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Abstract: This paper firstly replaces the first-come-first-service (FCFS) mechanism with the
time-sharing (TS) mechanism in fog computing nodes (FCNs). Then a collaborative load-balancing
algorithm for the TS mechanism is proposed for FCNs. The algorithm is a variant of a work-stealing
scheduling algorithm, and is based on the Nash bargaining solution (NBS) for a cooperative game
between FCNs. Pareto optimality is achieved through the collaborative working of FCNs to improve
the performance of every FCN. Lastly the simulation results demonstrate that the game-theory based
work-stealing algorithm (GWS) outperforms the classical work-stealing algorithm (CWS).

Keywords: collaborative; Internet-of-Things; fog computing; Nash bargaining solution; Pareto
optimality; scheduling; time-sharing

1. Introduction

Along with the rapid development of IoT, fog computing has emerged as a promising architecture
for IoT applications. As the necessary complement to cloud computing, fog computing serves IoT
devices by undertaking part of their work load. IoT devices typically feature weak computing capacity
and low energy. With the help of fog computing, IoT devices can deliver some tasks to a fog computing
nodes (FCNs) to relieve their load and reduce the energy consumption [1]. The IoT architecture is
shown in Figure 1.
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1. Introduction 

Along with the rapid development of IoT, fog computing has emerged as a promising 
architecture for IoT applications. As the necessary complement to cloud computing, fog computing 
serves IoT devices by undertaking part of their work load. IoT devices typically feature weak 
computing capacity and low energy. With the help of fog computing, IoT devices can deliver some 
tasks to a fog computing nodes (FCNs) to relieve their load and reduce the energy consumption [1]. 
The IoT architecture is shown in Figure 1. 
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The IoT architecture is planar, comprised of a cloud layer, a fog layer and a layer of IoT devices.
The fog layer—the-so-called “fog computing network” helps the cloud to process IoT tasks. Because
the fog layer is much closer to the edge, it achieves low latency and quick response time, both of which
are necessary for IoT applications. For example, in a wireless sensor network, sensors may utilize the
fog computing nodes to do some computing and make decisions. At this point, FCNs simply act as
rule engines, so each FCN must respond as quickly as possible for higher quality of service (QoS).
If the FCNs respond slowly, then some operations of the wireless sensor network will be delayed.

Fog computing nodes (FCNs), as the key components of fog computing, are always located at
the edge in contrast to the cloud computing data centers at the center of the Internet. FCNs have low
latency for IoT applications. ‘Latency’, here, refers to the FCN’s response time for IoT tasks. The work
mechanism is somewhat important factor influencing latency. The work mechanism of FCNs can
be divided into three categories: concurrent, priority and FCFS [2]. When an FCN possesses only
one single-core processor, the concurrent mechanism degenerates into a TS. We will discuss FCNs
that possess only one single-core processor or just utilize a single-core for fog computing like a great
number of routers and switches which support fog computing.

Some papers have modeled the FCN as an M/M/1 queuing system [3–5] that uses an FCFS
mechanism to arrange tasks in the task deque, where they wait until the processor idle. However,
since the M/M/1 queuing system is no longer appropriate for fog computing, this paper proposes
a TS system perfectly suited to fog computing. Furthermore, this paper puts forward an important
measure of FCN performance—the concurrency coefficient—which denotes the expected response
time for one task with a specific number of instructions. The concurrency coefficient is an important
measurement for multi-class tasks. In [6,7], the authors merely analyze single-class tasks, which is
unrealistic for various IoT applications.

In fog computing, heterogeneous FCNs differ in processing rate and input load, the heterogeneity
gives rise to a load imbalance. For example, some weak FCNs become over-loaded while some
strong FCNs remain idle. The imbalance largely decreases the processing capacity of the whole fog
computing network and increases the response time for IoT applications. Accordingly, we propose
a load-balancing algorithm that guides FCNs to collaborate by an adjusted work-stealing scheduler,
which is decentered in contrast to its counterpart. Moreover we prove that the scheduling algorithm
can achieve Pareto optimality based on the Nash bargaining solution.

