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Abstract: In modern society, air pollution is an important topic as this pollution exerts a critically bad
influence on human health and the environment. Among air pollutants, Particulate Matter (PM2.5)
consists of suspended particles with a diameter equal to or less than 2.5 µm. Sources of PM2.5 can
be coal-fired power generation, smoke, or dusts. These suspended particles in the air can damage
the respiratory and cardiovascular systems of the human body, which may further lead to other
diseases such as asthma, lung cancer, or cardiovascular diseases. To monitor and estimate the PM2.5

concentration, Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) are
combined and applied to the PM2.5 forecasting system. To compare the overall performance of each
algorithm, four measurement indexes, Mean Absolute Error (MAE), Root Mean Square Error (RMSE)
Pearson correlation coefficient and Index of Agreement (IA) are applied to the experiments in this
paper. Compared with other machine learning methods, the experimental results showed that the
forecasting accuracy of the proposed CNN-LSTM model (APNet) is verified to be the highest in this
paper. For the CNN-LSTM model, its feasibility and practicability to forecast the PM2.5 concentration
are also verified in this paper. The main contribution of this paper is to develop a deep neural
network model that integrates the CNN and LSTM architectures, and through historical data such as
cumulated hours of rain, cumulated wind speed and PM2.5 concentration. In the future, this study
can also be applied to the prevention and control of PM2.5.
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1. Introduction

As the International Energy Agency (IEA) [1] had pointed out, air pollution causes the premature
death of 6.5 million people every year [2], and thus far, energy production and utilization are the
largest man-made air pollution sources. Air pollution abatement technology has become a part of
public knowledge, and clean air is extremely important to ensure human health. Although people
have an increasing recognition as to its urgency, air pollution problems are still unsolved in many
countries, and global health risks will be extended further in future decades [2]. Among pollution
sources, suspended particles with a diameter equal to or less than 2.5 µm are called PM2.5. As the
particles of this pollution source are small, they can penetrate the alveoli, and even pass through the
lungs and affects other organs of the body [3].

In some major cities of the world (e.g., New York, Los Angeles, Beijing, and Taipei), air pollution
has been identified as one of the main health hazards [3]. The air pollution in big cities also negatively
impacts the environment around the city. One reference [4] pointed out that high PM2.5 concentration
has even been detected in regions such as the East China Plain, Sichuan Province, and the Taklimakan
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desert. Studies about the relationship between PM2.5 and mortality in US cities had also been discussed
in detail by Kioumourtzoglou et al. [5]. Thus, for urban residents, solving PM2.5 air pollution is a
critically urgent and important topic. Although Walsh [6] pointed out that the main PM2.5 pollution
source for the major cities in China is motor vehicles, there are a large number of sources of air
pollution, and the degree of air pollution is also related to weather and wind direction. Therefore,
the management and control of city air pollution is rather complex.

For a smart city, to create a smarter environment and improve the quality of its citizens’ lives,
it is indispensable to equip the city with the functions of sensing the weather and the surrounding
environment. Liu et al. [7] put forward an idea to establish a smart urban sensing system architecture
using Internet of Things (IoTs) which is equipped with sensing and monitoring systems for PM2.5,
temperature, and noise. This system can efficiently monitor the condition of air pollution and
other environmental pollution of the city and collect data for analysis and strategy evaluation.
Zhang et al. [8] used IoTs technology and combined information such as social media, air quality,
taxi trajectory, and traffic conditions, and integrated machine learning technology, which has become
one valuable application in smart cities. Zeng and Xiang [9] also proposed an air pollution sensing and
monitoring system applied to smart cities. This system adopts a Q-learning algorithm to realize the
computation of an adaptive sampling scheme. Apart from these studies, there are also other studies
about developing various sensors to investigate air pollution. For instance, Ghaffari et al. [10] puts
forward a nitrate sensor whose sensitivity and accuracy had been well verified in experiments.

