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Abstract: Bearings-only tracking only adopts measurements from angle sensors to realize target
tracking, thus, the accuracy of the state prediction has a significant influence on the final results
of filtering. There exist unpredictable approximation errors in the process of filtering due to state
propagation, discretization, linearization or other adverse effects. The idea of online covariance
adaption is proposed in this work, where the post covariance information is proved to be effective
for the covariance adaption. With theoretical deduction, the relationship between the posterior
covariance and the priori covariance is investigated; the priori covariance is modified online based on
the feedback rule of covariance updating. The general framework integrates the continuous-discrete
cubature Kalman filtering and the feedback rule of covariance updating. Numerical results illustrated
that the proposed method has advantages over decreasing unpredictable errors and improving the
computational accuracy and efficiency.

Keywords: cubature Kalman filtering; bearings-only tracking; feedback; nonlinear filtering;
continuous-discrete systems

1. Introduction

Bearings-only tracking (BOT) [1] has universal applications in the field of navigation, especially in
passive target tracking. In the BOT process, only angle parameters measured by the angle sensors
(such as passive angle sensor, sonar, antenna array, sensor network, infrared sensor) are adopted
to achieve the localization and tracking of the target object. The accuracy of state prediction and
measurement information are two main factors that influence results of the target tracking. In recent
years increasing accuracy of bearings with the development of the passive angle sensors has been
witnessed. Generally, filtering methods describe the state process in a discretized form, such as
extended Kalman filtering (EKF) [2], unscented Kalman filtering (UKF) [3], particle filter (PF) [4],
cubature Kalman filtering (CKF) [5] and so on. The form is propitious for calculation and is convenient
to implement mathematical deductions. However, the state process of a BOT system is continuous,
yet the measurement process is discrete, and discretization of state process would inevitably lead to the
increase of estimation errors. Thus, the continuous-discrete (CD) filtering methods are more suitable
to solve a BOT problem than those traditional filtering methods. The CD filtering methods can also be
applied for target tracking [6], finance [7], stochastic control [8], etc.

While state models for most target tracking algorithms are described as stochastic
differential equations (SDEs), CD filtering methods are quite different from traditional methods.
Thus, mathematical models for CD filtering methods are more complicated than traditional ones,
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while the CD methods are potentially more accurate [9]. The common form of the stochastic system
can be expressed in the form of stochastic differential equation (SDE):

dx(t) = F(x(t), t)dt + G(t)dw(t), (1)

where x(t) ∈ Rn is the n-dimensional target state vector, F : Rn ×Rp → Rn is known as the drift
function, G(t) is the diffusion matrix, and w(t) is a Brownian motion, which is known as a Wiener
process. The alternative form is shown below:

dx(t)
dt

= F(x(t), t) + G(t)
dw(t)

dt
(2)

This form known as Langevin form in Physics is widely used, while the derivative of the Wiener
term dw(t)

dt actually does not exist formally. It should be written as Equation (1). Moreover, Equation (1)
cannot be solved simply as the following integral function if the diffusion matrix is a random process
related to noises.

x(t) = x(t0) +
∫ t

t0

F(x(s), s)ds +
∫ t

t0

G(x(s), s)dw(t) (3)

where the covariance (suppose it is 1-dimension) of the Wiener process is related to t, the value of
the covariance will trend to be infinitely large; therefore, it makes no sense for the second item to be
calculated based on the rules of Riemann–Stieltjes calculus. The SDEs problem mentioned above can
be solved by Itô calculus and Stratonovich calculus [10], the difference between them can be referred
to in Reference [11]. These characteristics distinguish the CD filtering methods from the discrete time
domain filtering methods.

