signals of other persons. Table 1 lists a short review of previous
works in emotion recognition using physiological signals. The table illustrates for each work, (a) the
stimuli that were used for emotion elicitation, (b) physiological signals that were measured, (c) which
emotional states were recognized, (c) the number of subjects who participated in the experiments,
(d) which features and classification methods were applied, and (e) the respective performance of the
recognition approaches used.

We can observe that, regarding the subject-dependent approaches, Haag and Goronzy [18]
have extracted, as features, both running mean and running standard deviation slopes from five
physiological signals and reached the highest accuracy values of 96.58% for subject-dependent cases
by involving a neural network classifier for recognizing three arousal levels (high, medium and
low). Kim and Andre [11] proposed an approach based on a Linear Discriminant Analysis (LDA)
classification scheme for classifying four emotions (joy, anger, sad and pleasure) involving four
physiological signals and reached 95% accuracy for subject-dependent cases, but the accuracy decreased
to 70% for subject-independent ones. Moreover, Lisetti and Nasoz [14] could reach 91.7% classification
subject-dependent accuracy for six emotions (amusement, frustration, anger, fear, sadness and surprise).
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On the other hand, for subject-independent approaches, the highest accuracies 99.5% was reached
by [20] for recognizing one emotion (stress) using classification method based on fuzzy logic. WanHui
et al. [12] could reach 86% subject-independent accuracy for two emotions (joy and sadness).

In our previous work [13], we have developed a subject-independent emotion recognition
approach based on cellular neural networks (CNN) and we could thereby reach 82.35% of accuracy
for four emotional states (High/Low arousal and High/Low valence). Overall, one should notice the
following core building bricks or aspects of relevance of/for a robust and reliable emotion recognition
system: the sensors used, the number of subjects involved in training and testing, the number emotional
states to be detected, the stimuli used for inducing emotions, the features extraction and selection, and
the classification method.

Table 1. Literature review on emotion recognition using physiological and speech signals.

Ref.
No Signals Features Classifiers Emotion

Parameters Stimuli No of
Subjects

Accuracy
in %

[11]

EMG
ECG
EDA
RSP

Statistical, Energy,
Sub band Spectrum,

Entropy

Linear
Discriminant

Analysis

Joy,
Anger,

Sad,
Pleasure

Music
3 ,

MITdatabase

95 (Subject-
Dependent)
70 (Subject-

Independent)

[14]
EDA
HR
ST

No specific
features stated

KNN,
Discriminant

Function
Analysis,

Marquardt
backpropagation

Sadness,
Anger,
Fear,

Surprise,
Frustration,
Amusement

Movies 14
91.7 (Subject-
Dependent)

[18]

EMG
EDA
BVP
ECG
RSP

Running mean
Running

standard deviation
Slope

NN
Arousal,
Valance

IAPS
(Visual

Affective
Picture
System)

1

96.58 Arousal
89.93 Valence

(Subject-
Dependent)

[12] ECG Fast Fourier Tabu Search
Joy,

Sadness Movies 154
86 (Subject-

Independent)

[20]
EDA
HR

No specific
features stated fuzzy logic Stress

Hyperventilation
Talk preparation 80

99.5 (Subject-
Independent)

[19]

BVP
EMG

ST
EDA
RSP

Statistical Features
SVM,

Fisher LDA

Amusement,
Contentment,

Disgust,
Fear,
Sad,

Neutral

IAPS 10
90 (Subject-
Dependent)

[9]

EMG
EDA
ECG
BVP
ST

RSP
SPEECH

Statistical Features,
BRV,

Zero-crossing,
MFCCs

KNN
Arousal,
Valance Quiz dataset 3

92 (Subject-
Dependent)

55 (Sub
Independent)

[21]
EDA
HR

EMG

No specific
features stated HMM

Arousal,
Valance Robot Actions 36

81 (Subject-
Dependent)
66 (Subject-

Independent)

[13]
EDA
ECG
ST

Statistical Features
average power

SCL
SCR

CNN
Arousal,
Valance Movies 10

82.35 (Subject-
Independent)

EMG: Electromyography; ECG: Electrocardiography; EDA: Electrodermal Activity; RSP: Respiration; ST:
Skin Temperature; EEG: Electroencephalogram; BVP: Blood Volume Pulse; HR: Heart Rate; KNN: k-nearest
neighbors algorithm; SVM: Support vector machine; HMM: Hidden Markov Model; ANN: Artificial Neural
Network; CNN: Cellular Neural Network.

2.3. The Present Work

In this work, we are proposing a universal robust emotion recognition system, which should
perform well in environments that are different from the ones of its initial training (i.e., different
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subjects, different elicitation instruments/contexts, and different physiological sensors brands).
The most well-known features in the literature are extracted from three physiological signals—EDA,
ECG and Skin temperature—in order to classify the emotional states of different subjects. More details
about the features extraction are presented in the Section 4.3.

