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Abstract: According to the Industry 4.0 paradigm, all objects in a factory, including people,
are equipped with communication capabilities and integrated into cyber-physical systems (CPS).
Human activity recognition (HAR) based on wearable sensors provides a method to connect people
to CPS. Deep learning has shown surpassing performance in HAR. Data preprocessing is an
important part of deep learning projects and takes up a large part of the whole analytical pipeline.
Data segmentation and data transformation are two critical steps of data preprocessing. This study
analyzes the impact of segmentation methods on deep learning model performance, and compares
four data transformation approaches. An experiment with HAR based on acceleration data from
multiple wearable devices was conducted. The multichannel method, which treats the data for the
three axes as three overlapped color channels, produced the best performance. The highest overall
recognition accuracy achieved was 97.20% for eight daily activities, based on the data from seven
wearable sensors, which outperformed most of the other machine learning techniques. Moreover,
the multichannel approach was applied to three public datasets and produced satisfying results for
multi-source acceleration data. The proposed method can help better analyze workers’ activities and
help to integrate people into CPS.

Keywords: deep learning; data preprocessing; Human Activity Recognition (HAR); Internet of things
(IoT); Industry 4.0

1. Introduction

Recent advances in manufacturing industry and Internet of Things (IoT) technology have paved
the way for a systematical deployment of cyber-physical systems (CPS), making networked machines
perform more efficiently, collaboratively, and resiliently, and transforming manufacturing industries to
the Industry 4.0 era [1,2]. According to the Industry 4.0 paradigm, all objects of the factory world are
equipped with integrated processing and communication capabilities. This facilitates the vision of the
“smart factory”, which enables centralized decision-making while requiring distributed manufacturing
equipment and resources [3,4]. More “things”, even people, need to be connected to the system [5].
In contrast to computer-integrated manufacturing (CIM), the Industry 4.0 movement is not gravitating
towards workerless production facilities. Instead, people should be integrated into the cyber-physical
structure in such a way that their individual skills and talents can be fully realized [6,7].

The development of IoT technology has also promoted the improvement of Human Activity
Recognition (HAR), which is based on copious sensors. HAR has been widely applied in surveillance-
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based security, context-aware computing, ambient assistive living, and assembly tasks analysis [8–14].
A variety of machine learning algorithms have been used to process human activity data in the big
data environment [15–20]. In a recently reported study [8], the performance of several common
classification methods were compared for recognizing eight daily activities, using the acceleration
data collected from wearable sensors in seven different body positions. An overall accuracy of 89%
was achieved using the random forest (RF) method, which outperformed artificial neural network
(ANN), decision tree (DT), k-nearest neighbors (k-NN), naive Bayes (NB), and support vector machine
(SVM) methods.

Deep learning is a paradigm of machine learning that enables computational models consisting
of multiple processing layers to learn representations of data with multiple levels of abstraction [21].
Many studies have proven that the use of deep learning can improve the performance of many
applications, especially speech and visual object recognition, in addition to many other domains [21,22].
As a powerful feature extraction mechanism, deep learning has also been used to perform HAR in
recent years, and significant improvement has been achieved [23,24]. The convolutional neural network
(CNN) is one of the most important deep learning approaches that has been used to perform HAR,
and has produced satisfying results in a number of studies [25].

Data preprocessing plays an important role in machine learning and deep learning algorithms,
and proper preprocessing of data is compulsory for achieving better HAR performance [26,27].
Kotsiantis et al. [26] defined data preprocessing as including data cleaning, normalization,
transformation, feature extraction, and selection. Some of the most well-known algorithms for each
step of data preprocessing are presented in their study. More specifically, when performing HAR tasks
using inertial data from wearable devices, a segmentation operation is necessary, because raw inertial
data fluctuate greatly over time. The segmented data should be transformed into proper formats
as the inputs of the deep learning models. Spectrograms are a commonly used data preprocessing
method for acceleration data. A spectrogram of an inertial signal is a new representation of the
signal as a function of frequency and time. Previous studies [23] have shown that spectrogram
representation is essential for extracting interpretable features that represent the intensity differences
among nearest inertial data points. A method that combines shallow features and those obtained
from deep learning models, in order to overcome the defects that resource limitations cause and the
simple design of the deep learning models, was proposed in [23]. However, during our experiment
it was found that the spectrogram representation of the acceleration signal does not always produce
better classification results, and introducing shallow features does not always improve the overall
performance, especially when the dataset is sufficiently large and contains multi-source sensor data.