At the end of this paper, some simulations are summarized. The simulation results prove that our
load balancing algorithm can reduce the response time more than the classical work-stealing algorithm,
especially for light tasks.

This paper is organized as follows:

• Section 2 introduces related progress on collaborative load-balancing algorithms for IoT;
• Section 3 analyzes the FCN working mechanism, proposes a work-stealing algorithm for a TS

system and solves the probability allocation problem by means of the Nash bargaining solution;
• Section 4 elaborates the simulation results and proves the validity and efficiency of GWS; and
• Section 5 concludes the content and proposes future work.

2. Related Work

In fog computing, FCNs are always modeled as an M/M/1 queuing system [3–5], which adopts
the first-come-first-serve (FCFS) mechanism, however, this mechanism no longer satisfies the needs
of IOT applications, especially for wireless sensor and actuator networks which require a quick
response. Section 3.1 proves that the FCFS mechanism leads to a fixed delay for any tasks. It is poor
for applications which are full of light tasks, like wireless sensor and actuator networks. Light tasks
are those need little processing time and need a response as quickly as possible.

Load balancing algorithms fall into two categories: work-sharing and work-stealing, or static
and dynamic. ‘Work-sharing’ means that all tasks are dispatched to other processors through a center,
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whereas ‘work-stealing’ means that tasks are stolen from processors proactively. ‘Static’ means that the
algorithm rules are predefined, and ‘dynamic’ means that the algorithm rules are decided in run time
and always changing. For FCNs, the dynamic work-stealing algorithm is best, because a fog computing
network is versatile with tasks arriving continually. A classical work-stealing scheduler was proposed
in [8], which applies to multiprocessors for multithreaded applications. In a fog computing network,
an FCN can also be viewed as a processor; however, there are still some vital differences between an
FCN and a processor. For example, the memory swap and synchronization between processors is
much faster and easier than in FCNs, which are located at different sites.

Moreover, the work-stealing for TS systems is rather difficult and expensive to implement
practically [9]. Thus, Section 3.2 proposes GWS to steal raw tasks from the residual queue. Moreover, [7]
explores how to share tasks in a TS system; however there is only one task input source, and all tasks
must be allocated through it. This is unrealistic for fog computing, where there are numerous dispersed
task input sources.

Another work-stealing strategy was proposed by routing the stealing and response based on
the trajectories of moving users [10]. The author predicts future users’ addresses according to their
historical trajectory; however the trajectory prediction may be imprecise, and a large number of
users would cause too much overhead to calculate trajectories and manage routes. In fog computing,
the number of different users and applications is too large for a prediction algorithm. So we insist that
the work-stealing strategy be succinct to avoid heavy computing load and network congestion.

A load-balancing algorithm for single-class tasks was proposed in [6], which treated the load
balancing problem as a cooperative game between processors based on game theory. We propose
a scheduling algorithm for multi-class tasks.

Another hierarchical work-stealing algorithm was proposed for reducing the stealing
frequency [11] by clustering FCNs and selecting one FCN as the leader; however central management
may give rise to a single point of failure, as FCNs are not very stable. This paper avoids selecting
one FCN as the leader and instead takes full advantage of the cloud, which is powerful and stable.
With the help of the cloud, we can efficiently manage load balancing between FCNs.

Considering the modern trend of Big Data, an overview for Big IoT Data Analytics was proposed
by [12], and a survey of service migration in edge computing was conducted by [13]. These all are
promising aspects of fog computing in IoT applications.

