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Abstract: Long-range radio transmissions open new sensor application fields, in particular
for environment monitoring. For example, the LoRa radio protocol enables connecting remote
sensors at a distance as long as ten kilometers in a line-of-sight. However, the large area covered
also brings several difficulties, such as the placement of sensing devices in regards to topology in
geography, or the variability of communication latency. Sensing the environment also carries
constraints related to the interest of sensing points in relation to a physical phenomenon. Thus,
criteria for designs are evolving a lot from the existing methods, especially in complex terrains.
This article describes simulation techniques based on geography analysis to compute long-range
radio coverages and radio characteristics in these situations. As radio propagation is just a
particular case of physical phenomena, it is shown how a unified approach also allows for
characterizing the behavior of potential physical risks. The case of heavy rainfall and flooding
is investigated. Geography analysis is achieved using segmentation tools to produce cellular
systems which are in turn translated into code for high-performance computations. The paper
provides results from practical complex terrain experiments using LoRa, which confirm the
accuracy of the simulation, and scheduling characteristics for sample networks. Performance
tables are produced for these simulations on current Graphics Processing Units (GPUs).
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1. Introduction

Climate change and natural evolution seriously impact several social and economic aspects,
including living conditions, human health, and development. Autonomous observation is a key
point for understanding evolution and the management of territories. This is achieved using small
stations equipped with processors, sensors, transceivers, and power supplies. Distributed sensors
sample physical behavior. They enable analyzing environmental changes and to predict short-term
and medium-term transformations.

Wireless Sensor Networks (WSNs) offered several frameworks to connect sensors.
Radio standards such as 802.15.4 [1] propose short range mesh connected topologies suitable for
indoor or local deployments. Recent innovations include low power long-range radio systems,
such as LoRa [2] or Sigfox [3]. Long range means covering a large surface, more risk during
transmissions, long signal latencies, and more difficulties coming from the ground topology.
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Star organization, where a central node addresses remote sensors is the more natural technique to
collect data on surfaces within a range of ten thousand square meters.

Complex geographic areas such as shores or islands, hills, valleys oppose physical difficulties
to the radio propagation. At the sensor level, the coverage also defines zones where information
is accessible, whatever it may be, wildlife including insects, physical elements such as water or
gas. Therefore, a precise coverage computation is critical for monitoring efficiency which matches
radio connectivity objectives, and sensing accuracy in regards to physical phenomena. This article
describes principles of a general method based on geo-localized cellular systems. It explains how
a radio coverage or a physical coverage can be computed from the same framework, allowing for
obtaining a better match between observation engines and observed phenomena.

A cellular approach was chosen to address the variety of entities appearing in physical
situations. Geography variation is one of them, with elevation accidents, rivers, lakes, forest,
and shores. By fragmenting geography into cells, it becomes possible to isolate different behaviors,
to simulate, then to reassemble these independent behaviors using higher level simulation
paradigms, as shown in Figure 1 and [4].

Figure 1. Federation of two complementary cellular subsystems, a sensor network, and some
display for observation. A software bus (RTI) provides services for data exchanges, sequencing
and synchronization. This framework is called High Level Architecture, standardized as IEEE Std
1516–2000 [5].

The approach of fine grain cellular structure and coarse grain partitioning appears to be
flexible, allowing different components to coordinate. It is also compatible with geographic
information since each cell is localized.

The introduction firstly gives an overview on principles behind three components in the
methodology: (i) the terrain analysis (Section 1.2), (ii) the signal propagation and coverage
(Section 1.3), and (iii) the representation of physical phenomena behaviors (Section 1.4).
Generic algorithms for sensing deployments can be built in relation to metrics for these
components. This section will refer to a grid of points having geometric and geographic
coordinates. Preliminary examples present a large region with mountains and creeks along
the seashore, likely to be equipped with sensors. This level of explanation matches application
needs at an engineering level.

Further sections will detail tool principles, with the presentation of the cellular methodology
(Section 2), then algorithms which simulate the physical case of flooding (Section 3), and long-range
radio propagation (Section 4). Appendix A will present validation results obtained by these algorithms.

1.1. Related Work

Use of a cellular automata approach for modeling of natural phenomena in terms of terrain
complexity has attracted the interest of several scientists. Climate change impacts and sea
level rise, leading to severe weather, salinity intrusion and natural disasters are described
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in [6–10]. From these studies, proper plans and forethought can support adaptation and
resilience. In addition, other publications have investigated hydrological modeling with respect
to homogeneous of landform types, for example, surface water flow simulation, complex river
system modeling, and flash flood forecasting [11–13]. Solutions for problems related to land use,
land erosion, and landslide have been proposed by [10,14,15]. Another related research topic is
environmental pollution such as oil spill, air pollution, and so on [16,17]. Many natural disasters
(e.g., volcano, earthquake, tsunami, snow avalanches, etc.) could be forecasted through computer
programs based on cellular technology [18–21]. Modeling wildlife propagation and urban in
relation to food, environmental variables are also research fields for CA [22–24].

1.2. A Characterization of Terrain Complexity

Sensor investigation in a zone almost certainly starts with a glance at a geographic map or
an aerial photography. If the zone includes mountains, hills, rivers, or shores, two questions will
arise, about the sensing point locations, the reachability of an infrastructure network, and the
adequacy with the sensing objectives. Design tools will help to take into account the geographic
characteristics and possible obstacles to signal propagation, while keeping track of these objectives.
Sensing systems are application specific, point to point, and differ a lot from mobile radio
communication based on regular coverages.

Terrain complexity metrics allow for measuring ground irregularity, and offer the possibility to
split and isolate zones of similar characteristics. Figure 2 displays complexity for a complex zone
(Soummam Valley, leading to Bejaia city, the north of Algeria) based on Digital Elevation Models
(DEMs) analysis.