The aim of this study is to compare different data preprocessing approaches for deep leaning
supported HAR tasks in different scenarios, like single or multiple sensors, and provide references for
future studies. In this paper, a deep learning algorithm was used to classify daily human activities
on the basis of the acceleration data that has been provided by wearable devices in different body
positions. The study focused on two important steps—data segmentation and data transformation—of
preprocessing acceleration data for deep learning algorithms. A comparison among five data
segmentation options was undertaken and the impact of segment length on activity recognition
accuracy was analyzed. Four different data transformation methods were compared, including raw
acceleration data, the multichannel method, the spectrogram method, and the spectrogram integrated
with shallow features method. The highest overall recognition accuracy achieved in this study was
99.42% for eight daily activities, based on the data from seven wearable sensors, which outperformed
most traditional machine learning techniques. Beside the above-mentioned dataset, the chosen
multichannel method was also applied to three public HAR datasets, and the results were compared
against existing studies.
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2. Materials and Methods

The framework of the study is illustrated in Figure 1. The proposed method includes data
segmentation, data transformation, deep learning model training, and testing. Human activities are
time-dependent, and the raw acceleration data from wearable sensors fluctuates greatly over time,
making classification impossible when using a single data point [28]. Most HAR methods are based
on a series of data collected in a certain time interval. A segmentation operation is necessary before
applying any classification method [8]. The data segments are then transformed into images with
four different methods, in order to produce the inputs for the deep learning module. Each input
corresponds to a specific deep CNN model and generates a specific classifier. The preprocessed data
samples are separated into training and testing samples before the training process. The testing
samples are selected randomly. Their quantity depends on the segment options and the total number
of samples. More details of each step of the workflow are provided in the following sections.
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Figure 1. Framework of the proposed method.

2.1. Data Segmentation

The raw time-dependent acceleration dataset is separated into segments during the data
segmentation process. All of the following HAR-related operations, including feature extraction,
classification and validation, etc., are based on these segments. The length of the segments depends on
the application context and sampling rate of the sensors. Increasing the length of the segments can
improve recognition accuracy, but the training time will be increased and more time will be required to
obtain sufficient data. This will cause a delay in response for real-time applications [23] and restrict the
application scenarios. In most of the existing studies, segments of 1 to 10 s are considered for HAR [29].

2.2. Data Transformation

In order to generate the proper inputs for the deep learning models, four different data
transformation methods were adopted in this study. These methods transform the raw data segments
into different type of representations, from which the deep learning models can extract features
automatically. The four methods are explained in detail below.
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2.2.1. Raw Plot

The raw plot method transforms the acceleration data directly to time series images. The three
axes are grouped by column, and the data collected from different positions are grouped by row on the
same image, if applicable. Both the x-axis and y-axis resolution of the produced image are the same as
the length of the segment, and the color is black and white. For example, Figure 2 shows the image that
is generated from an acceleration data segment, which contains 21 separate sub-images that correspond
to three axes (by column) and seven sensors (by row). In this plot, the length of the segments represents
the number of values included in this segment. The image resolution (512 × 512 pixels) is not related
to the lengths (512 × 3) of segments. Higher resolutions may produce better results, but the training
time will also increase. This method can represent the temporal acceleration variance. The deep
learning models are able to extract activity features based on the intensity and shape of the plot at
different locations and on different levels.
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Figure 2. Raw acceleration plot of time domain: segment length 512 and sampling rate 50 Hz (the dotted
lines are added manually for better clarification; image resolution is 512 × 512 pixels).

2.2.2. Multichannel Method

Unlike the raw plot method, the multichannel method treats the data for the three axes as three
overlapped color channels that correspond to red, green, and blue components in the RGB color format.
The amplitude of the acceleration signal, which is in the range (−20,20), is projected to a corresponding
color value, which is in the range (0,1). In this case, the temporal variance of the acceleration data is
transformed into color variance. The three acceleration values of each point are represented as one
pixel in the image. The x-axis resolution of the image is the same as the length of the segment, and the
y-axis resolution is the number of sensors. The data collected from different sensors are grouped by
row. The advantage of this method is that it reduces the image size enormously and results in a much
less training time than the raw plot method. Figure 3 illustrates the principle of this method and an
example image produced with this method. The data segment used in this figure is the same as the
one used in Figure 2.