Many numerical methods are applied to solve approximately the SDEs problem in continuous
time domain filtering methods. Taylor approximation and Runge-Kutta approximation are two main
numerical methods which are widely used to design continuous time domain filtering methods.
In Reference [12], the order 0.5 Euler-Maruyama method was proposed, the Euler scheme of SDEs
was applied in the method to achieve the 0.5 rate of convergence. Similarly, the order 1.5 strong
Taylor approximations and CKF are integrated in Reference [13] to propose continuous-discrete
CKF (CD-CKF); however, the computation efficiency is compromised by too many derivative
operations in the process of state propagating. The deterministic Runge-Kutta methods and a
moment matching technique are used for continuous-time cubature Kalman filters in Reference [14],
where the non-additive process noise is considered. The accurate and effective implementation
of the filtering method is a key to most researches. In Reference [15], an efficient embedded
Runge-Kutta pair and automatic global error control are proposed to improve performance of
the complex computational procedure. Similarly, the global error control is proposed to enhance
the accuracy and the robustness of the continuous-discrete extended Kalman filter (CD-EKF) in
Reference [6]. The Explicit Singly Diagonally Implicit Runge-Kutta (ESDIRK) integrator with sensitivity
analysis capabilities in Reference [16] was proved to be efficient to solve nonlinear continuous-discrete
filtering problems for stochastic systems, in which the internal integration step is chosen by the
step-size controller for Runge-Kutta method. The step-size control technology was also adopted
in Reference [17], and the variable-step-size Gauss- and Lobatto-type nested implicit Runge-Kutta
formulas of orders four and six are built within the EKF framework. Automatic local and global
error regulation mechanisms were implemented in Reference [16,17], which are similar to the notion
of accurate continuous-discrete extended Kalman filtering (ACD-EKF) proposed by Kulikov and
Kulikova [6,15]. There exist the unpredictable errors due to discretization, linearization, several state
predictions in measurement intervals or other causes, which are not considered in the above methods.
In Reference [18], Kalman fitler (KF) and CKF are integrated to reduce the problem of the amount of
calculations, low accuracy and poor convergence in discrete-time domain, and the adaptive fading
factor to adjust the error covariance. In Reference [19], the covariance adaption scheme within the
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EKF framework was presented to solve the problem. However, the details of the state propagation in
continuous-discrete framework are not fully considered, and undoubtedly, larger errors occur when
EKF is applied to deal with nonlinear problems.

To alleviate the effects of unpredictable errors, the stochastic feedback of continuous discrete
cubature Kalman filter (SFCD-CKF) is proposed in this paper. Compared with the CD-CKF and other
CD filtering methods, SFCD-CKF adopts posterior information in the stochastic feedback framework
to adapt the priori error covariance online, and online adaption decreases the costly computation
during the approximation process and improves the accuracy of state estimation. The paper is
structured as follows: Section 2 presents the BOT model, Section 3 briefly introduces general types
of continuous-discrete filters, and Section 4 deduces covariance updating and presents stochastic
feedback framework of CD-CKF. Simulations results are shown in Section 5, and Section 6 concludes
the main work.

2. The Model of BOT in Continuous-Discrete Form

Suppose that the positions are set in a 2-dimensional Cartesian coordinate, the measurement
information is provided by the observer with the passive angel sensor, the state of target is:

xt(t) = [xt(t), yt(t),
.
xt
(t),

.
yt
(t)]

T
, where the position and velocity are represented by vector:

pt(t) = [xt(t), yt(t)]T and vt(t) = [
.
xt
(t),

.
yt
(t)]

T
respectively. The state of the observer is:

xs(t) = [xs(t), ys(t),
.
xs
(t),

.
ys
(t)]

T
, and the related state is: x(t) = xt(t)− xs(t) = [x(t), y(t),

.
x(t),

.
y(t)]T .

The state equation of the bearings-only tracking system is given by a stochastic differential equation:

dx(t) = f(x(t), t)dt +
√

Qdw(t), (4)

where Q is the diffusion matrix, the other parameters are the same as Equation (1). The measurements
can be described in a discrete time form:

zk = h(xk, k) +ωk, k = 1, 2, · · · (5)

h(xk, k) = arctan
xk
yk

(6)

where the measurement noiseωk is assumed to follow independent Gaussian distribution with zero
mean and known covariance matrix σ2.

3. General Types of Continuous-Discrete Filters

3.1. The Taylor Approximation

The Taylor approximation and Runge-Kutta approximation are two main approaches applied
to CD filters. The forms of the approximation equations used in these approaches are quite different,
and details of Taylor approximation are illustrated below.

