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Abstract: Dynamic voltage and frequency scaling (DVFS) is a well-known method for saving
energy consumption. Several DVFS studies have applied learning-based methods to implement
the DVFS prediction model instead of complicated mathematical models. This paper proposes a
lightweight learning-directed DVFS method that involves using counter propagation networks to
sense and classify the task behavior and predict the best voltage/frequency setting for the system.
An intelligent adjustment mechanism for performance is also provided to users under various
performance requirements. The comparative experimental results of the proposed algorithms and
other competitive techniques are evaluated on the NVIDIA JETSON Tegra K1 multicore platform
and Intel PXA270 embedded platforms. The results demonstrate that the learning-directed DVFS
method can accurately predict the suitable central processing unit (CPU) frequency, given the runtime
statistical information of a running program, and achieve an energy savings rate up to 42%. Through
this method, users can easily achieve effective energy consumption and performance by specifying
the factors of performance loss.

Keywords: dynamic voltage and frequency scaling (DVFS); embedded systems; energy consumption;
low-power software design; multicore computing systems; mobile devices

1. Introduction

Dynamic voltage and frequency scaling is a well-known method for reducing power consumption
in modern consumer mobile devices. Dynamic power is consumed because of the switching of gates
that cost major parts of power consumption dissipated in complementary metal-oxide-semiconductor
(CMOS) circuits. DVFS can be easily implemented in a real-time system under the timing constraints,
and the task can be executed with a lower CPU frequency and voltage with satisfactory performance
that can reduce power dissipation. Video decoding is a common real-time application; the execution of
the decoding process can be slowed to enable it to finish precisely at its deadline [1,2]. However, these
DVFS techniques may not be suitable for general-purpose applications because they mostly entail
assuming that the task arrival time, deadline, and workload are known in advance. In recent years,
DVFS research has increasingly focused on general-purpose computing applications. The main
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concept of using the DVFS technique for general-purpose applications is to supply a minimal
voltage and frequency when the CPU is in the idle mode. Thus, the CPU voltage and frequency
for memory-bound applications can be scaled down. This paper proposes a machine-learning-based
method that intelligently analyzes the behavior of CPU–memory relationships for non-real-time
systems in order to select the optimally-fitted CPU computational speed. The fundamental concept
of our approach is to transform a DVFS problem into a pattern classification problem with the task
features. This paper used a neural network based method to perform this learning-based DVFS
control algorithm.

A crucial problem of the learning model and mathematical model for the DVFS algorithm is time
complexity. Rangan et al. [3] first asserted that operating system (OS) scheduler sampling intervals are
on the millisecond time scale, whereas the computational requirements can vary on a nanosecond time
scale because of CPU events such as cache misses. When the DVFS control algorithm is considerably
complex, it requires excessive time to respond to such fine variations in program behavior. To solve
this problem regarding the computational complexity of DVFS, this study proposes a learning-based
approach based on the counter propagation networks (CPN), to simplify the DVFS control algorithm.
The CPN is a fast and coarse approximation for vector mapping problems. It has been widely used to
solve such problems because of its simplicity, easy training characteristics, and satisfactory statistical
representation capability of the input environment. In this study, we apply the CPN approach to learn
and classify the task behaviors into proper CPU frequencies and voltages.

In recent years, demand for high-performance embedded computing systems capable of
performing multitasking operations has increased. Chip multiprocessors (CMPs) have emerged as a key
technology for embedded computing demand. Excessive energy consumption in multicore computing
systems has also become a crucial problem for handheld embedded systems. Thus, the proposed
scheme solves DVFS problems for both single-core and multicore embedded computing systems.
Because there is a trade-off between energy consumption and execution performance, for improving
energy consumption, this study proposes a learning-directed algorithm to choose an appropriate CPU
frequency to optimally minimize the energy consumption under various performance requirements.

This paper proposes a lightweight learning-based DVFS technique for single-core and multicore
embedded systems. This technique was implemented and evaluated on the Linux operating system
running on an Intel PXA27x embedded platform (Intel, Santa Clara, CA, USA) and NVIDIA Tegra
K1 multicore platforms (NVIDIA, Santa Clara, CA, USA). For the experiments, several benchmarks
with different behaviors were selected from MiBench [4] and ParMiBench [5] to demonstrate the
performance of the proposed scheme. Real energy data were collected using a high-performance data
acquisition instrument (DAQ). According to the experimental results, the proposed learning-directed
DVFS technique can achieve an energy savings rate up to 42%.

The paper is structured as follows. Section 2 describes related works, and Section 3 presents
the CPN that is used in the proposed learning-directed algorithm. In Section 4, the proposed
learning-based DVFS algorithm is introduced and explained, and the training data are also discussed.
Section 5 describes the implementation of the DVFS mechanism. The experimental results and a
comparison with the standard Linux DVFS implementations are reported in Section 6. Finally, Section 7
draws conclusions.