For a robust subject-independent classification of the induced emotional states for different test
subjects, this paper does involve a so-called “Adaptive CNN”. The adaptive CNN is presented in
Section 4.5 further below in this paper. Regarding the training set, a publicly available emotion
reference database, MAHNOB [26], is used for training the proposed system, whereby, however, data
collected from our special experimental setting are used for testing purposes. Moreover, in order to
ensure a robust performance while testing in different testing contexts/environments, an automatic
calibration model is introduced for the purpose of calibrating the testing data with respect to the ones
involved in the initial training process.

Therefore, our proposed system consists of two major novel contributions for handling the
concern of ensuring a robust and universal subject-independent human emotion recognition. The first
contribution is:

• The automatic features’ calibration for an adaptive adjustment of the extracted features by
translating them toward the correlated subject in the training set. Here, we use the collaborative
filtering concept of [27] to calculate the adjustment weight of the extracted features from a new
subject by finding its most correlated subject from the training data.

• A novel machine learning model based on Cellular Neural Networks (CNN) that delivers
promising results. Here, we improved the performance of the CNN processor by using a hyperbolic
tangent sigmoid transfer function [28] as output nonlinear function of the CNN states and the
echo-state network ESN [29] paradigm for an efficient training of the CNN processor model.

3. Physiological Signals Involved in This Study

Different types of physiological signals can be measured from human beings by electronic
measurement or sensor artefacts. After appropriate processing, information related to health and/or
emotion can be extracted from those signals. In this study, the following physiological signals EDA,
ECG and ST are considered due to the better performance achieved by using just these signals and the
corresponding physiological sensors are more comfortable to attach to a human body.

• Electrodermal Activity (EDA): It refers to skin conductivity (SC) that basically measures the skin’s
ability to conduct electricity, whereby the conductivity increases if the skin is sweaty. During the
experience of physical arousal, the central nervous system is activated and the sweat is produced
in the endocrine glands, which measurably changes the conductivity of the skin [30].

EDA consists of a slowly changing part called Skin Conductance Level (SCL), which is overlaid
by other short and fast conductance changes called phasic components. The phasic components
can be separated into two different types. The first one is the Skin Conductance Response
(SCR), where the peak occurs in reaction to a stimulus. The second one is the Non-Specific
Skin Conductance Response (NS.SCR), which is empirically very similar to SCR, but, however,
occurs spontaneously without any stimulus [6]. In our study, the EDA signals are measured
with a sampling rate of 4 Hz using a wearable wireless device (Empatica—E4 [31]) placed on the
human wrist.

• Electrocardiogram (ECG): It refers to a measurement setting that measures the electrical activity
of the heart over a period of time. In general, ECG signals consist of three main waves. The first
wave is the P wave, which indicates the depolarization of the atrium. The second wave is the QRS
wave, which corresponds to the start of ventricular contractions. After the ventricles have stayed
contracted for a few milliseconds, the third wave T appears. This wave occurs when the ventricular
repolarizes [32]. The wearable wireless BioradioTM device [33] (Great Lakes NeuroTechnologies,
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OH, USA) is used to measure the ECG signal with three electrodes (plus one ground electrode)
placed on the body at a sampling rate of 500 Hz.

• Skin Temperature (ST): The skin temperature is recorded with an optical infrared thermometer.
The ST signals are measured with a sampling rate of 4 Hz using a the wearable wireless device
(Empatica—E4 [31]), which also incorporates the EDA measurement artefacts and is placed on the
human wrist.

4. Research Methodology

This section provides a description of the overall research methodology, a comprehensive
presentation of the physiological reference dataset MAHNOB used for training, and the presentation
of our lab dataset used for final testing and validation of the proposed emotion recognition system
developed in this study. Furthermore, a full description of the involved feature extraction methods
of each physiological signal is provided. Moreover, our proposed feature calibration model and the
adaptive CNN classifier are presented.

The overall architecture of our proposed system is illustrated in Figure 1. After the preprocessing
stage of all involved physiological signals, the features’ extraction step (involving best related concepts
from the relevant state-of-the-art) is explained. Moreover, the novel “Features’ Calibration” model
to improve the performance of the subject-independent classification is explained. At the end of this
section, our proposed Cellular Neural Network (CNN) based classification model is described and
demonstrated. It should be noticed that this CNN classifier will be benchmarked (see Section 5) with
other relevant competing classifiers from the state-of-the-art.

Figure 1. The general architecture of the proposed emotion recognition system.