The CD-EKF [20] shows the general form of the Taylor approximation. For the time interval
(t, t + δ), the state is:

x(t + δ) = x(t) + δf(x(t), t) +
√

Qβ, (7)

where β is the Gaussian random variable, which is independent of the state. The expectation can be
described as:

E[x(t + δ)] = E[x(t)] + δE[f(x(t), t)]. (8)

Let t = tk and t + δ = tk+1, the covariance matrix is:

var[x(t + δ)] = var[x(t) + δf(x(t), t)] + δQ, (9)

where δ = T is the measurement sampling interval. f(x(t), t) is extended around the known estimate
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x̂k|k = E[xk|z1:k ], which is:

f(x(t), t) = f(x̂k|k, t) + fx(x(t)− x̂k|k) + Rn(x(t)), (10)

where fx(x(t)− x̂k|k) is the Jacobian of f, and Rn(x(t)) are the high-order terms.
The predicted state estimate is:

x̂k+1|k = E[xk+1|z1:k ] ≈ x̂k|k + Tf(x̂k+1|k, k). (11)

Then the predicted covariance is:

Pk+1|k = var[xk+1|z1:k ]

≈ (I + Tfx(k))Pk|k(I + Tfx(k))
T + TQ

. (12)

The 1.5 order approximation is more accurate and the equation is more complex than the method
shown above, but the basic form and the perception for deduction are similar. The state is:

x(t + δ) = x(t) + δf(x(t), t)

+ 1
2 δ2(Γ0f(x(t), t) +

√
Qβ + (Γf(x(t), t)γ

, (13)

where (β, γ) are the pair of correlated Gaussian random variables. The noise-free process function is
defined as:

fd(x(t), t) = xk + δf(x(t), t) +
1
2

δ2(Γ0f(x(t), t), (14)

where

Γ0 =
∂

∂t
+

n

∑
i=1

fi
∂

∂xi
+

1
2

n

∑
j,p,q=1

√
Qp,j

√
Qq,j

∂2

∂xp∂xq

Γj =
n

∑
i=1

√
Qi,j

∂

∂xi
.

3.2. CD-CKF

The cubature rule used in CKF has the advantage in solving nonlinear filtering problems, in which
the linearization is not needed in filtering. The 1.5 order Itô-type approximation CD-CKF is easily
understood based on the details shown in the last section. For the interval j ∈ (k, k + 1), the predicted
state estimate is:

x̂1
k|k = E[x1

k |z1:k ]

≈ E[fd(xk, kT) +
√

Qβ + Γf(xk, kT)γ|z1:k ]
. (15)

For interval j, the error covariance matrix will also be propagated after the state propagating.

P1
k|k ≈

∫
Rn fd(xk, kT)fT

d(xk, kT)N(xk; x̂k|k, Pk|k)dxk

+ δ3

3 (Γf(x̂k|k, kT)(Γf(x̂k|k, kT)T

+ δ2

2 [
√

Q(Γf(x̂k|k, kT)T + (Γf(x̂k|k, kT)
√

QT
]

−(x̂1
k|k)(x̂

1
k|k)

T
+ δQ

(16)

Based on the cubature rule, the predicted state estimate can be expressed as:

x̂1
k|k ≈

1
2n

2n

∑
i=1

X∗(1)i,k|k , (17)
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X∗(1)i,k|k= f d(x̂k|k +
√

Pk|kξi, kT). (18)

Then, the predicted state error covariance can be expressed as:

P1
k|k ≈ (∆X∗(1)k|k )(∆X∗(1)k|k )

T

+ δ3

3 (Γf(x̂k|k, kT)(Γf(x̂k|k, kT)T

+ δ2

2 [(Γf(x̂k|k, kT)QT + Q(Γf(x̂k|k, kT)T] + δQ

, (19)

where
∆X∗(1)k|k =

1√
2n

[
∆X∗(1)1,k|k − x̂1

k|k, · · · , ∆X∗(1)2n,k|k − x̂1
k|k

]
. (20)

The details of CD-CKF algorithm can be referred to Reference [13].

4. Stochastic Feedback Framework of CD-CKF

Although the accuracy of the CD-CKF algorithm is superior over CD-EKF, the unpredictable error
is inevitable. In this work, the stochastic feedback framework of CD-CKF is proposed, and the key is
that the posteriori information is utilized to adapt the priori error covariance online.

4.1. Covariance Adaption

First, the states, the gain, and the covariance at each measurement interval are considered.
Estimate the updated state is:

x̂k+1|k+1 = x̂k+1|k + Wk+1ek+1. (21)

The continuous-discrete cubature gain is:

Wk+1 = Pxz,k+1|kP−1
zz,k+1|k, (22)

where Pxz,k+1|k and Pzz,k+1|k are cross-covariance matrix and innovations covariance matrix respectively.
The error covariance matrix is:

Pk+1|k+1 = Pk+1|k −Wk+1Pzz,k+1|kWT
k+1. (23)

The innovation is:
ek+1 = zk+1 − ẑk+1|k. (24)