Figure 2. TPI terrain complexity for the river Soummam in Algeria (see also Figure 5). Red lines
represent higher points, difficult to overcome and blue lines are for lower points, difficult to reach.
The white zone signals a flat ground without remarkable obstacles, the case of Soummam banks.
This grid is 262 × 226 points, representing 30 × 25 km.

Several metrics are known for this. Terrain Ruggedness Index (TRI) and Topographic Position
Index (TPI) for DEM provide a quantitative measure of surface turbulence [25]. TRI is the square
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root of the summed squared deviation in elevation between a cell and its eight neighbor grid
cells [26]. TPI is the difference in elevation value of a center cell and the mean of eight adjacent
neighbor cells [27]. Both TRIs and TPIs grids illustrate the distribution of terrain heterogeneity
and may be displayed in the form of a map as shown in Figure 2. Figure 3 display analysis
results for four cases, also showing how terrain characteristics allow separating concerns about
sensor layouts. Partitioning the ground according to terrain complexity (as shown in Figure 4) is a
preliminary operation for network layout and selection of the pair to pair radio transmissions,
to be obtained through computer programs.

Figure 3. A histogram of topography ruggedness. Four zone analysis with high variability (red,
the Soummam), low variability (blue, the City of Brest, with several deep valleys and the shore), a
zone with an high percentage of sea surface (green, Brest bay), and medium variability with low
size hills (brown, the Arrée mountains).

Figure 4. A subsystem of low terrain complexity was extracted from Figure 2. This is a flat zone
around the river Soummam, with complexity below the threshold line on the left in Figure 3.
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1.3. Designing for Long-Distance Radio Coverage

Setup of long-distance radio communication links is difficult if there is an obstacle in the
geographical topology.

In smooth terrain areas, radio propagation can be considered as near line-of-sight (NLoS).
In this case, the communication distance is expressed in relation to power reduction along the
path. Free space path loss (FSPL) equation was proposed for this aim (see Section 5 and Equation (9)
in Section 5).

Concerning complex terrains, the choice of a radio position can be application context
dependent, topology-dependent, or it can come from a layout algorithm. Thus, it is critical to
obtain a description of the zones covered by a signal, plus other characteristics such as propagation
delay from the source, and quality of the signal. Section 5 will explain how this can be done using
cellular algorithms which mimic the spatial physical propagation over the terrain.

Figure 5 illustrates the results of a coverage computation, from an expected source in
the middle of the figure. The irregular yellow shape reflects the difficulty to choose source
and destination given that any position between them can interrupt the signal propagation.
Deploying a network of several nodes on long distances is not tractable by hand.

Figure 5. Display of a radio coverage for an emitter (red point), located above the Soummam
(36.622141028, 4.799995422), elev:165.0 m. Note that geographic positions are proposed in (lat,
long) form compatible with familiar map navigators. Coverage is shown in dark yellow, spreading
over 30 km on the zone width. This location was chosen at random, giving a percentage of 32%
grid points receiving the long-range signal.
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1.4. Observing Physical Phenomena

Another component for observation methodology is the necessary focus on the phenomenon
to monitor. The nature of sensing varies a lot, depending on application fields. Sensing can
be related to biology, climate, geology, human activities, or composition of parameters.
Complex terrains will bring a complex behavior, as it is the case for radio signal propagation.

To illustrate the observation problem, let us consider heavy rain in the same region as in
Section 1.3. The physical fact to be monitored is water streaming from the mountain to the river,
then to the sea. Rain can be predicted from the meteorology services simulations, or just observed
using radars, satellites, or ground devices. Causality for water flooding is the nature and shape of
the terrain, sharing characteristics with terrain complexity and signal propagation.

Cellular simulation presented in Section 2 will compute propagation of water given an
expected, or existing rain history taken from a public service (this case), or extracted from radar
networks [28] or satellite observations [29]. Figure 5 displays the water streaming from the
mountain down to the river in this particular case of a heavy storm whose profile is shown in
Figure 6.

In the resulting maps, high values represent flooding and possible risks. This analysis
demonstrates that simulation allows for establishing dependencies between risks and positions.
Choice of real sensing positions can be produced by computer programs. For example, the control
that appeared in Figure 7 can connect on radio coverage zones and obtain measures from critical
positions in the rivers. The difference in communication latencies is another problem in the
long range. This is also a place where computer tools can help to produce a schedule of sensor
communication automatically.

Figure 6. Chart of rainfalls and water levels at two positions in the Soummam river zone during
a tropical storm from 13 to 16 November 2017. The blue line shows rainfalls during four days
recorded every 3 h [30]. The two lines in red, green color present water level at P1, P2, respectively
(also see Table 1). The distance between P1 and P2 is 300 m. Due to the significant slope of the
ground surface in this complex terrain, a large amount of water was accumulated at lower points,
causing a flash flood, and possibly a catastrophic landslide.
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Figure 7. Heavy rainfalls context: a physical simulation produced positions with the risk of flash
flooding (dark blue color). The communication coverage of a base station with a star network
is predicted for sensor nodes monitoring level of water in these positions. An algorithm selects
reachable sensor positions from a network sink, sorts, then extracts 15 positions according to the
flooding result simulation. More details about accuracy are given in Section 3.

Table 1. Geo-locations of points where values of water level were recorded.

Point Color Latitude Longitude Elevation (m)

P1 Red 36.589895361 4.925651550 554.7
P2 Green 36.587414366 4.925651550 536.8

The flexibility of cells embedding local parameters makes it possible to represent many
physical phenomena such as ocean or river wave effects, rain effects and flooding, air or water
pollution, species behavior, sound, and alerts reachable zones, etc. Parallel algorithms were
designed to simulate rain flooding (Section 3) and propagation of the LoRa radio protocol
(Section 5.1), the objective being to obtain high performances on these kinds of problems.

Now, the article explains the geographic space structuration based on cellular systems.