3. Collaborative Work-Stealing Algorithm

3.1. FCN Working Mechanism

Fog computing is a virtual service for IoT applications. FCNs can be routers, switchers and other
network devices that support fog computing service. FCNs serve other IoT devices nearby by helping
to process the tasks that arrive from them as Figure 2 shows.
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Since the tasks’ sources are various and arrival intervals are random, the arrival process can be
modeled as a Possion process. We assume the arrival rate as λ. For task processing, we do not assume
the service time as an exponential distribution as [3–5], as that is not reasonable. We discuss the general
distribution below. The system is shown in Figure 3. The task is stored in one deque, which is a variety
of queues that permit in-out operations from both ends [14].
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Thus the FCN is a M/G/1 queuing system with the following properties: the arrival rate is
λ, the process time is Tservice, E(Tservice) denotes the average service time per task, and E

(
Tservice

2
)

denotes the second moment of Tservice. According to [15], the M/G/1 queuing system holds the
following two equations:

Tresponse = Twait + Tservice, (1)

ρ = λE(Tservice), (2)

E(Twait) =
λE

(
Tservice

2
)

2(1− ρ)
, (3)

In the above equations ρ denotes load intensity, Twait denotes the waiting time in the queue and
Tresponse denotes response time which equals a task’s entire time in the FCN. As the FCN abides by the
FCFS mechanism, arriving tasks first wait in the ready queue then receive service until the processor
is idle, so the Tresponse consists of Twait and Tservice. Here we propose a new important measure factor
E(Tresponse

∣∣Tservice = x) which denotes the conditional expectation of Tresponse while Tservice is set to x.
Since how long one task waits is independent of its service time, we obtain the following equation:

E
(
Tresponse

∣∣Tservice = x
)
= E(Twait) + x. (4)

Equations (3) and (4) can be simplified as:

E
(
Tresponse

∣∣Tservice = x
)
=

λE
(

Tservice
2
)

2(1− ρ)
+ x. (5)

According to Equation (5), we find that no matter how small a task is, the response time can be no

shorter than
λE(Tservice

2)
2(1−ρ)

, which is the lower bound limit of time; however, some sense-and-actuate-loop
IoT applications like a wireless sensor and actuator network, which generate a large number of light
tasks and demand quick response time, will obtain terrible QoS due to the unavoidable lower-bound
time limit, so the FCFS system is not appropriate for the FCN. We propose a classical mechanism that
can cut off the lower-bound time limit–time-sharing (TS) mechanism. A TS mechanism is efficient for
concurrency, which has been applied to computer systems successfully. As Figure 4 shows, the wireless
sensor shunts its tasks to the FCN for service, and the time-sharing FCN can respond quickly and
provide high QoS.

Next, we elaborate the TS system. As Figure 5 shows, once a task arrives, it is pushed into the
task deque from the back. The CPU obtains a task from the front of the task deque and gives it a little
quantum of service. When the task is completed, it leaves the FCN; otherwise, it is pushed into the
task deque from the back, which is called ‘cycled arrival’. Through time-sharing, each task receives
service in turn. The service quantum is so little that every task seems to be served at the same time.
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The scheduling mechanism is also called Round-Robin (RR) time-sharing. According to [16], we obtain
a key equation:

E
(
Tresponse

∣∣Tservice = x
)
=

x
1− ρ

. (6)

so if FCN adopts the RR algorithm, the expectation of Tstay is proportional to Tservice. Some IoT
applications, like wireless sensor and actuator networks which are comprised of small tasks, can obtain
a quick response in contrast to waiting for a fixed time in the FCFS system. in Section 4, we compare
the two scheduling algorithms through simulations.Sensors 2018, 18, x FOR PEER REVIEW  5 of 17 
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We compare Equations (5) and (6), and we find that although the TS system removes the lower-
bound time limit, its coefficient for service time is larger than that of FCFS system: 1

1−ρ > 1. So the TS
system decreases the response time for light tasks at the expense of increasing the response time for
heavy tasks. But to be reasonable, the light tasks always demand more than heavy tasks. So we believe
that the expense is reasonable.

We also found that the TS system has a potential advantage, as Equation (7) shows:

E
(
Tresponse

∣∣Tservice = x
)

x
=

1
1− ρ

. (7)

The ratio between the expected Tresponse and Tservice is constant, which just relates to ρ; however ρ

is decided by λ and E(Tservice), so the TS scheduler is completely fair to all tasks, whether small or large.
This feature is necessary and helpful. As if the ratio is smaller for small tasks, users and developers
tend to split a large task into smaller tasks. Or if the ratio is larger for small tasks, then users and
developers tend to merge small tasks into larger ones for a quicker response. Such unfairness will
cause malicious competition and add the burden of users and developers. So we insist that fairness is

necessary in fog computing, which means that
E(Tresponse|Tservice=x)

x is the same for any task processed in
any FCN.