Since the topic of PM2.5 air pollution has received increasing attention, there is currently much
relevant analysis and many studies about PM2.5. Lary and Sattler [11] proposed a method to estimate
the PM2.5 concentration using machine learning. This method collected the air pollution indexes from
55 countries from 1997 to 2014, and used a machine learning method for modeling. It produced decent
results, but it could only carry out tiny estimation among intervals, and could not forecast future
PM2.5 conditions. In 2016, Li et al. adopted the Stacked Autoencoder (SAE) architecture to forecast the
PM2.5 concentration of various regions [12]. Although SAE requires the pre-training step and cannot
perform training directly, its performance is good. In 2017, the latest research by Li et al. showed that
the air pollution estimation system based on a Long Short-Term Memory (LSTM) neural network is
more accurate [13]. Therefore, the application of LSTM to the research topic of air pollution is a good
approach. Additionally, Yu et al. [14] uses an Eta-Community Multiscale Air Quality (Eta-CMAQ)
forecasting model to forecast the air pollution index of PM2.5. This method can perform the PM2.5

forecasting according to the chemical composition of PM2.5, such as Organic Carbon (OC) or Elemental
Carbon (EC). This approach belongs to the traditional PM2.5 forecasting algorithm, and its result is
effective and feasible. However, it cannot perform comprehensive forecasting according to weather
information (e.g., wind speed, rainfall, etc.).

The particles and molecules generate a light scattering phenomenon under illumination, and at
the same time absorb partial energy of the illumination. When a collimated monochromatic light is
projected on a measured particle field, it is affected by the light scattering and absorption around
the particles, and the light intensity is attenuated. This way, the relative attenuation ratio of the
light projected through the concentration field can be measured and obtained. Therefore, the relative
attenuation rate can fundamentally reflect the linearity of the relative concentration of dust in the
pending field. The intensity of light is proportional to the strength of the electrical signal of the optical
to electrical conversion, by measuring the electrical signal, the relative attenuation rate can be obtained,
and the concentration of dust in the field to be measured can be determined [15,16]. Furthermore,
using geospatial assessment tools [17] or more complex statistic algorithms [18,19] are also feasible
and practical for the forecasting of PM2.5 pollution issue.

Summing up, PM2.5 forecasting is absolutely a vital topic for the development of smart cities.
In this paper, a deep learning model based on the main architectures of CNN and LSTM is proposed
to forecast future PM2.5 concentration. This architecture can conduct the forecast of the future PM2.5

concentration according to the past PM2.5 concentration and even other weather conditions. To compare
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the overall efficiency of each algorithm, two measurement indexes, MAE and RMSE are also applied to
the experiments in this paper. In addition, other traditional machine learning algorithms are compared.
The performance of all algorithms is also graded and verified in each experiment. As for the aspect
of database selection, a PM2.5 dataset of Beijing is used. Aimed at the problems in smart cities that
urgently need to be solved, PM2.5 forecasting is integrated into the air pollution forecasting system of
the smart city, thus achieving the prospect of creating a better and smarter city.

The major contributions of this paper are: (1) designing a high precision PM2.5 forecasting
algorithm; (2) comparing the performances of the several popular machine learning methods in the
air pollution forecasting problem; and (3) validating the practicality and feasibility of the proposed
network in PM2.5 forecasting application.

This paper is organized as follows. The PM2.5 monitoring and forecasting in smart cities is
described in Section 2; the background knowledge of the artificial neural network is presented in
Section 3; the design of the proposed APNet is illustrated in Section 4; the forecasting and comparison
results are demonstrated in Section 5; and conclusions are given in Section 6.

2. PM2.5 Monitoring and Forecasting in Smart Cities

The PM2.5 source analyses of two major cities, Beijing and Shanghai, are shown in Figure 1 [20].
As shown, in Beijing, the biggest PM2.5 pollution source comes from transboundary pollution (25%),
and the second biggest source is motor vehicles (22%); while in Shanghai, the biggest PM2.5 pollution
source comes from motor vehicles (25%), and the second biggest source is pollution from other
provinces (20%). This indicates that PM2.5 pollution caused by vehicles has a great effect on urban
air pollution. As the air pollution condition can be changed to some degree by the wind direction,
pollution sources from other regions is another one of the main reasons. Additionally, there are still
many other factors that cause PM2.5 pollution, such as coal combustion, road dust, industrial Volatile
Organic Compound (VOC), biomass burning, and combustion installations. All of these can affect the
overall PM2.5 concentration of a city. Therefore, the tracking and forecasting of PM2.5 concentration is
a challenging and important topic in smart cities.
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Figure 1. The Particulate Matter (PM)2.5 source pie charts of Beijing and Shanghai [20]. 