The predicted measurement is:

ẑk+1|k =
1

2n

2n

∑
i=1

h(Xi,k+1|k, k + 1) ≈ Hx̂k+1|k, (25)

where Xi,k+1|k is the cubature points, and H is the Jacobian matrix of partial derivatives of h.
The innovations covariance matrix is:

Pzz,k+1|k = Zk+1|kZT
k+1|k + Rk+1, (26)

Zk+1|k =
1√
2n

[
Z1,k+1|k − ẑk+1|k, · · · , Z2n,k+1|k − ẑk+1|k

]
. (27)

Substituting Equations (24) and (25) into Equation (26), the innovations covariance matrix can be
modified as:
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Pzz,k+1|k ≈ HPk+1|kHT + Rk+1, (28)

where Pk+1|k is Pj
k|k when j→ k + 1 .

The cross-covariance matrix is:

Pxz,k+1|k = Xk+1|kZT
k+1|k

1√
2n

[
∆X∗(k+1)

1,k|k − x̂(k+1)
k|k , · · · , ∆X∗(k+1)

2n,k|k − x̂(k+1)
k|k

]
·

1√
2n

[
Z1,k+1|k − ẑk+1|k, · · · , Z2n,k+1|k − ẑk+1|k

]T

. (29)

Substituting Equation (25) into Equation (29) yields:

Pxz,k+1|k ≈ Pj
k|kHT, j = k + 1. (30)

Namely, Pxz,k+1|k ≈ Pk+1|kHT. Then, the continuous-discrete cubature gain is:

Wk+1 ≈ Pk+1|kHTP−1
zz,k+1|k. (31)

Secondly, the covariance updated online is considered.
Here, an assumption is presented at first: The covariance Pj+1|j is nearly a constant. Actually,

the assumption is not stringently valid within the whole filtering process, but it is a perfect
simplification method that ensures the explicit and real time online estimation of the covariance.
The method was also applied in References [21,22].

Let’s consider a maximum likelihood estimation problem.

L(Pk+1|k) = ln p(ek−N+1, · · · , ek

∣∣∣Pk+1|k )

=
k
∑

j=k−N+1
ln p(ej

∣∣∣Pk+1|k )
, (32)

where N is the time window, ej can be regarded as a normally distributed random variable, so p(·) can
be written as:

p(ej

∣∣∣Pk+1|k ) =
1√

(2π)m
∣∣∣Pzz,j+1|j

∣∣∣ exp
(
−1

2
eT

j Pzz,j+1|jej

)
. (33)

L(Pk+1|k) is a scalar and Pk+1|k is a symmetric with size n × n. For derivative
Ωk+1 = ∂L(Pk+1|k)/∂Pk+1|k, the s-th row and t-th column element of the derivative is:

Ωs,t
k+1 = −1

2
tr

{
k

∑
j=k−N+1

[Θ·Ψ]

}
, (34)

Θ = P−1
zz,j+1|j − P−1

zz,j+1|jejeT
j P−1

zz,j+1|j, (35)

Ψ =
∂Pzz,j+1|j

∂Ps,t
k+1|k

, (36)

where Ps,t
k+1|k is the s-th row and t-th column element of Pk+1|k. Then P̂k+1|k can be yielded by setting

Ωk+1 to zero, i.e., Ωs,t
k+1 = 0.

Because Rk+1 and H are independent of Pk+1|k, with Equations (28) and (36),

Ψ = H
∂Pk+1|k

∂Ps,t
k+1|k

HT, (37)
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tr

 k

∑
j=k−N+1

Θ·H
∂Pk+1|k

∂Ps,t
k+1|k

HT

 = 0. (38)

Then pre- and post-multiply the matrix inside tr{·} by HT and its inverse (or the generalized
inverse) can be expressed as:

tr

 k

∑
j=k−N+1

HTΘ·H
∂Pk+1|k

∂Ps,t
k+1|k

 = 0, (39)

because
∂Pk+1|k
∂Ps,t

k+1|k
is a constant matrix and its s-th row and t-th column element is one while other elements

are zero. Based on the multiplication rule, the t-th column of the matrix HTΘH·
∂Pk+1|k
∂Ps,t

k+1|k
cannot be zero

while the other column must be zero. So, the value of tr{·} is equal to the t-th diagonal element of {·}: k

∑
j=k−N+1

HTΘ·H
∂Pk+1|k

∂Ps,t
k+1|k


t,t

= 0. (40)