2. Mapping Geographic Space into Cell Systems

2.1. Geographic Map and User Interfaces

Several domains such as physics, medicine, or biology need sensing systems and geometric
references. The case of geography includes necessary projections of a spherical surface into
flat maps, with many options depending on applications, precision and considered location.
Software tools exist for conversions [31]. Designing observation systems implies considering
distances and geometry relating to applications, and therefore use of one or several reference
systems to manage physical phenomena and their perceptions coherently. This section proposes
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an explanation of map building and displays supporting the meaning of map contents,
and data abstraction for geo-localized information additionally fetched from other sources,
including simulations.

Tiled web maps are used to represent geographic data and to display information as flat
graphics. This appears in proprietary software, or free access map systems such as OpenStreetMap.
In Tiled web maps, the Earth is accessed by a projection rule called Web Mercator [32], and most often
by a 3D designation mechanism XYZ used by web browsers and tile servers. The Z parameter
provides a zoom factor from the whole Earth to more and more detailed view of the Earth fragments.
At a given zoom factor Z, XY gives the 2D index of a tile inside the rectangle of tiles of this level
Z. Based on this, tiles of graphical information are composed and delivered by servers to clients,
usually in the form of 256× 256 pixel images (Figure 8 presents a map composed from such tiles).
These images are composed by a server rendering engine that extracts objects from a database and
draws them according to some style (see Figure 9).

Figure 8. Quickmap tool [33] showing tile coverage. For this case, zoom factor is 9, and the last
tile at the bottom right has x = 251, y = 177 indexes.

Figure 9. Tile map server architecture: tiles are requested from the web page server that either return
a cached image or ask the rendering engine to compose it from a data base of geographical objects.
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The browser Quickmap [33] supports standard map tiles, including OpenStreetMap, and a variety
of other items, either for maps or aerial images. This tool also allows for describing sensor systems,
communication links, and mobile trajectories, for example, Low Earth Orbit (LEO) satellites [34].

At a map browser level, users specify or observe geometric points relative to a zoom level.
Real points are geographical positions, with coordinates specified according to the current
projection system. In the case of Quickmap, they are double precision floating point numbers for
latitude and longitude. Another concern is the necessity to use real distances in meters, over the
Earth surface, for a task such as coverage computation. In the case of Web Mercator transformations
between addressing mechanisms for (lat, long) absolute geographical specifications (x, y) distance
in meters, (x, y) pixels, and XYZ tile access operations can be managed with formula from [35].

2.2. Definition of Cells

Geographical cells can now be defined as objects grouping local data, local system behaviors,
and graphic representation. This is described as an object-oriented class, as variables, and methods
that are strictly local to the cells (Figure 10):

• Cell locations are bounded to geometric locations on maps, in relation to tile containers,
and when possible to geographical locations.

• Basic cell contents are extracted from the map or image fragment as supported by the
browser tool.

• Cell content extensions are obtained from external databases. Most of the cases are digital
elevations, and also climate, or weather characteristics and historical data.

• Cell size is chosen to match a particular physical phenomenon or sensing requirements.
• Cell behaviors are local procedures operating on a cell state. They need to be programmed to

produce simulation data that in turn can be sent back to databases, or displayed on tiles.

Figure 10. Presentation of a cell system organization over the tiles of Figure 8. Each cell has an
identity produced from its location inside the window, and a geographical location. The text
window bottom right also displays a plus parameter for the elevation. The cell size is 25× 25 pixels,
representing 7644 m.
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Examples in Section 1 illustrate how geographical abstraction, representation, and simulation
can interact (Figures 2, 5 and 7).

Given a partitioning of a geographical zone into a cell system, we need to relate the
observation system and physical behavior. The possibility to simulate physical processes will be
of great help to correctly characterize a layout of sensors in connection with physical evolution.

Cellular automata (CA) allow for modeling physical activities as processes that exchange
information and evolve according to transition rules. The cell concept binds geographical
fragments to such processes whose assembly is generated automatically.

2.3. Cellular Automata Principles

2.3.1. Synchronous Systems

Cellular automata were invented by John Von Neumann and colleagues with the aim to build
a self-reproducing machine abstraction [36]. To support this goal, a two-dimensional space was
configured with automata governed by a small set of states. This representation of space was
used in several scientific domains and bound to physical behavior having similar properties [37].
CA can be described, and specified as a discrete space which associates cells.

In synchronous cellular automata, cells evolve, step by step, following a discrete time. Such CA
have been described in a variety of languages and executed on specific machines [38] following
four simple patterns:

• The cellular space is represented by an assembly of similar cells. A common notion of
neighborhoods defines local communications following observed physical dependencies.
The spatial organization can be either regular or irregular, possibly with disconnected
subsystems as shown in Figure 11, item 3.

• The evolution of each cell is defined in a set of states as observed in a real system (quantities,
colors, boolean). Change of states are operated by procedures associated with representing
transition rules from step to step: Statet → Statet+1.

• The neighborhood represents physical dependencies, for example, signal propagation,
or downward flooding. These dependencies are connectivities from cell to neighbor
cells. Common neighborhoods are Von Neumann and Moore with four and eight
cardinal directions, respectively. Item “Process architecture” in Figure 11 illustrates a Moore
neighborhood.

• The transition rule defines the behavior of each cell evolution under influence of its
neighborhood and local sensed influences. The state of the whole cell system synchronously
changes, time step by time step.

Non deterministic behaviors include random variation at the physical level. This was used in
lattice gas simulation [39] and to represent life cycle and species evolutions [40].

2.3.2. Variability in Large Systems and Asynchronism

Considering large systems, synchronism and massive data parallel execution can be an
obstacle, both in behavior modeling and performances because of sparse data spaces.