To effectively monitor and forecast the PM2.5 concentration in smart cities, an urban sensing 
application in big data analysis is set up whose architecture is shown in Figure 2. First, various 
sensors can be installed at various corners in the city, such as PM2.5 sensors and meteorological 
sensors to sense the urban weather conditions and degree of air pollution. Next, to monitor each 
index effectively, Internet of Things (IoTs) can be used to transfer the information and data to the 
monitoring servers for performing long-term data monitoring and tracking. However, for a smart 
city, merely monitoring the collected data above is insufficient since the large amount of collected 
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To effectively monitor and forecast the PM2.5 concentration in smart cities, an urban sensing
application in big data analysis is set up whose architecture is shown in Figure 2. First, various sensors
can be installed at various corners in the city, such as PM2.5 sensors and meteorological sensors to
sense the urban weather conditions and degree of air pollution. Next, to monitor each index effectively,
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Internet of Things (IoTs) can be used to transfer the information and data to the monitoring servers for
performing long-term data monitoring and tracking. However, for a smart city, merely monitoring the
collected data above is insufficient since the large amount of collected data are a valuable resource.
Therefore, relevant big data analysis techniques can be used to analyze and track the various data so as
to reach the goal of effectively monitoring, managing, and maintaining citizens’ health. In this paper,
the proposed CNN-LSTM is an advanced algorithm which adopts artificial intelligence and big data,
and combines various data indexes to accurately forecast the future PM2.5 concentration. The detailed
algorithm architecture is introduced in the following sections.
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3. The Background Knowledge of the Artificial Neural Network

An Artificial Neural Network (ANN) is a kind of mathematic model that imitates the operation of
biological neuron. It is a strong, non-linear modeling tool. An earlier ANN architecture is Multilayer
Perceptron (MLP) [21], a neural network with a fully-connected architecture. Basically, MLP already
has a good performance, and has been applied widely. However, if the data complexity is high,
the MLP architecture alone may fail to learn all the conditions effectively. At present, many new
architectures have been developed for ANN. In this paper, the main architectures are Convolutional
Neural Network (CNN) [22] and Long Short-Term Memory (LSTM) [23,24].

3.1. Convolutional Neural Network

A one-dimensional (1D) convolution operation is shown in Figure 3. The difference between
CNN and MLP is that CNN uses the concept of weight sharing. In Figure 3, x1 to x6 are inputs, and c1

to c4 are the feature maps after 1D convolution. What connects the input layer and convoluting layer
are red, blue, and green connections. Each connection has its own weight value, and the connections
of the same color have the same weight value. Therefore, in Figure 3, it only needs 3 weight values
to perform the convolution operation. The advantage of CNN is that the training is relatively easy
because the number of weights is less than that of fully-connected architecture. Moreover, important
features can be effectively extracted.
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3.2. Long Short-Term Memory

Another important technology of ANN is Recurrent Neural Network (RNN), which differs from
CNN and MLP in its consideration of the time sequence. LSTM [18] is one of the RNN models.
The schematic of LSTM is shown in Figure 4, where σ is a sigmoid function, as shown in Equation (1).
LSTM contains an input gate, an output gate and a forget gate. The interactive operation among these
three gates makes LSTM have the sufficient ability to solve the problem of long-term dependencies
which general RNNs cannot learn. In addition, a common problem in deep neural networks is called
gradient vanishing, i.e., The learning speed of the previous hidden layers is slower than the deeper
hidden layers. This phenomenon may even lead to a decrease of accuracy rate as hidden layers
increase [25]. However, the smart design of the memory cell in LSTM can effectively solve the problem
of gradient vanishing in backpropagation and can learn the input sequence with longer time steps.
Hence, LSTM is commonly used for solving applications related to time serial issues. The specific
formula derivation of LSTM is illustrated in Equations (2)–(11):

sigmoid(x) =
1

1 + e−x (1)

zt = Wzxt + Rzyt−1 + bz (2)

zt = tanh
(
zt) (3)

it
= Wixt + Riyt−1 + pi � ct−1 + bi (4)

it = sigmoid
(

it
)

(5)

f
t
= W f xt + R f yt−1 + p f � ct−1 + b f (6)

f t = sigmoid
(

f
t
)