Furthermore, because the s-th row and t-th column element of
∂Pk+1|k
∂Ps,t

k+1|k
is one and other elements

are zero to ensure elements of {·} to be zero, we can obtain:

k

∑
j=k−N+1

{[
HTΘ·H

]}t,s
= 0, (41)

where t, s can be any value within (0,n), so:

k

∑
j=k−N+1

[
HTΘ·H

]
= 0. (42)

Let us multiply both sides of Equation (42) by Pj+1|j, we get:

k

∑
j=k−N+1

[
Pj+1|jH

TΘ·HPj+1|j

]
= 0. (43)

With Equations (31) and (35), we have:

k

∑
j=k−N+1

[
Wj+1HPj+1|j −Wj+1ejeT

j WT
j+1

]
= 0. (44)

Based on Equations (21) and (23), we can get:

Wj+1ej = ∆x̂j+1 = x̂ j+1|j+1 − x̂ j+1|j, (45)

k

∑
j=k−N+1

[
Pj+1|j − Pj+1|j+1 − ∆x̂j+1∆x̂T

j+1

]
= 0. (46)

Then:
k

∑
j=k−N+1

Pj+1|j =
k

∑
j=k−N+1

(
Pj+1|j+1 + ∆x̂j+1∆x̂T

j+1

)
. (47)
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Considering the assumption, Pk+1|k can be approximated by:

P̂k+1|k =
1
N

k

∑
j=k−N+1

Pj+1|j =
k

∑
j=k−N+1

P∗j+1, (48)

where P∗j+1 is defined as an intermediate matrix. Hence:

P̂k+1|k = P̂k|k−1 +
(
P∗k − P∗k−N

)
. (49)

4.2. Stochastic Feedback Framework

The functions, Equations (47–49), constitute a major part of the covariance adaption framework.
As shown in Figure 1, the state prediction and measurement updating are completed within CD-CKF,
the difference is the covariance prediction process. The post-covariance information P∗k−N in the
memorizer is used to update the covariance P̂k+1|k online, and it is also used to update the cubature
gain Wk+1. Then the ∆x̂k+1 is calculated to generate the state estimation x̂k+1|k+1, and ∆x̂k+1 can be
used for covariance generation from feedback channel.
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Figure 1. Stochastic feedback framework.

Compared with CD-EKF and CD-CKF, the advantages of the stochastic feedback CD-CKF
(SFCD-CKF) framework can be concluded as:

(1) Post covariance information is used to decrease the influence of the unpredictable error within
continuous-time domain state prediction process, and as a result, it enhances the accuracy of
the filtering.

(2) Online covariance updating can decrease the computational complexity in derivative or matrix
operation compared with traditional methods.

(3) The cubature rule improves the performance of the filtering when dealing with non-linear
problems, and it also provides a more accurate innovation covariance matrix than CD-EKF and
other methods.

5. Numerical Simulation

To illustrate the performance of the proposed method, the linear and non-linear continuous time
domain models with discrete measurements are considered in this section. Specifically, “linear” and
“non-linear” described here refer to the type of state models, because the measurement models in
BOT are all non-linear in this study. Itô-1.5 order CD-CKF [13], CD-EKF [20] and continuous-discrete
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adaptive Kalman filter (CD-AKF, which is also called SFCD-CKF) [19] methods are compared in the
simulations. The Monte Carlo simulation is set to be 200 times for each scenario.

5.1. Linear Model Tracking

The constant velocity (CV) model is used as the linear state model of BOT. The model can be
rewritten as:

xk = Fxk−1 + vk−1, (50)

where vk−1 is a zero-mean Gaussian noise with covariance matrix Q, F is the state transition matrix.
The Gaussian noise distribution can approximately describe the state error in real physical space,
and Gaussian noise is convenient to be expressed and deduced mathematically. The measurements
function is Equation (5). q = 10−5 km2/s3 is the intensity of process noise, and the measurement noise
is ek ∼ N(0, 10−2). The time window N is 5. The observer’s initial state is [0 m, 0 m, 100 m/s, 50 m/s]T .
Target’s initial state is

[
1× 105 m, 1× 105 m, 40 m/s,−190 m/s

]T .

Q =


∆t3

3 0 ∆t2

2 0
0 ∆t3

3 0 ∆t2

2
∆t2

2 0 ∆t 0
0 ∆t2

2 0 ∆t

·q,

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

.

The root mean square error (RMSE) of position is applied to evaluate the accuracy of BOT.