4.1. Data Collection and Experiment Procedure

In the frame of this study, a publicly available reference dataset of data signals is used for
training, testing and an initial validation of the developed emotion detection approach. For the final
validation of the system, however, a new own special set of emotion analysis experiments (on new real
persons) has been conducted for a last comprehensive stress-testing for a final validation. The public
dataset used is called MAHNOB and has been collected by Soleymani et al. [26]. It includes different
physiological signals from 30 young healthy adult participants between 19 to 40 years, 17 female
and 13 male. All signals were downsampled to 256 Hz and the trends (overall patterns that are not
intrinsic to the data) of both ECG and galvanic skin response (GSR) signals were removed [26]. Each of
the involved subjects watched 20 emotional video clips and performed a self-assessment of his/her
related respective degree of both valence and arousal by using the so-called Self-Assessment Manikins
(SAM) questionnaire [34]. Moreover, in our own data collection experiments for emotion analysis
(used for the final system validation), six healthy volunteers were involved. All were healthy subjects
(three male and three female) in the age ranges of 19 to 30 years. The identity of subjects is not known
(i.e., anonymous) and they were not allowed to consume any stimuli like drugs, alcohol, or caffeine
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before the experiment. At first, a suitable interface has been implemented for the automated projection
of the emotion-related videos and the corresponding self-assessment of the emotions each time a
video is shown. In a preliminary study, 100 video clips containing movie scenes or short videos from
youtube.com were manually selected and showed online to anonymous participants. The participants
were asked to self-assess their respective related emotion after watching each video by reporting
the respectively experienced arousal and valence levels on a nine-points scale using Self-Assessment
Manikin (SAM) [34], on one side, and also the experienced respective universal discrete emotions:
happiness, surprise, anger, disgust, sadness, and fear. Seventeen video clips from the clips that
received the highest number of tags in different emotional states were chosen based on the preliminary
study. The selected videos were kept as short as possible (between 3 and 5 min) in order to avoid
multiple emotions reacting to the same stimulus from occurring. Hereby, one has taken into account
the information that emotion specialized psychologists recommend video lengths in the range of one
minute to a maximum of ten minutes for the elicitation of a single emotion [35,36].

The core of our own above-mentioned data collection experiment starts by providing a set of
instructions to the participant for him to understand the experiment procedures (i.e., the steps) and the
meaning of the different scales used for self-assessment. After the instructions have been understood
by the participant, the sensors are placed on him and the sensors are checked to see whether they
function well. Then, the participant is led into the experiment room. At the beginning, the participant
performs a trial session to get familiar with the technical system supporting both the emotion elicitation
and the related data recording. In this trial phase of the process, a short video is shown, followed by a
trial self-assessment by the participant. After the trial phase is judged positive, the recording of the
physiological signals is activated and the experiment session starts when the participant clicks the
START button on the computer screen. In the session, 17 video clips are presented to the participant in
17 sequences, each consisting of the following steps: (a) a 5 s counter in order to the get the participants’
attention; (b) 3 to 5 min display of the video clip; and (c) the self-assessment by the participant of
the respectively experienced emotion by giving related subjectively perceived levels or values of the
following parameters: arousal, valence, liking, dominance, and the discrete emotion state.

4.2. Data Synchronization and Target Classes

The physiological data generated by our experiment are synchronized by using the session
starting time as a reference timestamp. Moreover, the signals from the reference database MAHNOB
and the signals from our experiment have different sampling rates. To correct this fact, all signals
have been re-sampled as the following: ECG is re-sampled to 256 Hz, EDA re-sampled to 4 Hz and ST
re-sampled to 4 Hz. Regarding the target classes, in this paper, we have mapped the scales (1–9) into
two levels (classes) of each valence and arousal state according to the SAM ratings. The valence scale
of (1–5) was mapped to ”Low-Valance” and (6–9) to ”High-Valance”, respectively. The arousal scale of
(1–5) was mapped to ”Low-Arousal”, and (6–9) to ”High-Arousal”, respectively.

4.3. Feature Extraction

In this paper, the most commonly used features from the relevant state-of-the-art are taken and
used as such, as we do not intend to create new features. This is the case for each physiological signal
involved/considered in this study.

From each of the three involved physiological signals, we have extracted 12 EDA features, eight
ECG features and five skin temperature features.

4.3.1. EDA Features

The EDA signal consists of two parts: the slow changing part is called the skin conductance level
(SCL) and the phasic components part is called skin conductance responses (SCRs) (see Section 3).
Statistical measures extracted from the SCL analysis have been found to be well-correlated with
emotion [37]. Here, the following statistical features are used: the mean, the standard deviation,

youtube.com
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the maximum, the minimum, the root mean square, the mean of the first derivation, the mean of the
second derivation, and the mean of negative slope. For SCR analysis, we use, as features, the SCR
occurrences rate from the very low frequency band (0–0.1 Hz), the response latency of the first
significant SCR, the sum of SCR amplitudes, and the sum of SCR areas [37].