2.2.3. Spectrogram

The spectrogram of an inertial signal represents the frequency features of the signal in the time
domain. It is the magnitude squared of the short-time Fourier transform (STFT). STFT is used to
determine the sinusoidal frequency and phase content of local sections of a signal that changes over
time [23,30]. The procedure for computing the spectrogram is to divide a longer time signal into
short windows of equal lengths, and then compute the Fourier transform separately for each shorter
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window. The study by Ravì et al. [23] proved that the spectrogram representation is essential for
extracting interpretable features to capture the intensity differences between the nearest inertial data
points. The spectrogram representation also provides a form of time and sampling rate invariance.
This enables the classification to be more robust against data shifting in time and against changes in
the amplitude of the signal and sampling rate.

Figure 4 shows the spectrogram generated from the same data segment that is used in
Figures 2 and 3. Here, the resolution of y-axis is 350 pixels and the resolution of x-axis is determined
by the segment length (L), STFT window length (W), and overlap length (P) by the following equation:

Resx = 3 × (L − W)/(W − P), (1)

The spectrograms of different axes and sensors exhibit different patterns. There is also a difference
between different activities.Sensors 2018, 18, x FOR PEER REVIEW  5 of 13 
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2.2.4. Spectrogram Combined with Shallow Features

Previous studies [23] have shown that when data resources are limited, the features that are
derived from a deep learning method are sometimes less discriminating than a complete set of
predefined shallow features. To overcome this problem, a method of combining both shallow and
deep-learned features was proposed in [23], in order to provide complementary information for the
classification. This method was also used in this paper, to compare the results against those of the other
three methods. The aim is to determine if this method outperforms other methods for multi-source
acceleration data. As suggested in [23], 15 shallow features are extracted from the raw acceleration
data of each axis and each sensor, as shown in Table 1. These shallow features are combined with the
deep-learned features to form the last layer of the deep CNN model.
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Table 1. Shallow features extracted from acceleration data.

Data Features

Raw signal max, min, mean, median, variance, kurtosis, skewness, zero-cross,
root mean square, standard deviation, interquartile range

First derivative mean, variance, root mean square, standard deviation

2.3. Deep Learning Method

After preprocessing, the original acceleration data segments are transformed into different types of
images, to which the deep learning methods are applied. In this study, the deep CNN algorithm [21–31]
is used. Figure 5 shows the overall workflow of the proposed deep CNN method. Different models
were built that correspond to the outputs of the four data transformation methods. Each model has
its own parameters, such as the number of convolutional layers, the learning rate, pooling size, etc.
Following the approach in [23], the shallow features are merged with the deep-learned features on the
last fully connected layer, as shown in Figure 5. More details of the deep learning models are available
online [32].
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3. Results

3.1. Dataset and Experimental Setup

The dataset contributed by Sztyler et al. [8] was adopted to test the proposed methods. The reasons
for this were that it is up-to-date and, according to the authors, is the most complete, realistic,
and transparent dataset for on-body position detection that is currently available [8]. This dataset
contains the acceleration data of eight activities—climbing stairs down (A1), climbing stairs up (A2),
jumping (A3), lying (A4), jogging (A5), standing (A6), sitting (A7), and walking (A8)—of 15 subjects
(age 31.9 ± 12.4, height 173.1 ± 6.9, and weight 74.1 ± 13.8, with eight males and seven females).
For each activity, the acceleration of seven body positions—chest (P1), forearm (P2), head (P3), shin (P4),
thigh (P5), upper arm (P6), and waist (P7)—were recorded simultaneously. The subjects performed
each activity for roughly 10 min, except for jumping (about 1.7 min) due to the physical exertion.
In total, the dataset covers 1065 min of acceleration data for each position and axes, with a sampling
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rate of 50 Hz. We filtered and reorganized the dataset to make it suitable for training deep learning
models. The detailed processing method and the prepared datasets are available online [32].

As shown in Figure 1, the experiments in this study were implemented with a computer equipped
with a four-core Intel Core i5-4460 3.2GHz CPU, an AMD Barts Pro Radeon HD 6850 Graphic Processing
Unit (GPU) and a 12 GB of random-access memory (RAM). The operating system is Ubuntu Linux
16.04 64-bit version. Built on top of these is a software combination of RStudio and TensorFlow.