In a FCN, one task may gain different Tservice in different FCNs. The service time of one task
depends on its programming architecture and the processors of the serving FCN. For convenience
we propose on absolute value π that denotes the number of instructions of one task to represent the
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working load of tasks and an absolute value s that denotes the number of instructions processed by
the FCN per unit time. We obtained modified equations as follows:

E(Tservice) =
E(π)

s
, (8)

µ =
1

E(Tservice)
=

v
E(π)

, (9)

ρ =
λ

µ
=

λ ∗ E(π)

s
, (10)

E
(
Tresponse

∣∣π = x
)

x
=

E
(
Tstay

∣∣Tservice =
x
v )

x
s

∗ 1
s
=

1
s ∗ (1− ρ)

, (11)

C =
E
(
Tresponse

∣∣π = x
)

x
=

1
s ∗ (1− ρ)

=
1

s− λ ∗ E(π)
, (12)

Here, C denotes the FCN’s performance which is called the ‘concurrency coefficient’. As we can
see, the smaller C means quicker response and better performance of FCNs. So we aim to reduce C.
And C is dependent on the processing rate of the FCN, the arrival rate, and the average service time of
tasks. The next section will elaborate a new scheduler that aims to minimize concurrency coefficients
of FCNs based on game theory.

3.2. Game-Theory Based Work-Stealing Scheduler

Work-stealing as a scheduling algorithm is imposed on a multi-processor system to balance
the load between processors. Compared to a multi-processor system, a fog computing network
features a much more complex topology, more significant communication delay and dispersive
memory. Stealing between FCNs is much more expensive than between processors. A normal
work-stealing scheduler adopts a strategy where an idle processor steals from a randomly chosen
processor. If the victim processor has more than one task, it transfers the extra task to the stealer;
otherwise, it responds with a refusal command and then the stealer attempts another randomly chosen
processor. In conclusion, if the scheduler is applied to a fog computing network, it suffers from the
following defects:

1. Idle FCNs must wait until they successfully steal a task, which wastes time and energy.
2. A TS system is very hard and costly for the dispersive memory distribution [9]. So we ought to

adjust the normal work-stealing algorithm for FCNS, which adopts the TS mechanism.

We have to adjust the normal work-stealing scheduler for fog computing. Fog computing is the
complement to cloud computing (as Figure 1 shows), as every FCN is connected to the cloud. So we
can utilize the cloud to help with work-stealing. A cloud manages a cluster of FCNs and orchestrates
their cooperation. The parameters of the cluster of FCNs are listed in Table 1.

Table 1. Parameter names and paraphrases.

Parameter Name Parameter Paraphrase

N Number of FCNs in this cluster
Fi The ith FCN
λi Average task arrival rate of Fi
πi Average instruction number per task of Fi
si Processed instruction number per unit time of Fi
µi Number of processed tasks per unit time of Fi
Ci Concurrency coefficient of Fi
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In the above list, some parameters are almost fixed, like si, which denotes the processing
capacity of the FCN. The other parameters should be bookkept by the FCN itself and reported
to the cloud periodically.

In the fog computing network above, every FCN has its own concurrency coefficient based on
Equation (12). This factor is an important measure of performance which denotes the average response
time of the specified task. For Fi the concurrency coefficient is in Equation (13):

Ci =
1

si − λi ∗ πi
, i = 1, 2, . . . , N. (13)

Obviously, a different FCN may possess a different processing rate ∂i, different task arrival rate
λi and different average instruction number per task πi, which may lead to different concurrency
coefficient Ci based on the Equation (13). The goal of this paper is to fairly achieve a larger Ci for
every FCN.