4.3.2. ECG Features

ECG features are extracted from both the time-domain and frequency domain. From the time-domain,
the following statistical features are calculated directly from the ECG signals: the mean, the standard
deviation of the beat-to-beat interval (NN interval), the root mean square of differences of successive
NN intervals, the number of successive differences that are greater than 50 ms, and the percentage of
total intervals that successively differ by more than 50 ms [38].

From the frequency domain, we use, as features: the average power of the low frequency range
(0.04–0.15 Hz), the average power of the high frequency band (0.15–0.4 Hz), and the ratio of the power
within the low frequency band to that within the high frequency band [38].

4.3.3. Skin Temperature Features

The standard statistical feature moments (mean, max, and STD) are calculated from the skin
temperature signal.

4.4. Automatic Calibration Model

The physiological expressions of emotion might differ and depend on age, culture and many other
social issues. This makes subject-independent emotion recognition a very challenging task. Moreover,
the challenge becomes even more complex whenever emotion recognition is applied on subjects in
different environments, where both elicitation materials/contexts and physiological sensors brands are
much different from the ones involved in the training phase. To overcome this problem, this work tries
to find out whether the test subject has possibly similar physiological reactions like a certain subject
from the training set. By similarity, it is meant that the two subjects have almost the same physiological
reaction in response to a given emotion related stimuli. Hence, after finding the most correlated subject
from the training set, we transform the features set of the test subject towards the features space of the
equivalent correlated subject from the training set. In this way, the features of the new test subject are
calibrated from the perspective of the training environment.

Practically, from the training set, the data of each subject is clustered to a specific number of
clusters using an unsupervised learning method. The centroids of each subject are kept to be used
during calibration. Through testing, the features set of a new test subject is calibrated by shifting his
features set towards its most correlated subject from the training data; this is based on the idea of and
inspired from the so-called collaborative filtering [27]. Here, the correlation between the features vector
of the new subject and the centroids of the training subjects is calculated. Then, from the correlation
results, the centroid with the best correlation is selected and the feature set of the new subject is shifted
towards this selected centroid. In general, the proposed model consists of two phases, a preparation
and an online phase:

4.4.1. Preparation (i.e., Offline) Phase

In this phase, we may determine reference points from the features of each subject from the
training set. Those reference points could then be used in the online phase to correlate them with
the features of a new test subject. Finding meaningful reference points for the training subjects is the
key step to calibrating the new features from test subjects robustly. Considering the representative
(mean centroid) of the subject’s features as a reference point is not useful because the subject’s features
are representing different emotional states and the center might represent just one emotional state.
This would lead to a wrong calibration. Moreover, selecting the centroids of the emotional classes as
reference points (in our case, we have four emotional states, which leads to four centroids for each
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subject), is not accurate because the new features set (from a test subject) would be shifted towards a
specific emotion level.

However, to solve this issue, we propose an unsupervised clustering method to select different
centroids from each subject. Here, the k-means clustering [39] is considered. After selecting the
initial centroids using K-means++ algorithm [40], the Cosine distance function is used to calculate the
distance between the initial centroids and the feature sets (see Equation (1)):

d(x, c) = 1− cos(x, c) = 1− x.c
|x||c| , (1)

where x is an observation of the feature sets, c is the initial centroid and d(x, c) is the Cosine distance.
Furthermore, the number of clusters has a big impact on the overall performance of our proposed

system. Choosing the correct number of clusters is often ambiguous and depends on the shape and
scale of the distribution of points in a data set. The Gaussian-means (G-means) algorithm [41] is
involved to determine the number of clusters. The G-means algorithm starts with a small number of
k-means centers (start with one cluster), and then keeps splitting clusters until the data assigned to
each cluster has a Gaussian distribution (see Algorithm 1).

Algorithm 1 G-means algorithm.
1: Input: X the set of data and α confidence level = 90% (Gaussian)
2: Output: The new set of centers C (using K-means++ [40])
3: Given C the initial set of centers
4: C ← k−means(C, X)
5: Let {xi|class(xi) = j} be the set of the data assigned to center cj
6: Check if each {xi|class(xi) = j} follow a Gaussian distribution (at confidence level α)
7: if The data follow a Gaussian distribution then
8: Keep cj
9: else

10: replace cj with two centers (using K-means++ [40]).
11: end if
12: Repeat from step 5 until no more centers are added.

Finally, the total number of clusters after applying the G-means algorithm is between 8 and
14 clusters per subject. In addition to clusters centroids, the standard deviation of each cluster is
calculated to be used later in the online phase to tune the feature transforming.