(7)

ct = zt � it + ct−1 � f t (8)

ot = Woxt + Royt−1 + po � ct−1 + bo (9)

ot = sigmoid
(
ot) (10)

yt = tanh
(
ct)� ot (11)

where Wz, Wi, Wf, and Wo are input weights; Rz, Ri, Rf, and Ro are recurrent weights, pi, pf, and po

are peephole weights; bz, bi, bf, and bo are bias weights; zt is the block input gate; ft is the forget gate;
ct is the cell; ot is the output gate; yt is the block output; and � represents point-wise multiplication.
To reach the goal of parameter optimization, either CNN or LSTM can use backpropagation to adjust
the parameters of the model during the process of training.
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Figure 4. The schematic of Long Short-Term Memory (LSTM) [24]. 
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3.3. Batch Normalization

During the training of deep neural network, some problems still emerge. For instance, due to
the large number of layers within deep neural networks, a change of the parameters of one layer can
usually affect the outputs of all the succeeding layers, which leads to frequent parameter modifications,
and thus, a low training efficiency. Additionally, before passing the activation function, if the output
value of a nerve cell exceeds dramatically the appropriate range of the activation function itself, it may
also result in the failure of the work of the nerve cell. To solve these problems, batch normalization [26]
is designed. The detailed formulas of batch normalization are shown in Equations (12)–(15):

µB =
1
m

m

∑
i=1

xi (12)

σ2
B =

1
m

m

∑
i=1

(xi − µB)
2 (13)

x̂i =
xi − µB√

σ2
B + ε

(14)

yi = γx̂i + β ≡ BNγ,β(xi) (15)

where xi is the input value and yi is the output after batch normalization; m refers to the mini-batch
size, i.e., the one mini-batch that has m inputs; µB is the mean of all the inputs in the same mini-batch;
and σ2

B is the variance of the input in a mini-batch. Next, according to the values of µB and σ2
B,

all the xi are normalized as x̂i and substituted into Equation (15) to obtain yi, in which γ and β are
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learnable parameters. Through batch normalization, the neurons in the deep neural network can be
fully exploited and the training efficiency can be improved.

4. The Proposed Deep CNN-LSTM Network

The architecture of the proposed APNet is shown in Figure 5. The inputs of APNet are the records
of the PM2.5 concentration, cumulated wind speeds, and cumulated hours of rain over the last 24 h.
The output is the PM2.5 concentration of the next hour. Different from traditional pure CNN or pure
LSTM architectures, the first half of APNet is CNN, and used for feature extraction. The latter half
of APNet is LSTM forecasting, which is used to analyze the features extracted by CNN and then to
estimate the PM2.5 concentration of the next point in time. The CNN part of the APNet contains three
1D convolution layers. Moreover, to improve the efficiency, batch normalization is added after the
second and third convolution layers of the APNet.

Usually Rectified Linear Unit (ReLU), as shown in (6), is widely used as the activation function.
However, for the activation function of APNet here, Scaled Exponential Linear Units (SELU), as shown
in (7), is used. This is because, compared with ReLU, SELU has better convergence and can
effectively avoid the problem of gradient vanishing, which is discussed specifically in Klambauer
et al. [27]. In Equation (7), λ = 1.05, α = 1.67, and the numerical values are specifically defined by
Klambauer et al. [27]. The output of LSTM goes through the fully-connected architecture and the
sigmoid activation function to produce the final output. The results represent the PM2.5 concentration
of the next point in time.

ReLU(x) = max(0, x) (16)

SELU(x) = λ

{
x if x > 0
αex − α otherwise

(17)
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The system flow diagram of the proposed APNet is shown in Figure 6. During data processing, 
the original dataset first normalized, i.e., the numerical values of all dimensions are restricted to a 
range of 0 to 1, so as not to be overly partial to a certain dimension during training. Next, the 
normalized data is separated into two parts: training data and testing data. To keep the impartiality 
of performance evaluation, only the training data is used during the training, while the testing data 
is not used. Each time the training data are input to the APNet, a loss value is generated, according 
to which the optimizer uses a backpropagation method to adjust the parameters of APNet. The 

Figure 5. The architecture of the proposed APNet.