From the Equation (13), for an FCN like Fi, the concurrency coefficient Ci only depends on si,
λi and πi. Among these factors, si, which denotes the process rate of Fi, is almost fixed; λi, which
denotes the task arrival rate of Fi, just relies upon the IoT devices in this area; and πi denotes the
average number of instructions per task of Fi. So the only factor that can be modified is the task arrival
rate λi. We can modify λi so that Ci approximates the average value of the concurrency coefficient C.
The algorithm is elaborated as follows.

This adjusted work-stealing algorithm aims to adjust the task input intensity. We classify FCNs
into two varieties: over-loaded FCNs with a large concurrency coefficient and under-loaded FCNs
with a small concurrency coefficient. The work-stealing algorithm reduces the task arrival rate of
over-loaded FCNs and raises the task arrival of under-loaded FCNs by shunting and stealing. The two
varieties of FCNs are modeled in Figures 6 and 7.
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As Figure 6 shows, an FCN contains two task deques, the ready task deque, which works with
the CPU, and the residual task deque, which stores raw tasks that are ready to be stolen. Another big
difference is the director, which decides whether a task goes to the ready or residual task deque on the
probability of p. So what is p? This will be discussed in Section 3.3. For over-loaded FCNs like Fi, all of
the arriving tasks go to the ready task deque at the probability of pi, so the task arrival rate becomes
λi ∗ pi. The updated concurrency coefficient is expressed as follows:

C′i =
1

si − λi ∗ pi∗ πi
. (14)
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When pi is less than 1, the director of this FCN will shunt arriving tasks to the ready task deque at
the probability of pi and to the residual task deque at the probability of 1− pi. Tasks in the ready task
deque will receive service one by one, and tasks in the residual task deque wait for a stealing request.
Once a task enters the ready deque, it cannot be shared; tasks in in the residual dequee are raw and
suitable for sharing. When a stealing request comes, and the residual task deque is not empty, the FCN
delivers a task from the back of the residual task deque to the stealing FCN.

When pi is greater than 1, as shown in Figure 7, the FCN is under-loaded. There is no need to
maintain the residual deque as the director. The FCN has to steal another FCN so that the overall task
arrival rate can increase. We set the successful stealing interval as an exponential distribution with the
average value of λi ∗ (pi − 1). A successful stealing interval means the interval between two stealing
from FCS which contains extra tasks. If the FCN fails to steal, it continues without waiting.

An exceptional situation occurs when pi is equal to 1, then FCN is just the same as an isolated
TS system that does not steal or shunt any tasks to the residual task deque. This special case rarely
happens, so we don’t discuss this in the following sections.

As the cloud periodically updates the FCN cluster, the role of each FCN may change.
Some over-loaded FCNs may become under-loaded and vice versa, so the algorithm is dynamic
to the real IoT environment and evolves periodically. In next section, we will discuss how to calculate
the probability set p = {p1, p2, . . . , pN}. This is the key factor for our algorithm.

3.3. Nash Bargaining Solution for the Probability Set

Section 3.2 proposes an efficient scheduling algorithm of work-stealing for a TS system, but how
to set the important factor pi has not be solved. The main goal of the paper is to minimize the
concurrency coefficient C′i(pi) of each FCN. The problem can be modeled as a NBS rather than
a Nash equilibrium for cooperative FCNs. This is a cooperative game, which is different from its
non-cooperative counterpart [17]. Through cooperation of players (FCNs), a better profit can be
achieved. The game is depicted in Figure 8.
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As Figure 8 shows, FCNs gain common knowledge through the cloud. FCNs can communicate
with each other to gain common knowledge, but this communication process is of time complexity
O(N ∗N). So why not draw support from the cloud? As all FCNs are linked to the cloud, so FCNs
can gain all information needed for the game by means of the central cloud with the time complexity
O(N). Although the cloud may be far from edge, I believe a decrease in time complexity by one order
of magnitude can offset it even more. Let’s analyze the game to find the optimal balancing points.
The mathematical problem is as follows:

minC′i(pi), i = 1, 2, . . . , N, (15)

pi > 0, (16)
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pi <
si

λi ∗ πi
, (17)