Asynchronous cellular automata were proposed to represent reactive systems where events
are propagated in a way similar to Communicating Sequential Processes [41]. However, in the
case of physical simulation, sampling and time references are often mandatory. Variability of
computation frequency can be obtained by isolation and simulation of sub-systems. This was
implemented on GPUs as related in [42].
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The High Level Architecture (HLA) also allows for sequencing cellular sub-systems at a
different speed and to provide data exchanges between them. For example, Ref. [4] shows a
countryside simulation with forest, forest fire, sensors and river pollution composed together.

Thus, we can consider the grouping of cells into synchronous subsystems as an efficient
way to manage variability. Composing simulations at a high level is shown in Figure 1, and was
technically discussed in [4].

Figure 11. Cell synthesis flow: (1) a zone was located from a Quickmap navigation, and (2) was
segmented into cells, then a subsystem was extracted filtering cells with elevations less than
45 m. (3) A cell system was generated following Moore topology. Annotations show controls for
geographical positions with a cell size of 5× 5 pixels representing a 191× 191 m2 surface (A),
classification was operated for elevation (B). The neighborhood was Moore, radius 1 (C).

2.4. Cellular Automata Parallel Execution Models

A sequential execution model will read states in an array At for time t, and loop over, writing
a similar array At+1. Once the step is completed, the two arrays are exchanged, and a new turn
begins. CA is easy to parallelize preserving this behavior, grouping operations together and
observing turns completion. Parallelism is mandatory because problems are large, if not huge,
a lot of small cells can be critical for simulation precision, and some applications require examining
very large geographical regions.

• The synchronous distributed messaging model [43] can support parallel computation by
associating cells with communicating processes. In this case, process progress by locked steps,
based on messages being sent and received to or from neighbor nodes. The steps are split
into two phases, one for communications with the neighborhood, the other to execute the
transition rule. Figure 12 shows an internal node representation and the outside connection
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with three input and output links. This model does not need to specify the relative speed of
processes, and can therefore be used for multi-cores or supercomputers.

• Another way to take advantage of parallelism is to use data parallel Single Instruction
Multiple Data (SIMD) processors to execute a group of processes simultaneously.
Current graphics accelerators propose solutions up to two thousand processors working
concurrently, and exchanging data synchronously in shared memory. State spaces must
be copied to the accelerator memory. Then, a loop of steps can be run completely on the
acceleration, which is very efficient.

Figure 12. Cell node representation: (a) is the internal architecture with an automaton (rule)
operating on incoming values and local stimuli (stim), based on a local set of variables,
filling output communication buffers. Communications (com) are operated to and from the
input and output buffers; (b) is the external point of view that only shows bidirectional links of a
cell node.

Production of code from cell systems to this schema was done for two targets:

1. Asynchronized Occam communicating processes [44,45] targeting KRoC compiler and
multi-cores [46],

2. CUDA code production [47] targeting NVIDIA tools and accelerators.

2.5. Cellular Systems Workflow Organization

Most of the work described in this article is supported by a set of dedicated tools from the
University of Bretagne Occidentale (UBO). The design flow can be summarized as follows:

1. Zone selection is done by moving a graphical window anywhere, with any level of zoom.
The tool extracts graphic tiles, and displays the contents.

2. Cell segmentation is obtained by splitting the view into rectangles of a given size specified
as a width × height value. Cells will carry an image and a geographical location from the
underlying image.

3. Binding cell together and producing a cell system implies the choice of a connectivity
(Moore, Von Neumann), and possibly filtering cells by colors or elevation. This step also
injects external values from a variety of sources, including elevation.

4. Adding behavior programs the cellular system at the local level, given a cell system
architecture that step 3 (Figure 11) automatically produces.

Steps 1 to 3 are interactive and can be achieved in minutes. Step 4 is a concurrent programming
activity specific to a concurrent platform which requires elaboration of CA transition rule and
coding for the target platform.
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Physical phenomena simulation can reveal places of interest for sensing. In the case of
flooding, simulation track accumulation and circulation of water.

3. Heavy Rain Simulation on a Complex Terrain

To illustrate cell system interactions and behavior, we use the example of a zone receiving and
flooding rain, as discussed in Section 1.4.

3.1. Managing Space

Space is defined by geographical coordinate bounds, and a possible selection operated on
cells. Selected cells have common properties, such as an elevation above or under a threshold level
(Figure 11, step C), some color characteristics, or some signature produced from observed parameters.
Thus, the cell system can be rectangular or have arbitrary shapes and isolated subsystems.

Practically, cell systems first appear as arrays of objects that carry geometric coordinates,
geographic coordinates, and a pixel array extracted from the original image.

Besides the zone structure, designers need to specify neighborhood, representing local
physical influences and producing the necessary connectivity between processes. We can just
admit that the space animation will be obtained by messages exchanged between neighbors.
Execution software and hardware will allow adaptation to the intermediate communicating
process model.

The case of rain reveals several interactions:

1. Millimeters of water falling on the ground. For this simulation, we admit that the quantity
can vary over time, but will remain uniform.

2. Water disappearing locally for reasons such as absorption or evaporation.
3. Water passed locally from cell to cell according to elevation differences.

Other cases include different specific problems for signal propagation (Section 5),
sound propagation [48], or insect swarms behavior [40]. For flood modeling, Von Neumann
neighborhood is convenient. Figure 13 shows such a neighborhood, with the North cell lost,
and some elevation differences appearing above and below a center cell.