The data preprocessing was performed with RStudio, including data segmentation,
data transformation, and shallow feature extracting. The details and complete code is also available
in R-markdown format [32]. The deep learning model training and testing were conducted with
TensorFlow (Version 1.0), and the model was built in Python (Version 2.7) language. TensorFlow is an
interface for expressing machine learning algorithms, and an application for executing such algorithms,
including training and inference algorithms for deep neural network models. More specifically,
the TF.Learn module of TensorFlow was adopted for creating, configuring, training, and evaluating
the deep learning model. TF.Learn is a high-level Python module for distributed machine learning
inside TensorFlow. It integrates a wide range of state-of-art machine learning algorithms built on
top of TensorFlow’s low-level APIs for small- to large-scale supervised and unsupervised problems.
The details of building deep learning models with TensorFlow are provided online, and some of the
trained models are also available [32].

3.2. Results and Discussion

There are two evaluation schemes for the activity recognition model, which are a person-
dependent method and a person-independent, leave-one-out method [17]. For person-dependent
evaluation, the data from the same subject are separated to training samples and testing samples.
For person-independent evaluation, the data of one or more subjects are excluded from the training
process and used for testing. In our study, considering the small number of subjects we have, and in
order to compare with a previous study [8], we used the person-dependent method. The classifiers
were trained and evaluated for each subject individually. The data of each subject were segmented
with a non-overlapping method to avoid over-fitting caused by data duplication in training and testing
datasets. Ten percent of the segmented samples were used as testing data, and the remaining samples
were used as training data. Sequential selection of samples in time was applied in order to avoid the
over-fitting caused by predicting past based on future. All segment lengths were power values of 2 in
order to better perform STFT when generating spectrogram images.

These segments were transformed into raw acceleration plots, multichannel plots and spectrogram
images, according to the preprocessing methods that were introduced above. For each segment,
the 15 shallow features that appear in Table 1 were extracted for each position and axis. Since each
segment contains the acceleration data of three axis and seven positions, 315 shallow features were
extracted for each segment. The details of data transformation and feature extracting are available [32].

Different deep learning models were built and trained for each combination of the five
segmentation options and four data transformation methods. The introduced methods were evaluated
for each individual subject. Table 2 presents the aggregated classification results of all 15 subjects,
based on different segmentation and transformation combinations. The highest overall accuracy was
97.19%, using the multichannel method based on a segment length of 512 (10.24 s).

Table 2. Overall accuracy (%) of the four data transformation methods, based on five segmentation options.

Segment Length Raw Plot Multichannel Spectrogram Spectrogram and Shallow Features

64 92.44 94.60 92.86 90.39
128 93.05 96.14 93.37 90.42
256 93.45 96.58 93.94 92.02
512 94.97 97.19 95.56 93.58
1024 82.13 92.81 91.54 85.55
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The results show that the multichannel method achieved the best performance for all segment
lengths. For each of these four transformation methods, the performance improved with the increase
of the segment length, from segment length 64 (2.56 s) to 512 (10.24 s). There is an accuracy decrease
from segment length 512 (10.24 s) to 1024 (20.48 s). A possible explanation is the significant drop of
training sample numbers. The accuracy of the multichannel method is more stable than other methods,
among different segment lengths. This means that the performance variance of the multichannel
method is less than that of others, and its classification accuracy is less dependent on segment lengths,
which implies that this method is more suitable for short-time HAR tasks. Moreover, the introduction
of shallow features did not increase performance as expected. In fact, it slightly decreased performance
compared to the spectrogram method. One possible explanation is that the number of shallow
features, which was 315, was too many, and they were confused with features extracted by the deep
learning models.

With the same data preprocessing method, the classification accuracies of different individuals
were different due to the variation of data quality, dataset size, and individual behaviors. Table 3
summarizes the overall classification accuracies of the 15 subjects, based on a segment length of
512 (10.24 s) with the four data preprocessing methods.

Table 3. Variation of overall classification accuracies (%) of 15 subjects based on a segment length of
512 (10.24 s) with four preprocessing methods.

Subject Raw Plot Multichannel Spectrogram Spectrogram & Shallow Features

Mean 95.25 97.58 95.81 93.92
Min. 92.42 93.91 91.61 88.46
Max. 97.22 99.56 98.57 97.18
Sd. 1.72 2.11 2.35 2.74

Leaving out the impact of the segment length, the four models that were based on the segment
length of 512 (10.24 s) were compared in detail. Table 4 presents the classification accuracy of each of
the eight activities that the four models produced.