N

∑
i=1

λi ∗ pi = λ, (18)

Inequation (16) guarantees the probability pi is not negative and Inequation (17) is the stability
condition of the M/G/1 queuing system. We replace Ci(pi) according to Equation (14), so objective (14)
can be simplified as:

max (Φpi) = −pi, i = 1, 2, . . . , N. (19)

By maximizing Φ(pi), Fi minimizes Ci(pi) at the same time. Every FCN cooperates by means of
the cloud center to gain better performance. This problem can be viewed as a Nash bargaining game
for cooperative players. According to [18], the NBS can realize Pareto optimal operation point; that is,
NBS guarantees optimality and fairness for every FCN. According to [17], the above objective (19) is
equivalent to the following objective:

max
N

∏
i=1

(
Φ(pi)− η0

i

)
, (20)

where η0
i indicates the initial agreement point which denotes that Φ(pi) must not be less than η0

i .
We set η0

i = − si
λi∗ πi

based on Inequation (17) and we set

ψi = −η0
i =

si
λi ∗ πi

(21)

In conclusion, the above problem can be elaborated as follows:

max ∏N
i=1

(
Φ(pi)− η0

i

)
= ∏N

i=1(ψi − pi), pi > 0. (22)

Then we use the Lagrange multiplier method to find the set p = {p1, p2, . . . , pN} for the maximum
objective. But first we ignore the condition pi > 0 and apply it later. The Lagrange function is as
follows, and u and vi are multipliers for Equation (18) and Inequation (17).

L(pi, u, vi) =
N

∑
i=1

In(ψi − pi) + u ∗ (
N

∑
i=1

pi ∗ λi − λ) +
N

∑
i=1

vi ∗ (pi − ψi). (23)

Then we apply the Karush Kuhn Tucker (KKT) constraints as follows:

∂L
∂pi

=
1

pi − ψi
+ λi ∗ u + vi, (24)

∂L
∂u

=
N

∑
i=1

pi ∗ λi − λ = 0, (25)

vi ∗ (pi − ψi) = 0. (26)

According to (17) and (19), we know pi < ψi, so we deduce vi = 0, and Equations (24)–(26) can be
concluded as:

1
pi − ψi

+ λi ∗ u = 0, (27)

N

∑
i=1

pi ∗ λi − λ = 0, (28)
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The result set p = {p1, p2, . . . , pN} can be resolved from Equations (25) and (26).

pi = ψi −
∑N

i=1 λi ∗ ψi − λ

λi ∗ N
. (29)

Until now the result set p = {p1, p2, . . . , pN } has not been solved because the constraint (16)
pi > 0 has not been applied. If pi < 0, Equation (16) infers that ψi is too little. But based on (21), if ψi is
too small, then weak processing capacity is too weak and task arrival too frequent—both of which lead
to FCN failure. So we just abandon FCNs with negative pi. According to [7], we can remove the Fi for
which pi < 0 by using the following algorithm in the time complexity of O(n ∗ log(n)).

In the above algorithm, the sorting accounts for the time complexity of O(n ∗ log(n)). The Pareto
optimal point is calculated out as p = {p1, p2, . . . , pN }. In the fog computing network, we adopt
the result set p = {p1, p2, . . . , pN } to implement the work-stealing scheduler, and the Pareto optimal
maximum for the concurrency coefficient will be achieved. ‘Pareto optimality’ means there is no way
to improve performance of one FCN without decreasing the performance of others.

The next section elaborates the simulations that prove the efficiency of the Algorithm 1 below.

Algorithm 1: post-processing algorithm for eliminating the negative pi

Input: task arrival rate λi, the overall task arrival rate λ, the parameter ψi and the FCN number N.
Output: probability set p = {p1, p2, . . . , pN}.

1. Sort all FCNs in decreasing order of ψi,

2. Φ = ∑N
i=1 λi∗ψi−λ

N ,

3. While
(

ψi <
Φ
λi

)
4. pi = 0
5. n = n− 1,

6. Φ =
(

Φ− λn+1∗ψn+1
n+1

)
∗ n+1

n

7. end while
8. for i = 1, 2, . . . , n
9. pi = ψi − Φ

λi
,

10. end for.