+hw

West

East

Center

−he

−hs

Rain

West Center East

absorbed

South

South

Figure 13. Physical exchange during a rain episode. An incomplete neighborhood from a system
shows a center cell with 2 neighbors west and east, and 1 in the south. The physical behavior is
water flowing downward, represented here by synchronous messages sending water quantity
west to center, and center to the east. Refer to [49] for more realistic behaviors.
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3.2. Transition Rule

Each cell will receive rainwater, dispatch part of this water to neighbor cells with lower
elevation, and absorb another part. A complete study will take into account the ground specific
characteristics, and current weather (ECOCLIMAP [50] supporting French meteorology AROME
model provides more than 20 parameters for cells of 1 km × 1 km). While real dependencies are
water leaking from cell to cell, the abstract behavior is represented by messages sent and received
to and from neighbors. Vertical water behavior is directly encoded in the transition rule that can
be specified as follows:

t: time t represented by a step number,
Qt: water quantity in a center cell at the beginning of time step t,
αt: rainfall at time t,
β: percentage of water remaining on each cell after each step,
celli.elevation: elevation value of celli,
cellc.elevation: elevation value of center cell,
δi: the difference of elevation between neighbor celli and the center cell,
∆: sum of all elevation differences,
outFi: amount of water out coming from center cell to neighbor celli,
inFi: amount of water in coming to center cell from neighbor celli.

The water quantity of center cell at time t + 1 after local absorption is

remaining = Qt × β, (1)

but the center cell receives rainfall within its area the following:

rain = αt. (2)

The quantity of water coming from neighbors is taken into account

received =
n

∑
i=1

inFi, (3)

where n is a number of neighbors of the center cell.
A center cell also has to distribute water to surrounding neighbors in the proportion of

elevation differences. This is calculated as follows:

δi = cellc.elevation− celli.elevation. (4)

It is obvious that the water of a center cell only flows to neighbor cells with lower elevations
so that only positive values of deltai are used to compute the total proportion of all differences

elevationAbove = ∆ = ∑ δi, ∀δi > 0. (5)

Equation (6) figures out the amount of water that a cell distributes to its lower neighbors.
For higher elevation neighbors, with δi < 0, there is no water flowing out, outFi = 0:

senti = outFi = Qt × (δi/∆), ∀δi > 0. (6)

Eventually, the center cell updates its own quantity of water by adding and subtracting.
The whole system executes a synchronous transition from t to t + 1:
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Qt+1 := remaining + rain + received−
n

∑
i=1

senti. (7)

Notice that this transition rule needs to know the neighbor relative elevations celli.elevation.
In reality, physical rules will discover these relations naturally. In the case of simulations,
a preliminary procedure called neighborhood discovery is executed to establish initial knowledge
such as the number and the elevations of cells around.

4. Parallel Algorithms for Cellular Long-Range Coverage Computations

4.1. General Idea

Once a geographic space has been selected, a concern is to compute reachable cells in
the line-of-sight from an emitting position. According to Section 2.4, we admit that each cell is
represented by a process, and simulation is achieved by cycling on a synchronous parallel program:
communication with neighbors, updating the local state, and preparing next cycle communications.
The line-of-sight (LoS) is a ray broadcast in any direction from a root emitter. Propagation will
be stopped or modified by ground obstacles such as hills, valley, etc. The simulation parallel
algorithm mimics the physical behavior, by propagating the signal inside a spanning tree rooted
at the emitter cell, and covering progressively all the space in concentric “circles” as shown in
Figure 14.

Figure 14. Radio signals propagate in concentric squares step by step. Reachable cells are
represented in colored stripes.

Each new step in the algorithm adds a new circle, and the computation finishes in 2× log(n)
steps where n is the number of cells. During ray propagation, the ground profile is collected
into a route. A route profile is shown in Figure 15. Routes are completed progressively based on
positions and elevations. Thus, each cell can decide if the emitter is visible or not by comparing its
slope to root to previous ones in the received profile, as shown in Algorithm 1.
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Figure 15. A profile obtained along a route. Let’s assume that an emitter located on the furthest
left of the chart, with a distance of 0 m, an elevation of 350 m. According to LoS condition, three
points at distances 2997 m, 3269 m and 3541 m seem unable to receive the signal from the emitter.

Algorithm 1 Setup visible nodes from emitter based on the LoS condition.
1: procedure FSPL

2: Input: celli and its neighbors cellj
3: Output: cellj.visible
4:

5: for each cellj do
6: if (cellj.slope <= celli.slope ) AND (receivedPower > sensibilityPower) then
7: cellj.visible = TRUE
8: else
9: cellj.visible = FALSE

10: end if
11: end for
12: end procedure

4.2. Vertical Model

Signal propagation progresses in steps according to time. It builds progressively a route
from the emitter to any other cell, as an array holding traversed locations and signal parameters
(Figure 15). As it is the case for most of the cellular simulation algorithms, nodes start with a
discovery stage, where geometric coordinates are exchanged to bind communication channels to
cardinal directions. This is mandatory to deal with the irregularity of cell system shapes as shown
in Figure 11, step (3), and also to maintain horizontal signal direction, as discussed in Section 4.3.

To start the building a propagation, an emitter has to initialize a tracing route with its own
identity and geographic location. Other cells start their processes with an empty tracing route.
Note that the tracing route, in this system, is the payload of the message for communications within
the cell system. The root cell then sends its message to all neighbors via eight directions from the
Moore neighborhood. Each cell accepts only one message and then assigns the corresponding
owner of the accepted message as its parent. This cell must send an acknowledgment message
back to the parent cell to confirm the dependency relationship between them. The next step in the
transition rule is to insert its own location into the tracing route, then to pack routes and spread
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out to neighbors. If side is the maximum between width and height, then, at most, side rounds are
necessary to cover an entire zone.

4.3. Horizontal Model and Directed Breadth-First Search

The original Breadth-First search (BFS) algorithm builds a tree covering a whole network
starting from a root position. For radio propagation, this tree would allow reaching any cell in a
minimum number of steps, propagating a route to this cell without managing signal horizontal
directions. In the case of radio signals, there is the necessity to guide the route horizontally to
maintain the best approximation of a straight line. A sequential algorithm that reduces horizontal
errors to a minimum was suggested by Bresenham to draw graphic lines on bitmaps [51].
In our case, it was preferred to find a parallel distributed approach based on Directed BFS
(DBFS) that could also match particular geographic or electromagnetic dynamic considerations.
Figure 16 shows DBFS routes resulting from this algorithm according to an emitting node and some
target receivers.