Table 4. Performance of each model based on a segment length of 512 (10.24 s). A1: climbing down;
A2: climbing up; A3: jumping; A4: lying; A5: running; A6: sitting; A7: standing; and A8: walking.

A1 A2 A3 A4 A5 A6 A7 A8

Raw plot
Precision (%) 97.16 97.99 99.61 99.59 95.18 99.15 92.06 99.49

Recall (%) 95.41 96.89 98.78 99.18 91.40 98.53 85.24 99.08
Overall Acc. (%) 94.97 95% CI: (0.9434, 0.9556)

Multichannel
Precision (%) 97.65 97.96 99.74 99.89 96.29 99.63 96.99 99.72

Recall (%) 95.56 96.53 99.49 100.00 93.33 99.34 95.04 99.53
Overall Acc. (%) 97.19 95% CI: (0.9670, 0.9763)

Spectrogram
Precision (%) 97.65 97.23 99.92 98.60 98.84 97.47 91.18 97.76

Recall (%) 95.65 96.05 100.00 97.56 98.96 96.55 82.73 96.08
Overall Acc. (%) 94.56 95% CI: (0.9251, 0.9618)

Spectrogram &
Shallow features

Precision (%) 94.92 98.25 91.51 98.60 95.92 96.60 93.39 95.38
Recall (%) 91.05 98.59 83.33 97.56 93.14 93.75 88.42 91.51

Overall Acc. (%) 93.58 95% CI: (0.9157, 0.9512)

Regarding to training time, the multichannel method also achieved outstanding performance.
As shown in Figure 6, the multichannel model took only 40 min to reach the highest accuracy,
whereas the other methods required at least 360 min. This proved that the multichannel method
provided the best performance, in this case from both accuracy and training time points of view.
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Considering the classification accuracy of each activity, the multichannel method perfectly
classified the 68 climbing down (A1) samples, as presented in Table 5. It produced a relatively
lower accuracy for running activity (A5), where 5 out of 105 running samples were misclassified as
standing activity (A7).

Table 5. Confusion matrix generated by the multichannel model based on a segment length of 512 (A1:
climbing down; A2: climbing up; A3: jumping; A4: lying; A5: running; A6: sitting; A7: standing; and
A8: walking).

Original
Prediction

A1 A2 A3 A4 A5 A6 A7 A8

A1 68 0 0 0 0 0 0 0
A2 0 78 2 0 1 0 0 1
A3 0 3 22 0 0 0 0 0
A4 0 0 0 81 1 0 0 0
A5 0 6 0 0 98 1 3 0
A6 0 0 0 0 0 92 1 0
A7 0 0 0 1 5 1 86 0
A8 0 1 0 0 0 0 2 100

The classification above is based on the acceleration data that were collected from seven
body positions. In real life scenarios, it is difficult to obtain such a complete dataset. Therefore,
activity classification using the data from each single position was also undertaken in this study.
The combination of segment length 512 (10.24 s) and the multichannel method was used to better
compare with the above-mentioned results. Figure 7 shows the overall classification accuracy for the
eight activities. The data from the head produced the lowest accuracy (79.32%), whereas the data
collected from the shin provided the highest accuracy (90.51%). This result agrees with practical
experience that the movements of the head are more stable than other body positions, whereas the
movements of the shin are more closely related to different activities, especially to such dynamic ones
such as running, jumping, climbing up, and climbing down. By combining the data from the two
positions with the data of highest accuracies, the shin and forearm, an overall accuracy of 93.00% was
achieved. This is close to the result that was obtained based on the data from all of the seven positions,
which was 97.20%.
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Figure 7. Overall classification accuracies of eight activities based on data from seven single positions
and two combined positions.