The system flow diagram of the proposed APNet is shown in Figure 6. During data processing,
the original dataset first normalized, i.e., the numerical values of all dimensions are restricted to a range
of 0 to 1, so as not to be overly partial to a certain dimension during training. Next, the normalized data
is separated into two parts: training data and testing data. To keep the impartiality of performance
evaluation, only the training data is used during the training, while the testing data is not used.
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Each time the training data are input to the APNet, a loss value is generated, according to which the
optimizer uses a backpropagation method to adjust the parameters of APNet. The forecast result
of APNet will be more and more accurate with the increase of training iterations. After the APNet
training is finished, the testing data is input into the APNet, and the testing results and real results are
compared to evaluate the performance of the APNet.

When there is not enough training data or when there is overtraining, overfitting may occur.
However, there are many ways to avoid overfitting, such as regularization [28], data augmentation [22],
dropout [29], dropconnect [30], or early stopping [31]. Regularization, which is very popular in the field
of deep learning, can be divided into L1 regularization and L2 regularization. Both of these methods
will reduce the weight value of the neuronal network as much as possible to prevent overfitting [32].
The concept of data augmentation is to amplify the dataset as much as possible, for example adding
random bias or noise, etc., to make the training data more diversified to achieve better training results.
Dropout is similar to the dropconnect concept in that the former randomly stops the operation of
the neuro, while the latter removes the connection randomly. The method used in this paper is
early stopping. Before the experiment, we decided when to stop training according to the prediction
condition of the validation data. For example, when training loss continues to decrease but validation
loss increases, this means there is already overfitting [31], so at this time we would stop training. In the
experiment, we selected an epoch value that does not generate overfitting, and let each neural network
model be trained based on this epoch to maintain the fairness of the performance comparison.
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5. Experimental Results and Discussion

This section is divided into two parts: data descriptions and experimental results. Support Vector
Machine (SVM) [33–38], Random Forest (RF) [39–44], Decision Tree (DT) [45–50], MLP, CNN, and LSTM
are used for comparison to fully demonstrate the performance of the proposed APNet.
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5.1. Data Descriptions

Beijing is a cosmopolis with a population of more than 21.5 million, and Particulate Matter
(PM) is one of the main factors that affect human health directly [51]. Thus, the PM2.5 dataset of
Beijing is selected for this study. Figure 7 shows the weather condition, pollution degree reported
and its histograms in each hour by the US embassy in Beijing, China, from 2010 to 2014. The dataset
includes PM2.5 concentration, cumulated wind speed, and cumulated hours of rain. In this experiment,
information from these factors over the past 24 h are used to forecast the PM2.5 concentration of the
next hour. These three types of useful information are expected to be integrated into the machine
learning model to perform supervised learning and analysis, to realize accurate forecasting.
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5.2. Experiment Results

In this experiment, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Pearson
correlation coefficient and Index of Agreement (IA) are taken for the performance evaluation.
These four kinds of measurement indexes with their equations are shown in (18)–(21). r is the
Pearson correlation coefficient. pn denotes the predicted value, and on represents the observed values.
o is the average value of on, and N is the predicted length. To test the performance comprehensively,
10 intervals in the database are selected, with each interval containing six months’ data as training
data, and two months’ data as testing data. The Pearson residuals of all forecasting methods is shown
in Figure 8. The results are distinguished between those with an absolute value less than 1, an absolute
value between 1 and 3, and an absolute value greater than 3, the results are plotted as shown in
Figure 8. From the statistical results, it can be found that the distribution of the Pearson residuals for
each machine learning is not too wide, this also means that these methods have a considerable degree
of predictability.

MAE =
1
N

N

∑
n=1
|on − pn| (18)
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Figures A1–A7 in Appendix A are the forecast results from each algorithm, and Figure A8 is
the forecast results comparison of all the algorithms. In order to be able to perform a more complete
evaluation of the effectiveness of all algorithms, we devised 10 tests for the experiments of this paper.
Considering the length of this paper, we only list the results of six tests in Figures A1–A8, the detailed
numerical analysis and comparison is presented in detail in Tables 1–4. From the figures, it can be
found that SVM is slightly weak on PM2.5 forecasting and deviated greatly from the trend of the real
result at some parts. Although the performance of DT is a little better than SVM, its error is still large.
The efficiencies of MLP and RF are acceptable. Although at some parts the forecasting is still not
accurate, the overall trend followed that of the real results. It should be noted that the efficiency of the
CNN-LSTM based APNet proposed in this paper is better than that of CNN and LSTM. Therefore,
it is proven that the application of APNet to PM2.5 forecasting is quite effective and accurate. In these
experiments, the computer specifications used for the experiment of this paper are described below:
CPU: Intel Xeon E3-1245 V6; Random Access Memory (RAM): 8 GB DDR4; graphics card: GTX 1080 Ti;
hard disk drive: 1 TB SATA3; Operating System: Linux Ubuntu 16.04. Because the calculation times for
predicting PM2.5 concentration through various algorithms are all very short, all experiment methods
used in this paper are within a reasonable range for predicting PM2.5 concentration for the next hour.