4. Simulations

Lastly some simulations were completed to prove the efficiency of GWS. The simulations were
programmed in C++ language, and the figures were drawn using OriginPro 2016.

Simulation I is a comparison between the FCFS mechanism and TS mechanism on an FCN.
In [3–5], the FCN adopts the FCFS mechanism, and we suggest the TS mechanism, which was proved
in Section 2. We perform a simulation where one FCN adopts the FCFS mechanism while another
adopts the time-sharing, and other parameters like task input and processing rate are kept equal.
The specific parameters are as in Table 2.

Table 2. Parameters of Simulation I.

FCN Name λ s π

FCFS-200M 1.2 2.5 × 107 1 × 107

TS-200M 1.2 2.5 × 107 1 × 107

FCFS-400M 1.2 5 × 107 1 × 107

TS-400M 1.2 5 × 107 1 × 107
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The four nodes possess the same task input and just differ in work mechanism and processing
rate of 200 M and 400 M. The 200 M and 400 M here mean the CPU dominant frequency. A 200 M CPU
can perform work of 200M clock periods per second. As an instruction needs 8 clock periods, so this
CPU can complete 25 M instructions per second, and a 400 M CPU can complete 50 M instructions
per second.

We can obtain the relation between service time and stay time as shown in Figure 9. The FCFS
system contains a lower-bound limit of response time around 4000 ms, which is not suitable for some
IoT applications especially wireless sensor networks. By contrast, TS is just appropriate for wireless
sensor network applications because it avoids the lower bound. So for light tasks, the TS mechanism
can guarantee very good performance. But when tasks are heavy, the TS mechanism needs more
response time, in contrast to FCFS system. This is just the expense of a TS mechanism, as Section 3.1
proves. By comparing nodes of different process rates, we can find that a higher processing rate means
a shorter response time. Meanwhile, when the processing rate increases, the line of FCFS and TS
become closer. The reason is that when process rate increase, the work strength decreases, which means
that the work deque always only contains one or fewer tasks. Then the TS and FCFS mechanism are
the same.
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Simulation II focuses on the performance of the whole cluster of 100 FCNs. The parameters are
shown in Table 3; λ, s, π and N separately denotes the average task arrival rate, the average processing
rate, the average number of instructions per task and the number of FCNs in the cluster of FCNs. A fog
computing network, which separately adopts CWS or GWS receives the same task input over a long
period. Let’s see the performance according to the relation between the number of instructions and the
response time in Figure 10. We find that GWS outperforms CWS. By means of GWS, the IoT task can
achieve much faster response, especially for light tasks, but as for heavy tasks, the GWS needs more
time. It is worthwhile because heavy tasks always hold loose time limits compared to light ones.
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Table 3. Parameters of Simulation II.

Network Name λ s π N

CWS-I 1.2 2.5 × 107 1 × 107 100
GWS-I 1.2 2.5 × 107 1 × 107 100Sensors 2018, 18, x FOR PEER REVIEW  12 of 17 
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Figure 10. Relation of average response time and number of instructions per task between CWS-I
and GWS-I.

Then we explore how the working load influences the fog computing network by changing the
work load of the whole system. Three simulations will be carried out to explore the influence of
average arrival rate, average processing rate and average number of instructions per task.

Simulation III explores the influence of arrival rate. In Table 4, we just change the average arrival
rate of tasks and other parameters maintain the same. The experiment result of simulation III is
depicted in Figure 11.

Table 4. Parameters of Simulation III.