Compared to other traditional classification techniques, such as ANN, DT, k-NN, NB, SVM,
and RF, deep learning methods improved the classification accuracy significantly. Figure 8 shows a
comparison of the results achieved by the proposed multichannel deep learning method (marked as
DL) based on the segment length of 64 (1.28 s) and the results reported in [8], using the same dataset
with a similar segment length of one second. It is shown that the deep learning method achieved an
overall classification accuracy that was 7.22% higher than RF.
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Beside the dataset used above, in order to testify its feasibility, the proposed multichannel data
preprocessing method was also applied to another three public HAR datasets, which are WISDM v1.1
(daily activity data collected by a smartphone in a laboratory, with a sampling rate of 20 Hz) [33],
WISDM v2.0 (daily activity data collected by a smartphone in an uncontrolled environment, with a
sampling rate of 20 Hz) [34,35], and Skoda (manipulative gestures performed in a car maintenance
scenario, with sampling rate of 98 Hz) [36]. These datasets were used by Ravì et al. [23], and we used
the same segment length as they did, which is a non-overlapping window size of 4 s (for the Skoda
dataset) and 10 s (for the WISDM v1.1 and WISDM v2.0 datasets).
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The comparison about the per-class precision and recall values obtained by the proposed
multichannel transformation method (abbreviated as MCT in the tables) against the results produced
by [23] is presented in Table 6. The result shows that the proposed method outperforms the spectrogram
integrated with shallow features method in most activities, except the walking and jogging in the
WISDM v1.1 dataset and walking in the WISDM v2.0 dataset. In terms of the multi-sensor Skoda
dataset, the proposed method perfectly classified most activities, except the open and close left front
door activities. This comparison result reveals that the proposed multichannel method is more suitable
for multi-source data, although it can also achieve good results for singular sensor data.

Table 6. Precision (%) and recall (%) obtained by the proposed multichannel (MCT) method and
existing study [23] in three public datasets.

Dataset 1: WISDM v1.1

Walking Jogging Sitting Standing Upstairs Downstairs

Ravì et al.
[23]

Prec. 99.37 99.64 97.85 98.15 95.52 94.44
Rec. 99.37 99.40 98.56 97.25 95.13 95.90

MCT
Prec. 98.34 98.11 100.00 100.00 96.14 98.44
Rec. 97.31 97.53 100.00 100.00 93.10 97.67

Dataset 2: WISDM v2.0

Jogging Lying Down Sitting Stairs Standing Walking

Ravì et al.
[23]

Prec. 98.01 88.65 87.32 85.00 82.05 97.17
Rec. 97.73 85.85 89.28 76.98 82.11 97.19

MCT
Prec. 98.76 96.85 90.25 87.03 91.02 95.85
Rec. 97.95 94.96 82.05 75.00 85.94 94.81

Dataset 3: Skoda

Write on Notepad Open Hood Close Hood Check Gaps
Front

Open Left Front
Door

Ravì et al.
[23]

Prec. 96.67 97.78 89.47 91.15 100.00
Rec. 91.34 97.78 94.44 92.79 100.00

MCT
Prec. 100.00 99.54 100.00 100.00 80.00
Rec. 100.00 100.00 100.00 100.00 60.00

Close Left Front
Door

Close Both Left
Door

Check Trunk
Gaps

Open and Close
Trunk

Check Steer
Wheel

Ravì et al.
[23]

Prec. 88.89 92.86 98.78 100.00 93.55
Rec. 80.00 94.20 97.59 98.04 100.00

MCT
Prec. 99.18 100.00 100.00 100.00 94.44
Rec. 100.00 100.00 100.00 100.00 88.89

4. Discussions and Conclusions

In this paper, preprocessing techniques in human activity recognition tasks by deep learning
have been considered as a design parameter, and they were shown to be relevant. By comparing
different data preprocessing approaches, we came to the following conclusions. Firstly, the length
of data segment significantly impacts the final classification accuracy of the deep learning model.
The accuracy improves with the increasing of the segment length, and the increasing rate is slower
when the segment length is longer. This result agrees with the findings of previous studies that HAR
are usually based on data segments of 1 to 10 s. Secondly, four different data transformation methods
were compared, and the multichannel method achieved the best performance in both classification
accuracy and training time. Unlike the reports of previous studies, we found that the introducing
of shallow features did not increase the final accuracy when the experiments were based on a large
and multisource dataset. By comparing the classification accuracy based on the data from seven
different body positions, it was found that the acceleration data from the shin produced the highest
accuracy of 90.51%. A satisfactory accuracy of 93.00% was achieved by combining the data from the
shin and forearm. Moreover, we compared the proposed method against some of other common
machine learning methods, based on the same dataset, and it was proven that the deep learning
method outperforms others impressively. Finally, we applied the proposed multichannel method to
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three more public datasets, including the car maintenance activity data in a workshop. The results
proved that our method can achieve satisfying recognition accuracy. It can help better analyze workers’
activities in a factory environment and help integrate people into the cyber-physical structure in an
Industry 4.0 context.
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