Moreover, the detailed MAE, RMSE, Pearson correlation coefficient, and IA values are shown in
Tables 1–4. In the ranking of MAE, there are, from low to high, APNet (14.63446), LSTM (15.34655),
CNN (16.13498), RF (17.56451), MLP (20.65027), DT (21.41757), and SVM (37.90581). While in the
ranking of RMSE, there are, from low to high, APNet (24.22874), LSTM (24.2925), CNN (24.59636),
RF (28.87602), MLP (29.09238), DT (39.45547), and SVM (50.02137). Besides, in the ranking of Pearson
correlation coefficient, there are, from high to low, APNet (0.959986), CNN (0.958363), LSTM (0.95794),
RF (0.942276), MLP (0.940557), DT (0.880291), and SVM (0.81133). Finally, in the ranking of IA, there are,
from high to low, APNet (0.97831), LSTM (0.976797), CNN (0.975972), RF (0.966298), MLP (0.964021),
DT (0.933533), and SVM (0.852398). Experiments show that the APNet algorithm proposed in this
paper is very good when the Pearson correlation coefficient is presented, in which the first, third, fifth,
seventh, eighth, and tenth tests all have the highest r value, and the average value is also the best
among all machine learning methods. In terms of IA, APNet also scored highest in IA in the first,
third, fifth, seventh, eighth, and tenth tests, the average score is also the best. Overall, CNN, LSTM,
and APNet are the best performers; while APNet, which combines the advantages of CNN and LSTM,
wins out. This result also confirms that the combination of CNN and LSTM is very effective for the
prediction of PM2.5. As shown by the experiment results, the performances of CNN and LSTM are both
good, but that of APNet is even better. It is also proven that for PM2.5 air pollution source forecasting,
it is very beneficial to first perform feature extraction using CNN, and then input the feature values
into the LSTM architecture.
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Table 1. The experimental results in terms of Mean Absolute Error (MAE).

Test SVM RF DT MLP CNN LSTM APNet

#1 42.57556 18.68328 23.90568 22.4221 18.9675 18.5217 16.7474
#2 35.40574 14.92391 19.53063 22.0437 14.8997 16.2908 14.2053
#3 43.37174 16.74816 17.93104 20.2441 16.9613 15.8297 14.9131
#4 50.19538 31.64949 36.57292 23.1328 20.7791 18.1417 18.2807
#5 40.38873 19.54953 27.66294 22.8951 17.1051 16.505 17.2492
#6 34.57838 17.80561 21.3065 18.5993 15.1543 13.9768 14.0047
#7 37.10853 12.3846 15.37398 19.9247 15.3203 13.1789 11.9718
#8 21.85433 9.96139 11.07522 13.9672 11.1243 11.1574 9.85554
#9 40.47121 21.13339 25.09194 26.0607 18.954 17.2029 18.9953

#10 33.1085 12.80574 15.72481 17.213 12.0842 12.6606 10.1216

Average 37.90581 17.56451 21.41757 20.65027 16.13498 15.34655 14.63446

Table 2. The experimental results in terms of Root Mean Square Error (RMSE).

Test SVM RF DT MLP CNN LSTM APNet

#1 56.55255 26.59535 36.90484 29.98992 26.36855 25.2699 23.83181
#2 47.07641 26.84212 38.17991 30.86026 25.24918 27.20435 25.95273
#3 55.9933 25.46634 29.14463 27.68189 24.43146 23.31643 22.56656
#4 66.58581 47.20812 58.96869 35.14076 31.38514 29.63356 31.08485
#5 50.32762 31.14631 55.65785 31.59871 26.4418 27.15832 26.77069
#6 47.23936 32.32307 43.69507 27.00565 23.87708 23.05538 24.81823
#7 48.11796 22.96514 33.33885 28.78185 24.29253 23.04227 20.83558
#8 27.70533 16.61144 19.44406 19.52802 16.63667 17.22178 16.44391
#9 57.49434 39.29988 44.9455 38.8347 31.03137 30.14096 35.23974

#10 43.12105 20.30241 34.27529 21.50208 16.24985 16.88207 14.7433

Average 50.02137 28.87602 39.45547 29.09238 24.59636 24.2925 24.22874

Table 3. The Pearson correlation coefficient (n = 1415).