Network Name λ s π N

CWS-I 1.2 2.5 × 107 1 × 107 100
GWS-I 1.2 2.5 × 107 1 × 107 100
CWS-II 0.8 2.5 × 107 1 × 107 100
GWS-II 0.8 2.5 × 107 1 × 107 100
CWS-III 1.4 2.5 × 107 1 × 107 100
GWS-III 1.4 2.5 × 107 1 × 107 100
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As we can see from Figure 11, no matter how arrival rate changes, the corresponding relation
of CWS and GWS never changes. When arrival rate go bigger, the lines of CWS rise and the lines of
GWS steepen. The CWS-III obtains bigger time lower bound than CWS-I and CWS-II, meanwhile
GWS-III obtains bigger response time than GWS-I and GWS-II. But the GWS ones can still maintain
less response time compared to CWS ones for light tasks.

Simulation IV explores how average processing rate influences performance. The parameters are
shown in Table 5.

Table 5. Parameters of Simulation IV.

Network Name λ s π N

CWS-I 1.2 2.5 × 107 1 × 107 100
GWS-I 1.2 2.5 × 107 1 × 107 100

CWS-IV 1.2 2 × 107 1 × 107 100
GWS-IV 1.2 2 × 107 1 × 107 100
CWS-V 1.2 3 × 107 1 × 107 100
GWS-V 1.2 3 × 107 1 × 107 100

As we can see from Table 5 that only processing rate is different. The experimental result is
depicted in Figure 12.

In the Figure 12, the relative relation of CWS-IV and GWS-IV, or CWS-V and GWS-V remains as
CWS-I and GWS-I, because GWS-IV and GWS-V still obtain less response time than their counterparts
for light tasks. And while process rate increases, the response time also decreases.

Simulation V studies the influence of average number of instructions per task. The related
parameters are shown in Table 6.

In Table 6, the networks only differ in average instruction number. The experimental result is
shown in Figure 13.
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In Figure 13 above, we can find that the GWS-VI and GWS-VII are still better for light tasks, and
while average number of instructions per task increases, the response time also increases.

Finally in Simulation IV, we explore the scalability of GWS by changing the FCN number N from
100 to 20 and 100 to 500. Parameters are shown in Table 7. The results are depicted in Figure 14.

Table 7. Parameters of Simulation VI.

Network Name λ s π N

CWS-I 1.2 2.5 × 107 1 × 107 100
GWS-I 1.2 2.5 × 107 1 × 107 100

CWS-VIII 1.2 2.5 × 107 1 × 107 20
GWS-VIII 1.2 2.5 × 107 1 × 107 20
CWS-VIIII 1.2 2.5 × 107 1 × 107 500
GWS-VIIII 1.2 2.5 × 107 1 × 107 500
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According to Figure 14, we find that the GWS is well scalable for network size as the slopes of
the two lines are almost the same, so when the FCN cluster grows bigger, the GWS is still stable and
robust which is necessary for fog computing. This feature is proved in NVS which is size-irrelevant.

From the simulations above, we conclude that by increasing average task arrival rate, decreasing
average process rate and increasing average number of instructions per task, the response time of CWS
and GWS will increase but the relative relation never changes. The GWS network always gives better
performance for light tasks than the CWS network and the GWS is scalable as it is size-irrelevant.

5. Conclusions

Firstly, this paper clarifies the task processing mechanism of FCNs and proposes to replace the
FCFS mechanism with the TS mechanism in FCNs. Then the validity and necessity of the TS mechanism
is proved in both theory and simulation. A measurement of FCN performance for multi-class tasks is
also put forward as the concurrency coefficient.

Secondly, the paper adjusts the work-stealing algorithm for the TS system by setting up residual
deques for raw tasks and stealing raw tasks from other residual deques. A variant of the work-stealing
algorithm is modeled as a cooperative game between FCNs.
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Finally, the paper proposes a collaborative algorithm GWS to balance the load between FCNs.
The collaborative algorithm is a variant of work-stealing, which is based on game theory. According to
the Nash bargaining solution, we can obtain Pareto optimality. Through simulations, we prove that
GWS can obtain better performance than CWS scheduler, especially for light tasks.

The paper introduces GWS, which places FCNs in collaboration with each other to achieve better
performance; however, cooperation between FCNs like task-stealing causes an information swap,
so our future studies will examine privacy security for IoT applications. We will aim to study safe
ways of cooperating without leaking any user information.
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