4.4.2. Online Phase

In the online phase, after a signal of a test subject has been pre-processed and the features
extraction process is done, we try to find the correlation between the new features set and the calculated
cluster centers of each subject in the training set from the offline phase. One popular measure of
similarity in Collaborative Filtering is the Pearson’s correlation coefficient. Given the features vector X
and the centroid of one cluster C (here, the features vector and the centroid have the same length N),
the Pearson’s correlation coefficient r between X and C is given in Equation (2) [42]:

rx,c =
∑N

i=1(Xi − µx)(Ci − µc)

(N − 1)σxσC
, (2)

where µx =
∑ X
N

, µc =
∑ C
N

,

σx =

√
∑N

i=1(Xi − µx)2

N − 1
, σc =

√
∑N

i=1(Ci − µc)2

N − 1
,
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where µ is the mean, σ is the standard deviation and N is the length of the features vector and of the
cluster centroids.

There, the result of Pearson’s correlation varies between −1 and 1, where −1 means negative
correlation, 0 means no correlation, and 1 means positive correlation. Next, the center of the highest
absolute correlation |r| with the features vector of a new subject is selected to calculate the distance d
between the center and the new features vector using Euclidean distance (see Equation (3)):

dC,V =

√√√√ N

∑
i=1

(ci − vi)2, (3)

where C and V, respectively, are the center and the new features vector of the length N. Moreover,
to guarantee that the features vector of the new subject is not overlapped with the center of the
correlated subject during calibration, the distance dC,V is normalized using Equation (4):

DC,V = dC,V ∗ Jn,

dn =
DC,V − C

σC
, (4)

where C is the centroid, Jn = (1, 1, ..., 1) is a vector of all-ones of the length N (same length as the
centroid C) and σC is standard deviation of the cluster of the centriod C.

Finally, the features vector of the new subject is calibrated by translating the features towards the
centroid by applying the element wise subtraction between the features vector and the normalized
distance dn, see Equation (5):

Dn = dn ∗ Jn,

Vnew = V − Dn. (5)

4.5. Classification

In this chapter, a Cellular Neural Network (CNN) based classification is introduced. The proposed
CNN architecture is an improved version of our previous works [2,13]. CNN was suggested by Chua
and Yang (1988) [43]. It combines the advantages of Cellular Automata (CA) and artificial neural
networks (ANNs) but differentiates by its nonlinear dynamical relation between cells and local
connectivity. CNN is a network of adjacent coupled nonlinear cells where the relationship between the
connected cells is modelled by a system of differential equations. The general state equation of a CNN
cell is given in Equation (6):

dxi(t)
dt

= −xi(t) +
n

∑
j=1

Ai,jyj(t) +
m

∑
j=1

Bi,juj(t) + Bi, (6)

where xi(t) is the current system state and uj(t) is ith input. A = (a1,1...an,n) is the feedback template,
B = (b1,1...bn,m) the control template, Bi is the cell bias and yi(t) is the output nonlinear function of the
state (see Equation (7)):

yi(t) =
1
2
(|xi + 1| − |xi − 1|). (7)

The default nonlinear function (Equation (7)) proposed by Chua is very simple and not sufficient
for highly nonlinear problems and multi-class classification. To overcome this drawback, the nonlinear
function proposed by Chua in Equation (7) is replaced by hyperbolic tangent sigmoid transfer
function [28] (see Equation (8)):

yi = tansig(xi) =
2

1 + e−2xi
− 1. (8)
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Moreover, in order to generate the related CNN output, the differential equation Equation (6),
including Equation (8), have to be solved. This is done using Matlab Simulink [44] (R2015b, MathWorks,
Natick, MA, USA) (see Figure 2).

Figure 2. The Cellular Neural Network (CNN) classification model (SimulinkModel A).

In this study, three CNN models are implemented for the three physiological sensors EDA, ECG
and ST (CNN model for each sensor). The outputs of each CNN model are combined into the platform
output through a linear regression (see Equation (9)):

g(t) = AglobalY(t), (9)

where Y = (yecg−cnn
1 ...yn1ecg−cnn, yeda−cnn

1 ...yeda−cnn
n , yst−cnn

1 ...yst−cnn
n ) is a vector of all three CNN

outputs and Aglobal is the output linear regression template.
Figure 3 illustrates the related Simulink scheme of the multi-CNN modal emotion state recognition.

All input signals are connected to the related CNN model. Each CNN block contains the same scheme
with different templates’ configurations. The CNN outputs are multiplexed and biased with a constant
to a single vector. The output of the multiplexer is either used to identify the linear regression template
Aglobal during the training phase or to determine the estimated emotional state that is used for the
testing phase.