Figure 16. Directed BSF is a distributed parallel algorithm able to manipulate data on grid cells.
Its aim is to mimic point-to-point radio links adopting the LoS condition. Segmented lines are laid
on a map to represent how cells forward incoming signal gradually from a root cell (x = 10, y = 1)
to definite directions.

At the difference of a BFS, the cell transition function makes a decision on receipt of route
messages based on the source position and its own source position. It adds its data to the route,
and it forwards the route to neighbors of interest. The neighborhood was discovered at the
initialization stage, associating link indexes and cardinal directions.

5. Radio Signal Propagation on Complex Terrains

Radio propagation models are used to describe the qualifications and reliability of links using
radio frequency. These models were based on the physics of the diffusion of electromagnetic
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waves with respect to both constructive and destructive interference of environment. They can be
practically applied to parameters inside routes transmitted from cell to cell, according to Section 4.

Free space path loss (FSPL) is the simplest model based on the Friis transmission equation.
By assuming unobstructed along the transmission path, FSPL represents the line-of-sight decay
of an electromagnetic wave as a function for distance only. This model exposes significant limits
for complex terrain areas. Empirical path loss models were proposed to cope with the effects of
turbulent terrains. An advantage is that these models attempt to estimate power loss as a function
of distance and radio frequency taking into account the terrain heterogeneity as well as the effects
of real transmission environment [52,53].

5.1. Free Space Path Loss Model

In terms of radio communication, a Free Space Condition is a region where there is no obstacle
along the propagation path of radio waves. A radio signal is emitted by a transmitter and then it
propagates in any direction at the speed of light. In this case, the signal energy can be received
by an antenna in inverse proportion of the distance away from the signal source. In addition,
the received power depends on the transmitted power, and gains of both transmit and receive
antennas. Fading margin and other loss such as system loss, cables, and connectors are also
considered. The power of the signal lost on the path is called the Free Space Loss represented by

FSPL = 20log10(
4Πd

λ
). (8)

Algorithm 2 is derived from Equation (8) in order to describe how to calculate the attenuation
of signal power due to free space path loss. As a consequence, the free space power received is
given by Equation (9), the Friis free space equation [54]:

Pr(d) =
PtGtGr(λ)2

(4π)2d2L
, (9)

where

Pt: transmitted power,
Pr(d): received power,
Gt: transmitter antenna gain,
Gr: receiver antenna gain,
d: distance between transmitter and receiver in meters,
L: system loss factor,
λ: wavelength in meters.

Algorithm 2 Received signal power in the Free Space Path Loss Model.
1: procedure SIGNALPOWER

2: Input: txPower, waveLength, distance
3: Output: receivedPower
4: for each neighbor of celli do
5: if neighbor.visible then
6: receivedPower← txPower × (SQR(waveLen /(4.0 ×valuePi ))× SQR(1/distance))
7: end if
8: end for
9: end procedure
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5.2. Single Knife-Edge Diffraction Model

Diffraction appears around objects such as buildings, vegetation, etc. The losses caused
by these obstacles can be described by a Knife Edge Diffraction model. This is considered as a
function of the path difference around the obstacles and could be explained by Fresnel zones.
Diffraction loss of signal after a knife edge is calculated as a function of the Fresnel parameter v:

v = h(

√
2
λ
(

1
tt
+

1
dr
)), (10)

where h is the height of obstacle. dt, dr are the distances from the obstacle to the emitter and the
receiver, respectively. Algorithm 3 demonstrates the computation of received power within a
shadowing area because of a single knife edge obstacle:

L(v) = 6.9 + 20log(
√
(v− 0.1)2 + 1 + v− 0.1). (11)

Algorithm 3 Received signal power in the Single Knife-Edge Diffraction Model.
1: procedure DIFFRACTIONLOSS

2: Input: fsplPower, h, d1, d2
3: Output: diffPower
4: v = h * SQRT((valuePi/2)×((1/d1) + (1/d2)))
5: if v < 0 then
6: diffLoss← 0
7: else
8: if v < 2.4 then
9: diffLoss← 6 + (9 × v) + (1.27 × SQR(v))

10: else
11: diffLoss← 13 + 20× log10(v)
12: end if
13: end if
14: diffPower = fsplPower - diffLoss
15: end procedure

In Algorithm 3, receivedPower is defined as the signal strength in dBm obtained at a receiver.
In addition, sensibilityPower is the minimum value of signal strength in which condition a receiver
can detect and demodulate a message successfully.

5.3. Okumura–Hata Model

This is a dedicated radio propagation model to predict the path loss regarding geographic
environments such as urban, suburban, and open areas [53,54]. The formula for the Okumura–Hata
model is given by

L = 69.55 + 26.16log10( f )− 13.82log10(hb)− a(hm) + (44.9− 6.55log10(hb))log10(d)− K, (12)

where
fMHz: center carrier frequency of transmission band in MHz.
hb: antenna height of base station in meter,
hm: antenna height of mobile node in meter,
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dkm: distance in kilometers,
a(hm) for each type of area and K, see Table 2.

The model is valid for radios using carrier frequencies from 150 to 1500 MHz with an effective
height of antennas from 30 m to 1000 m and distances ranging from 1 km to 100 km. Table 2
presents list of a(hm) and K values for different terrain types.

Table 2. List of a(hm) and K values for each type of area [54].

Type of Area a(hm) K

Open
[1.1log10( f )− 0.7]hm − [1.56log10( f )− 0.8]

4.78[log10( f )]2 − 18.33log10( f ) + 40.94
Suburban 2[log10( f /28)]2 + 5.4
Small city 0
Large city 3.2[log10(11.75hm)]2 + 4.97 0

5.4. Correctness of the Different Radio Communication Models

The terrain was a mountain area investigated by applying the three models during simulations.
The computation results are shown in Table 3. Figure A5 displays the coverage obtained by the
model of single knife-edge diffraction, and effective coverage measured by a mobile.