RMSE(k) =

(
1

NMC

NMC

∑
i=1
‖xk − x̂i

k‖
2
2

)1/2

, (51)

where NMC is the number of Monte Carlo simulations, x̂i
k is the estimation at time k for Monte Carlo

simulation i, xk is the real state of the target.
As is shown in Figure 2a, the RMSE of CD-CKF decreases faster than the other three methods in

the first 10 min. Because of the superior performance of CD-CKF in the nonlinear problem (actually,
it is a nonlinear measurement problem in this CV BOT model), CD-CKF is more accurate for filtering
in the whole BOT process. The performance of SFCD-CKF is not as good as CD-CKF at the initial
moment, while RMSE of SFCD-CKF remains in decline to the end of the process, and the accuracy
is higher than the other methods. CD-AKF is a CD-EKF method modified by the idea of covariance
online updating, and its accuracy is higher than CD-EKF; however, when compared with CD-CKF and
SFCD-CKF, the framework of EKF used in CD filtering is suboptimal, and the accuracy of CD-AKF
and CD-EKF are lower comparatively. Figure 3 shows the RMSE with different sampling intervals.
In general, the accuracy can be improved with smaller sampling interval, while the computational
efficiency would decrease. Figure 4 shows the state estimate with these different filtering methods,
where the real state is the track (or path) of the target, and the path length is 48.53 km.

Figure 2b shows the relative ratio of the computational time, and the CD-EKF with sampling
interval 0.01 is the datum point. In general, the computational time will decrease with the
increase of sampling interval. Because of the complex matrix operation, CD-CKF is the most
time-consuming method computationally. CD-AKF and SFCD-CKF exhibit better computational
efficiency comparatively, which shows that the framework of covariance online updating has an
advantage in improving the computational efficiency.
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Figure 2. The performance comparison with the CV model.
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Figure 3. The RMSE with different sampling intervals.
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Figure 4. The state estimate with different filtering methods.
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5.2. Nonlinear Model Tracking

In this section, the classical nonlinear model Van der Pol oscillator is used as the state model [15].

d

[
x(t)
y(t)

]
=

[
y(t)

λ(1− x2(t))y(t)− x(t)

]
dt +

[
0
1

]
dw(t), (52)

where y(t) =
.
x(t) in the Van der Pol oscillator model, and the initial state is [1, 1]T . The state

x(t) = x(0) + [t, x(t)]T , where the initial position is x(0) =
[
1× 105 m, 1× 105 m

]T . The parameters
are λ = 0.3 and w(t) ∼ N(0, 10−5). The measurement is defined by Equation (5).

Figure 5a shows the different RMSEs of four methods when dealing with a nonlinear filtering
problem. CD-CKF and SFCD-CKF show the advantage for nonlinear filtering. In the last stage of
the target tracking process, the accuracy of SFCD-CKF is slightly higher than CD-CKF. As we can
see from Figures 2a and 5a, the performance of SFCD-CKF is superior over CD-CKF only when the
error approaches zero. This indicates that the online covariance updating has an advantage in state
estimation with micro variation of the covariance because the approach is sensitive to unpredictable
errors in this moment than in the moments when the covariance changes rapidly. The computational
efficiency of SFCD-CKF and CD-AKF are demonstrated to be better than the other two methods in
Figure 5b. Figure 6 shows the RMSE with different sampling intervals. The accuracy of CD-EKF and
CD-AKF are improved rapidly along with the decrease of the sampling intervals, because the error
of EKF framework used by CD-EKF and CD-AKF is large when dealing with the nonlinear filtering
problem, and the impact of sampling interval on estimation accuracy is significant. Figure 7 shows the
state estimate with these different filtering methods, where the real state is the track (or path) of the
target. The path length is 133.01 km. With superior computational efficiency, SFCD-CKF generally has
an advantage in solving unpredictable error problems.
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6. Conclusions

Considering the unpredictable error within the process of CD filtering, the framework of online
covariance updating is proposed. The key is to use the post information to modify the state estimation.
The post covariance information is proved to be valuable for covariance updating by theoretical
deduction. The proposed framework integrates CD-CKF with the covariance updating approach,
which enhance the performance for the method when implementing the nonlinear filtering, the efficient
computation and the correction of unpredictable error. While the approach does not work well when
the covariance changes significantly, the adaptive approaches which combine CD-CKF with SFCD-CKF
will be the focus of our future research.
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