Figure 3. The multi-CNN modal emotional state estimation (SimulinkModel B).
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4.5.1. Learning Phase

In order for the proposed model to perform properly, a learning procedure (training) needs to be
applied on the model. The target of the training is to identify the best feedback templates, the control
templates, the biases and the configuration of the CNN state equation. In this phase, we have an
optimization problem to deal with. In our previous work, we use the Particle Swarm Optimization
(PSO) [45]. The main issue of this method is the increasing time-consumption when dealing with
highly dimensional CNN (i.e., with a large number of cells). In order to solve this issue, the echo-state
network ESN is used to provide a more efficient CNN approach.

ESN is an innovative approach proposed by Jaeger [29] for training recurrent neural networks
(RNN) where it showed excellent performance. In ESN, the state feedback templates, the control
templates and biases templates are randomly generated. The random generation process is done
as follows:

• A(n × n matrix) is generated as normally distributed sparse symmetric matrix with N(0, 1) and
a sparseness measure of 0.5. The resultant matrix is then divided by its own largest absolute
eigenvalue. These generating constraints are important to respect the properties of the echo state
(sparsity and spectral radius <= 1) that give stability for the network as suggested by [46].

• B(n × m matrix) and I(n × 1 vector) are generated randomly with a standard normal distribution
N(0, 1) and scaled by a factor equal to (0.1).

After the CNN templates (ECG-CNN, EDA-CNN and ST-CNN) have been generated, the output
layer is finally trained using the Ridge Regression (RR) [46], Equation (10):

Aglobal = g(t)Y(t)T(Y(t)Y(t)T + βC)−1, (10)

where g(t) is the desired output (see Equation (9)); C is the identity matrix and β is the regularization
coefficient, which is determined using the cross validation technique. It is necessary to add β in the
Ridge Regression to avoid an ill-conditioned problem of the regular least squares, in cases where that
Y(t)Y(t)T is singular or nearly singular [2]. Finally, the following Simulink configurations have to be
done to apply the proposed CNN classification:

• Solver type Fixed-step,
• Solver ode1 (Euler’s method [47]),
• Step size 0.5 with holding final value,
• Initial condition of CNN cells: initial state is zero.

Moreover, we are using Algorithm 2 to train our model and Equation (10) to calculate the
performance accuracy of the training:

Accuracy =
Number o f correctly classi f ied samples

Total number o f test samples
. (11)
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Algorithm 2 The learning algorithm of the CNN.
1: Input: Features of physiological signals
2: Output: CNN Templets and Aglobal
3: Generate CNNs Templates
4: Set Aglobal to 0
5: for n = 50, 100, 150, 1000, 1500 do
6: for β = 0.1, 0.01, 0.001, 0.0001, 0.00001 do
7: for i = 1, ..., 10 do
8: Using the ith learning dataset
9: Run SimulinkModelB

10: Read Y from SimulinkModelB
11: Using Y and g
12: Estimate Aglobal using Equation (10)
13: Using the ith learning dataset with the estimated Aglobal
14: Run SimulinkModel B
15: Read the emotion states from SimulinkModelB
16: Calculate the Accuracy
17: Set the Accuracy to Accuracy repository(i)
18: end for Set the Global Parameter(n, β) = the average of the Accuracy repository
19: end for
20: end for
21: Select the best CNN configuration from the Global Parameter

4.5.2. Testing Phase

After the CNN templates and Aglobal is computed, Algorithm 3 is used to test our model.

Algorithm 3 The testing algorithm of the CNN.
1: Input: Features of physiological signals
2: Output: The emotional state
3: Using The trained CNNs
4: Run SimulinkModelB
5: Read The emotionl state from SimulinkModelB

5. Obtained Results

This section discusses and comments on the performance results obtained by the proposed
system. In order to benchmark our model, we selected the following four well-known classification
concepts: (a) SVM with radial basis function (RBSVM) [48], (b) Naive Bayes classifier (NB) [49],
(c) k-nearest neighbors (KNN) [50] and (d) Artificial Neural Network (ANN) [51]. Table 2 illustrates
the configuration parameters of the selected classifiers including the proposed CNN.

Table 2. The configuration parameters of the involved classifiers.

Classifier Type Parameters

RBSVM [48] C-SVC KernelType= radial basis function, eps= 0.001, gamma= 0.0001
NB [49] NaiveBayes -k UseKernelEstimator= True

KNN [50] Default k = 2, Distance = euclidean
ANN [51] Multilayer Perceptron hiddenlayer = 20, learningRate = 0.1, momentum = 0.2

CNN Echo State n = 150, β = 0.0001

Moreover, four performance measures are considered: Accuracy [52], Specificity, Precision and
Recall [53] are calculated to give a full evaluation for the performance of our proposed system. In order
to obtain valid results and the reliability of the proposed system in the same/different environment,
the performance measurements are applied on three levels.
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5.1. Overall System Performance While Using the Reference Database MAHNOB

The data generated from the subjects of MAHNOB dataset are used to evaluate our classification
model in a subject independent evaluation. The data of EDA, ECG and ST sensors are divided into 70%
for training and 30% for testing. The training and test sets are split from different subjects to ensure
the independence between both sets.