Table 3. Comparison in number of points found in coverage from a total of 96,431 points.

Model Points

Free space path loss 19,537
Single knife-edge diffraction 22,305
Okumura-Hata 17,621

6. Conclusions

To optimize communication ranges, two major concerns are radio waves blocked by obstacles
and propagation loss in proportion with a point-to-point distance. Terrains to be covered can be
classified and partitioned as smooth, or rough according to metrics (Section 1.2). In smooth terrain
areas, radio transmission can be considered as a near line-of-sight (NLoS). As a result, the issue
of topologies can be almost neglected and the communication distance is expressed in relation
to power reduction along the path. The free space path loss (FSPL) equation was proposed for
this aim (Section 5). For example, using LoRa technology for a point-to-point connection in NLoS
conditions, the distance for transceiving data is expected to reach hundreds of kilometers [55].

In complex terrain areas, heterogeneity of topologies seriously impacts the quality of radio
links, especially for low power and long-range communication networks. Different propagation
models allow for representing the median of the expected path loss such as the Longley–Rice
model, the ITU model, and the Okumura–Hata model, as described in Section 5.

Appendices give details on experimental measurements, with the communication distance
checked to be around 5 km in complex urban area and up to 20 km in rural and shore ones.
Experiment results shown in Table A1 confirm the interest of a computer-aided approach. It may
be concluded that communication in a LoRa network is strongly dependent on the considered
environment. Hence, the actual coverage prediction must take topographic complexity into
account as a critical factor. An assessment of physical simulation was also conducted for flash
flooding problems (Section 3). This algorithm was applied to the practical case of an intense rain
found on 3 June 2018, and compared with flooding observations. The rain occurred in a rough
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terrain urban area and the simulation was able to retrieve major flooding places and level of water.
There is a major interest in these kinds of physical simulations that reveal places of interest for
sensing and establish causality between events.

The software developed in this project is easy to use for cellular system generation.
Implementing cellular transition rules, tuning and verifying these rules necessitate in-depth
investigations. Several domains were investigated, from sound propagation to insect behaviors.
Thus, the methodology appears very general and flexible (see Table 4). Parallel programs
implement described algorithms very efficiently (Tables 5 and 6). Efficiency is mandatory if
space exploration strategies are to be developed.

Table 4. A characterization of space and signal relations.

Datagrid Model Resolution (m)

SRTM30 2D/3D 30 (https://lta.cr.usgs.gov/SRTM1Arc)

SRTM90 2D/3D 90 (https://blogs.esri.com/esri/arcgis/2015/06/26/terrain-3d-
now-with-global-srtm-30-meter-content/)

Weather
broadcast 2D/3D 3000 (https://www.ncdc.noaa.gov/data-access/model-data/

model-datasets/numerical-weather-prediction)

LiDAR 3D 5 (https://content.meteoblue.com/en/research-development/data-
sources/nmm-modelling/model-domain)

Coastal ocean 2D/3D 1200 (https://pdfs.semanticscholar.org/55be/
a487827c28aaaf713017c499e4f33aed62fd.pdf)

Earth magnetic 2D/3D 3700 (http:
//www.sciencedirect.com/science/article/pii/S0377042798002465)

Ocean acoustics 2D/3D 2500 (https://www.ngdc.noaa.gov/geomag/emag2.html)

Road traffic noise 2D/3D
0.5 (Peter Wille. Chapter 5: The Sea Floor—Natural Formations.
In Sound Images of the Ocean: in Research and Monitoring.
Springer-Verlag Berlin Heidelberg, 2005. ISBN 978-3-540-27910-5)

Pickcell 2D/2.5D 30

Several research opportunities are created by this work:

Synthesizing long-range mesh radio networks would allow for covering very large
surfaces and require optimization of relay placement. Powerful parallel algorithms can
help to overcome the coverage problem complexity.
Line-of-sight propagation and water spreading are examples of common spatial
behaviors found in nature. Many biological, mechanical or physical processes have
similar properties. Sensing of environment could take benefits from generic frameworks
helping to develop and compose such simulations.
Applicability for large problems available for the public can be obtained by publishing
web interfaces to services dependent on two separated concerns: zone selection and cell
resolution, and cellular system libraries.

Table 5. Execution times for three processes. There are 58,725 cells in a regular squared grid with
a cell size 3 × 3 pixels corresponding to actual area 115 × 115 m.

Processes Number of Rounds Time (s)

Compute ruggedness index 1 0.026
Flood simulation 32 0.103
Coverage prediction 261 0.211

https://lta.cr.usgs.gov/SRTM1Arc
https://blogs.esri.com/esri/arcgis/2015/06/26/terrain-3d-now-with-global-srtm-30-meter-content/
https://blogs.esri.com/esri/arcgis/2015/06/26/terrain-3d-now-with-global-srtm-30-meter-content/
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/numerical-weather-prediction
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/numerical-weather-prediction
https://content.meteoblue.com/en/research-development/data-sources/nmm-modelling/model-domain
https://content.meteoblue.com/en/research-development/data-sources/nmm-modelling/model-domain
https://pdfs.semanticscholar.org/55be/a487827c28aaaf713017c499e4f33aed62fd.pdf
https://pdfs.semanticscholar.org/55be/a487827c28aaaf713017c499e4f33aed62fd.pdf
http://www.sciencedirect.com/science/article/pii/S0377042798002465
http://www.sciencedirect.com/science/article/pii/S0377042798002465
https://www.ngdc.noaa.gov/geomag/emag2.html
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Table 6. Execution times for flood simulations which are performed on Linux Ubuntu PCs with

Intel R© Core
TM

i3-4005U CPU @ 1.70GHz × 4, 8 GiB DDRAM, card NVIDIA GeForce 820M
(96 CUDA Cores), Intel R© Core

TM
i7 CPU 920 @ 2.67GHz × 8, 4 GiB DDRAM, card NVIDIA

GeForce GTX 680 (1536 CUDA Cores) and Intel R© Core
TM

i7-7700K CPU @ 4.20GHz × 8, 16 GiB
DDRAM, card NVIDIA GeForce GTX 1070 (1920 CUDA Cores).