Test SVM RF DT MLP CNN LSTM APNet

#1 0.638786 0.926131 0.857044 0.907166 0.935633 0.940295 0.941237
#2 0.92699 0.973356 0.945972 0.968823 0.977848 0.973044 0.975517
#3 0.754792 0.944363 0.926856 0.936873 0.950255 0.953075 0.955411
#4 0.872546 0.924315 0.868861 0.957647 0.970539 0.970023 0.966768
#5 0.70376 0.893368 0.699291 0.89043 0.922092 0.919221 0.932416
#6 0.870895 0.938605 0.879954 0.956404 0.966881 0.967185 0.964074
#7 0.843806 0.966459 0.927678 0.947582 0.964757 0.966151 0.972383
#8 0.887029 0.957205 0.943408 0.941748 0.95875 0.953544 0.96088
#9 0.914454 0.959145 0.940049 0.961928 0.9731 0.97354 0.963773

#10 0.700245 0.939808 0.8138 0.936971 0.963777 0.963319 0.967397

Average 0.81133 0.942276 0.880291 0.940557 0.958363 0.95794 0.959986

Table 4. The Index of Agreement (IA).

Test SVM RF DT MLP CNN LSTM APNet

#1 0.745175 0.958607 0.923722 0.943082 0.959601 0.963882 0.968546
#2 0.952324 0.98613 0.972305 0.980782 0.988124 0.985715 0.987253
#3 0.716799 0.968534 0.962342 0.964832 0.972961 0.974219 0.976896
#4 0.873168 0.95108 0.92713 0.975282 0.979759 0.983128 0.981386
#5 0.790755 0.940903 0.82489 0.93198 0.958817 0.957693 0.961527
#6 0.897091 0.960562 0.924618 0.974253 0.982193 0.982024 0.978416
#7 0.904886 0.982324 0.961747 0.970803 0.979047 0.982588 0.985856
#8 0.924705 0.977994 0.97085 0.967449 0.977596 0.975862 0.979732
#9 0.934477 0.973919 0.967458 0.974426 0.984648 0.985924 0.980962

#10 0.784602 0.962931 0.900264 0.957321 0.976973 0.976935 0.982527

Average 0.852398 0.966298 0.933533 0.964021 0.975972 0.976797 0.97831
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Figure 9 shows the detailed comparison results of each model, where the blue bold line refers to
the real data, and the other colored lines are the forecast results of each algorithm. As shown in the
blue frame of Figure 9, the forecast results of SVM barely coincided with the actual results. Among all
the algorithms, the performances of RF, MLP, CNN, LSTM, and APNet are better. As shown in the
green frame of Figure 9, when the PM2.5 pollution source concentration is unstable, the forecasting
result of many algorithms could not follow the real trend and showed a rather disordered pattern.
This also indicates that it is still difficult in terms of PM2.5 forecasting. Overall, the performances of
CNN and LSTM are very stable and accurate, but the CNN-LSTM based APNet proposed in this paper
is even better. The forecasting ability of APNet for PM2.5 forecasting is also verified in this experiment.
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For ease of analysis, we classified air quality according to PM2.5 concentration as follows: Good:
PM2.5 does not exceed 35 µg/m3; Pollution: PM2.5 is greater than 35 µg/m3; Severe Pollution: PM2.5

is greater than 150 µg/m3. Good quality air conditions appear in Beijing for about 23% of the time,
more than half of the time (about 55%), the city is in a state of general pollution; about 22% of the
time Beijing is in a state of serious pollution, general pollution and severe pollution together accounts
for 77%. The proportion of the three air quality conditions has not changed much from 2010 to 2014.
Compared to spring and summer, more days of clean air and severe pollution exist during autumn
and winter. The former is due to Beijing’s northerly winds in autumn and winter, which facilitates
air diffusion and increases the proportion of clean air. The latter is likely due to winter heating and
straw burning during autumn, which causes heavy pollution to occur frequently, so the proportion of
serious pollution is also relatively high. The proportion of severe pollution days in summer in Beijing
is less than 17%, but the proportion of clean air days in the summer is also the lowest among the four
seasons with less than 16%. Although emission from residential heating using coal is lower in summer
than in winter, the temperature and humidity is higher in Beijing in the summer; at the same time,
the northerly winds are reduced in summer and wind speed is low, some factors are favorable for the
generation of secondary aerosols and PM2.5 concentration increases [52].