In order to validate the combinations of different sensors, Table 3 presents the recognition accuracy
based on different combinations of sensors. The results show that involving EDA, ECG and ST signals
improves the overall performance. Therefore, we will focus on the performance using these signals
(EDA, ECG and ST) in the following evaluation.

Table 3. The recognition accuracy in % with respect to different signals combinations.

Physiological Sensor KNN NB ANN SVM CNN

Single sensor
ECG 61.2 53.58 53.92 62.91 56.41

EDA 63.73 53.1 60.32 68.4 75.34

ST 33.12 35.7 42.64 41.8 42.6

Multi sensors

EDA + ECG 71.12 55.4 60.78 72.64 83.43

ST + ECG 68.45 54.53 55.86 70 68.63

ST + EDA 69.13 55.34 58.43 69.64 78.5

ST + EDA + ECG 76.88 56.88 62.5 77.5 89.38

Moreover, Table 4 shows the classification performance results (Accuracy, Specificity, Precision
and Recall) obtained for all considered classifiers.

Table 4. Performance measures in percentage while using the reference database MAHNOB for both
training and testing data (subject-independent evaluation).

Measure KNN NB ANN SVM CNN

Accuracy 76.88% 56.88% 62.5% 77.5% 89.38%
Specificity 95% 86.67% 85.84% 95% 97.5%
Precision 81.82% 57.9% 57.5% 82.86% 92.11%

Recall 67.5% 55% 57.5% 72.5% 87.5%

The best performance is reached by our proposed CNN classifier, which exhibits a
subject-independent accuracy value of 89.38%, a specificity value of 97.5%, a precision value of
92.11% and a recall value of 87.5%.

5.2. Overall Performance Evaluation While Using Both Training and Testing Data from Our Experiment

The physiological data from six subjects collected by appropriate sensors in our experiment are
considered here for a further evaluation of our model. Similarly to the previous evaluation, the data
are divided into 70% for training and 30% for testing. The training and test sets are selected from
different subjects. Table 5 illustrates the performance results obtained. It can be seen that our CNN
classifier achieved the best performance (81.88% accuracy). However, this performance is weaker when
compared to the performance obtained in the previous evaluation where MAHNOB provides both
training and testing data. One main reason can explain this weaker performance of our experiment
when compared to the previous evaluation: the total number of subjects in our experiment is too small,
just six (because it was expensive to involve many subjects). Especially for a good training, a sufficient
large number of training data samples is needed. We have wished several subjects in the ranges of
some dozens (at least 30 to 60). Overall, to get good statistics, a large sample set is recommended.
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Table 5. Performance measures in percentage while using our experiment for both training and testing
data (subject-independent evaluation).

Measure KNN NB ANN SVM CNN

Accuracy 56.25% 25.63% 45.63% 71.88% 81.88%
Specificity 80% 72.5% 83.34% 89.17% 95%
Precision 50% 25% 42.86% 67.5% 82.86%

Recall 60% 27% 37.5% 67.5% 72.5%

5.3. The Overall Performance Using the MAHNOB Reference Database for Training and Data from Our
Experiment for Testing

In order to ensure the generalization of our proposed system, it is important to train the system on
one environment (MAHNOB dataset) and test it on another environment (data from our experiment).
Here, we did use all the data from MAHNOB dataset for training and the data from our experiment
for testing. Table 6 shows the performance of our model as obtained for the six subjects individually
before using our proposed automatic calibration model. Overall, one can see that the performance is
very low and classifiers do not do better than a random choice. The best accuracy performance over all
subjects is 57.19% and has been reached by our proposed CNN model.

Table 6. The performance accuracy in percentage while using the MAHNOB reference database for
training and data from our experiment for testing (without calibration model).

Subject KNN NB ANN SVM CNN

Subject1 30.54% 26.43% 31.21% 14.31% 58.76%
Subject2 44.15% 22.23% 30.76% 20.87% 60%
Subject3 32.25% 13.15% 34.89% 25.90% 54.38%
Subject4 29.64% 19.22% 28.33% 20.33% 57.5%
Subject5 29.90% 25.21% 12.85% 22.58% 59.38%
Subject6 27.45% 10.89% 25.07% 17.32% 53.13%

All Subjects 32.33% 19.53% 27.18% 20.22% 57.19%

Many environment parameters might lead to the low performance such as difference in sensors’
brands (between training and testing), elicitation materials, subject, gender, age, etc. Furthermore,
calibrating the signals of a new subject before classification might significantly increase the overall
classification performance. Table 7 illustrates the improvement in the classification accuracy for each
subject after the calibration of the subject data using the proposed automatic calibration model. Table 8
presents a classification performance comparison between the proposed CNN before and after using
the automatic calibration model. We can see that the performance accuracy of the the proposed CNN
model has increased by 13.86% and reached 71.05% after involving the calibration model.