Execution Time
Resolution (Pixels) Number of Cells 820M GTX 680 GTX 1070

3 × 3 58,725 28.168 (ms) 6.5269 (ms) 1.3373 (ms)
5 × 5 21,060 10.411 (ms) 2.1728 (ms) 518.64 (µs)

10 × 10 5226 2.5234 (ms) 454.59 (µs) 83.696 (µs)
15 × 15 2340 1.1155 (ms) 181.48 (µs) 65.916 (µs)
20 × 20 1287 602.47 (µs) 171.19 (µs) 62.085 (µs)
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Appendix A

Appendix A.1 A Study of a Flash Flood Event

A case study for flash flooding prediction due to heavy rain during a storm on Monday,
3 June 2018, in the town of Morlaix, in France [57]. The objective is for validating the accuracy of
our proposed tool for flash flooding, especially for complex terrain areas.

Apart from a data grid produced by QuickMap/NetGen/PickCell, to execute flooding
simulation, it is necessary for the rainfall values to be measured each hour during a storm,
hurricane, etc. as input data (see the blue line in Figure A3. The data can be retrieved from the
database of weather broadcast services such as meteofrance.com, meteoblue.com, etc.
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Figure A1. Heavy flooding in the center of Morlaix, France due to a storm on 3 June 2018 (Photo:
Le Télégramme).

Figure A2. Simulation results for Morlaix, obtained by executing massively parallel processes
on GPUs with thousands of CUDA cores. The experimental zone is comprised of 58,275 cells
corresponding to actual area 3 × 3 km. A place of concern is indicated by a red circle. This is rue de
Brest near the river Queffleuth (longitude: −3.8329839706421, latitude: 48.573767695437, elevation:
10.1 m) where the water level went up to 60 cm according to Le Télégramme newspaper. The main
flooding directions can be seen in light blue over the maps.
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Figure A3. Chart shows rainfall levels over 32 h from 12:00 a.m. on 3 June 2018, to 8:00 a.m. on
4 June 2018. It was noticed that serious flooding often comes several hours after a storm or heavy
rain. After the rain stopped, it required a couple of hours or days to drain all of the water.

Figure A4. Even though the heavy rain just occurred during a few hours (3:00–5:00 p.m.),
simulation results show that there are 50 points where water levels are from 30 to 70 cm.

Our proposed simulator can be efficient to predict risk areas where flooding due to heavy
rain may occur.

In fact, flood simulation utilized the frame tool flow as what was being used for radio signal
propagation simulation and radio coverage prediction as explained in Section 3. For this study,
the time step was one hour, and we keep β at 20%, αt rainfalls were taken from public websites
shortly after the episode.

It leverages further intensive studies for reducing the risk of natural disasters, especially in
complex topographical areas. It gives many benefits to the local residents’ lives in terms of human
aspects, as well as economic activities, by informing about the risks of their position regarding
exceptional events.
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Appendix A.2 Experimental Measurements of Radio Coverage

Figure A5. A base station is equipped with a LoRa board (emitter) and a MacBook. This base
station was deployed on the top of the Roc’h Trevezel mountain, France. The receiver is another
LoRa board mounted on a car moving around.

Figure A6. Terrain complexity analysis for the Roc’h Trevezel using TPI metrics. This shows
remarkable landform splits in the North–South direction. This provides critical references for
network deployment aiming at enhancing the system robustness and range and reducing the cost
as well.
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Figure A7. The base station (emitter) is located on top of the mountain (latitude: 48.4051306,
longitude: −3.9077762, elevation: 345 m). A receiver is placed on a car (receiver) traveling around
the area with many hills, valleys, and big trees. From simulation results, places (cells) are able
to receive the radio signal highlighted in yellow. Blue circles show points where the receiver
successfully obtained messages in our actual measurement.

Some case studies were investigated with the credible installation position for base stations
(BS) controlling hundreds of sensors. In each case, the signal strength was recorded with a picture
showing the BS environment. To evaluate the impact of transmission environment on reliability
and robustness of radio links in the context of wide-range wireless networks, several places with
different terrains in Brittany, in France, were selected for our intensive investigations. The case
as shown in Figure A5 required a visit to the Arrée Mountains in central Brittany. These mounts
culminate at less than 400 m and are the sites chosen for TV/Radio antennas. The car was driven
in a loop for up to 10 km, showing a good accuracy of simulation prediction.

Table A1. Three areas with different complexity terrains. Resolution and Actual size columns
give the size in pixels associated with actual size in meters for each cell in regular grid data.
The maximum communication in each experiment is shown by the column Range. The Match and
Mismatch column provides a number of visible points which are right matched and mismatched,
respectively, between simulation results and obtained values in real measurements.

Area Name Description Resolution Actual Size Range Match Mismatch % Error

Albert 1er Urban area 5× 5 pixels 24 m 3 km 64 13 20.21%
Plougastel River and its banks 5× 5 pixels 96 m 9 km 129 4 3.10%
Trevezel mountain area 5× 5 pixels 191 m 11 km 45 8 17.78%
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Figure A8. Obtained received signal strength indicator (RSSI) values for experiment in our actual
measurement at the Roc’h Trevezel. RSSI values decay as a negative exponential function of
distance. The complex terrains in this area seriously impact the quality of radio links.

Figure A9. Chart of radio coverage execution times for different resolutions of cell from 5 to
30 pixels. This statistics was recorded for the performance on a PC equipped Core i7-7700K
CPU@4.20GHz × 8, 16 GiB DDRAM, card NVidia GeForce GTX 1070 (1920 CUDA cores).
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