Because the concentration of PM2.5 is closely related to city area, urban population, number of
vehicles, and urban industrial activity increase [53], this paper proposes a prediction model (APNet) to
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make short term predictions of PM2.5 concentrations in order to provide more effective and accurate
early warnings of high concentrations of suspended particulate matter, in order to protect the people’s
respiratory health and prevent cardiovascular disease.

The advantages of separate monitoring are as follows: (1) From an academic research point of
view, the shorter the monitoring data collection cycle the better, that is, the more data collected in the
same time period, the more applicable research can be done in the future, because the data sampling
period required for each applied research is different, so separate monitoring can avoid the failing
of missing data; (2) Before smart city is reached, there are still many researches and technological
developments that need big data to support. In the future, big data will become a very important
research asset. Figure 2 is only a schematic diagram, it is not necessary to measure data at different
locations during the data collection process, it could also be done at the same location. However, in the
smart city, sensors could be installed more densely in different locations so that the smart city and even
neighboring areas are covered with a network of sensors, and more innovative prediction algorithms
can be developed and more accurate spatiotemporal data analysis can be achieved.

The main contribution of this paper is to develop a deep neural network model that integrates the
CNN and LSTM architectures, and through historical data such as cumulated hours of rain, cumulated
wind speed and PM2.5 concentration. We allow this model to use such information to learn and predict
PM2.5 concentration for the next hour. In the experiment process, the testing data is entirely new for
the neural network model, the purpose being to verify the predictive power of APNet developed in
this paper. The APNet predicted results are also analyzed and compared based on actual observed
values to verify the performance of each forecasting model. Therefore, in addition to modeling past
data, APNet’s output value also represents the forecasting result.

This paper mainly applies the deep neural network method to predict PM2.5, and compares it with
many other popular and widely used machine learning algorithms. However, deep neural network is
also a type of machine learning, whether the data is sufficient and correct will determine the success
or failure of the algorithm prediction. Therefore, when using machine learning for data molding
or forecasting, data collection and processing is very important. This does not mean however that
the traditional rule-based approach is superior, because in modern society with large data resources,
machine learning technology can more subtlety discover information that humans cannot intuitively
reflect, and thus produce more accurate forecasts.

6. Conclusions

In this paper, a deep neural network model (APNet) based on CNN-LSTM is proposed to estimate
PM2.5 concentration. APNet can forecast the PM2.5 concentration of the next hour according to the
PM2.5 concentration, cumulated wind speed, and cumulated hours of rain over the last 24 h. A PM2.5

dataset of Beijing was used in this experiment to perform model training and performance evaluation.
The experimental data in this paper were classified into two parts: training data and testing data.
Training data was used for model training. The testing data that was unused in the training process
was used for the computation of MAE, RMSE, Pearson correlation coefficient, and IA for performance
evaluation, the results of which were comprehensively compared with that of the SVM, RD, DT, MLP,
CNN, and LSTM architectures. Experimental results showed that compared with the traditional
machine learning methods, the forecasting performance of the APNet proposed in this paper was
proven to be the best, and its average MAE and RMSE were both the lowest. As for the CNN-LSTM
based model, its feasibility and practicality for forecasting the PM2.5 concentration were also verified
in this paper. This technology is significantly beneficial for improving the ability of estimating the
air pollution in smart cites. In the future, this study can be applied to the prevention and control of
PM2.5. In particular, in light of the severe situation of atmospheric particulate matter pollution in
recent years, we must come up with appropriate countermeasures to curb the deterioration of urban
air conditions. However, an urban forest can be introduced as a large air filter which is non-toxic,
harmless, and non-polluting, and also saves time, labor, and resources in reducing air pollution.
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Urban forests have the effect of preventing air particles from lingering in the air, and it also controls
and eliminates airborne particles. Research in this area may become a new direction for regulating
airborne particulates with plants [54].
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