Table 7. The performance accuracy in percentage while using the MAHNOB reference database for
training and data from our experiment for testing (using calibration model).

Subject KNN NB ANN SVM CNN

Subject1 44.58% 31.88% 55.63% 48.54% 70.63%
Subject2 53.93% 29.12% 58.38% 50.82% 81.26%
Subject3 48.62% 40.19% 60.45% 42.73% 71.88%
Subject4 35.55% 27.45% 33.77% 44.21% 72.5%
Subject5 24.29% 30.83% 22.36% 43.16% 63.13%
Subject6 25.23% 23.28% 30.83% 26.87% 66.88%

All Subjects 38.7% 30.46% 43.57% 42.73% 71.05%
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Table 8. The performance measures of the CNN model in percentage before and after involving the
calibration model.

Measure CNN without Calibration Model CNN with Calibration Model

Accuracy 57.19% 71.05%
Specificity 84.31% 89.87%
Precision 55.86% 69.84%

Recall 59.59% 70.42%

6. Discussion

In this paper, we have proposed a novel subject-independent emotion recognition system that
shows promising results. One of the major contributions in this paper is the proposed CNN classifier.
The classifier is applied on MAHNOB dataset first, just to show how the proposed classifier overcomes
the standard classifiers as KNN, ANN, NB and SVM. Table 4 shows the promising performance
measures of our CNN classifier using the MAHNOB dataset. However, SVM performs better than
KNN, NB and ANN with 77.5, 95, 82.86 and 72.5 for accuracy, specificity, precision and recall,
respectively. In contrast to that, our CNN model performs clearly better with 89.38, 97.5, 92.11
and 87.5 for accuracy, specificity, precision and recall, respectively. This can be explained because of
the following reasons: (a) the nature of emotion recognition is a highly nonlinear dynamical system.
Therefore, the history of inputs might affect the outputs. Thus, the used model should have a memory
that considers the history of its inputs; this is considered by our CNN model; (b) because of the
high parallelism of the CNN processor, this makes our CNN model a real-time model than can be
implemented on embedded platforms easily [54]; and (c) using the paradigm of CNN for classification
purposes showed promising results in the state-of-the-art [55,56].

Moreover, regarding our proposed dynamic calibration, Tables 6 and 7 show the advantage
of such a calibration module when we tried to train our classification model using the MAHNOB
dataset and test it using our experiments. Table 6 still proves that, even without calibration, the CNN
classifier performs well and still has a better accuracy compared to KNN, NB, and ANN, which is
57.19 in average. However, Table 7 shows the advantage of such a calibration module when we
tried to train our classification model using the MAHNOB dataset and test it using our experiments
after calibration. It lists the accuracy measurements for all six subjects with an accuracy of 71.05
on average. The calibration module improved the overall accuracy performance by more than 13%.
This improvement can be explained due to the nature of the calibration module, which emulates the
nature of human emotions that might be represented in shifted measurements values using different
types of sensors. We believe that having a universal model that can recognise human emotions is
highly required for different applications. Therefore, our proposed dataset has been built to make
sure that a universal model for human emotion recognition is possible. This was the major research
question we tried to answer.

Concerning Wearable Electrocardiogram (ECG) sensors, they cannot be considered nowadays
as they are very intrusive sensors. However, due to recent innovations, ECG sensors have become
available in the form of ”plaster” sensors that are less intrusive [57]. Additionally, in [58], they do
propose a fully-wearable medical garment for mobile monitoring of cardiac biopotentials from the
wrists or the neck with minimum restriction to regular clothing habits.

7. Conclusions

We presented a subject-independent emotion recognition system using physiological signals
(EDA,ECG,ST) that can recognize four different emotions robustly. The proposed system is evaluated
by involving a benchmark database and an emotion elicitation experiment using short video clips.
The classification results of CNN (benchmarked with other state-of-the-art machine learning methods)
show a significant improvement of the accuracy.
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Furthermore, we found out that the subject independent human emotion recognition is one of
the most challenging problems in the field of Machine Learning. This problem exacerbates when
the proposed emotion recognition system should perform robustly on different environment where
subjects, elicitation materials and physiological sensors brand/factories are different.

To address this challenge, we could show that our automatic calibration model could take a step
towards a global subject independent emotion recognition system by improving the performance of
the recognition significantly. A considerable aspect for the future is to improve the calibration model
and enhance the features’ extraction approaches in order to improve the overall performance.
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