2. Related Works

The CPU and memory are crucial computing resources for general-purpose operating systems.
The DVFS algorithm adjusts the CPU frequency to reduce power consumption when the system
is executing memory-bound jobs [6–9]. Choi et al. [6] proposed a DVFS method using workload
decomposition, in which the system workload is decomposed into two parts: on-chip and off-chip
parts. This decomposition is determined according to run-time statistics reported by the hardware
performance counters. The on-chip workload signifies the clock cycles of the executed instruction
spending in CPU operations, and the off-chip part represents the cycles of memory accesses.
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Poellabauer et al. [8] used cache miss rates as the indicator for memory access rates (MAR) and
introduced a more reliable predictor of the next task execution times. Catania et al. [9] proposed an
energy managing technique in wireless network-on-chip architectures. This method is performed
by selectively turning off appropriate numbers of cycles and was assessed under several scenarios,
obtaining 25% energy saving results without impact on performance metrics.

Subsequent studies [7,10] have proven that the minimum energy consumption of a system may
not appear at the slowest operating speed of a system. Jejurikar and Gupta [10] defined the critical
speed of a task as the clock rate with which a system can have the minimum energy consumption for
that particular task. In our previous study [7], a memory-aware DVFS algorithm was also proposed
according to this phenomenon. The assumption behind the algorithm is that reducing the frequency
may not consistently induce lower energy consumption. The relationship between memory access
behavior and critical speeds is used to predict an ideal frequency that tends to minimize energy
consumption. However, some critical problems still exist in this CPU–memory DVFS method. Eyerman
and Eeckhout [11] asserted that the limitation of estimated linear scaling is that it does not count the
impact of multiple memory accesses overlapping in time on the off-chip part of the execution time,
thus generating an inaccurate DVFS prediction. Because of these problems, the aim of this study was
to discover a more efficient approach to automatically identifying the relationships between CPU and
memory in order to predict a suitable voltage and frequency setting.

In [12], Kim proposed an online DVFS scheme for a real-time system based on the NBS model.
Lahiri et al. [13] adapted an ANN method approach to the DVFS problem. The neural network
in [13] is trained using the back-propagation network technique to predict the future computational
load. The frequency can be generated according to the varying computational load. In Dhiman and
Rosing [14], the online learning algorithm was proposed to estimate the most suitable voltage and
frequency setting. This DVFS online learning algorithm was also implemented on an Intel PXA27x
platform. We implemented the online learning method [14] for comparison with our proposed method
in the single-core system. Moeng and Melhem [15] employed a decision tree algorithm to predict the
frequency that minimizes the expected energy per user-instruction or energy per (user-instruction)2.
Qingchen [16] proposed Deep Q-Learning model, which combined different DVFS technologies as a
hybrid algorithm for power consumption reduction. By the defined Q-function to calculate the Q-value
for each DVFS technology, the smallest Q-value is selected to adjust the voltage and frequency in the
next hyperperiod. Jung and Pedram [17] presented a supervised-learning-based DVFS algorithm using
the Bayesian classification technique, in which the algorithm learns to predict the system performance
state on the basis of the predefined input features and then uses this predicted state to identify the
optimal power management action from a precomputed policy lookup table. This DVFS approach [17]
was also implemented in the NVIDIA Tegra K1 platform for comparison with the multicore DVFS
approach in this study. Tesauro et al. [18] presented a reinforcement learning approach to control
the power management policies that produce intelligent trade-offs between power and performance.
Isci [19] classified the task characteristics into six phases according to MARs and proposed a global
phase history table predictor to anticipate the future phase. However, in this study, the phase mapping
onto DVFS mappings was not rigorous for the general-purpose computing applications of modern
mobile systems.

Our previous research [20] proposed a simple DVFS prediction for a DVFS algorithm (P-DVFS).
The prediction formula is

ft = α· ft−1
pexp

pt−1
, (1)

where ft is the predicted frequency at time interval t, and ft−1 is the adjusted frequency at time interval
t − 1. pexp is the performance factor that a user expects, and pt−1 is the performance factor executed
at a frequency of ft−1, where α is a constant being greater than one, that defines the degree of the
frequency adjustment. This formula increases the CPU frequency when pt−1 is lower than pexp and
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decreases the CPU frequency when pt−1 is higher than pexp. P-DVFS uses a simple factor pexp/pt−1 to
predict the CPU frequency.

Presently, embedded systems—such as smartphones, tablet PCs, and handheld devices—are
widely applied in daily life. As the applications of these devices become more complex, performance
must be increased while energy consumption is maintained at acceptable levels, especially for handheld
battery-supported devices. Multicore processors may achieve high performance under some energy
constraints. A key element of the multicore DVFS technique is the use of one or more voltage regulators
that deliver power to a circuit. DVFS for a multicore system can be performed at various levels of
granularity: per-chip DVFS [21], per-core DVFS [1,22,23], and cluster DVFS [1,24,25]. In Figure 1,
PMIC stands for Power Management Integrated Circuit. Per-chip DVFS (Figure 1a) uses the same
voltage regulator to each core and each core uses the same voltage and frequency setting. Per-core
DVFS (Figure 1b) uses different voltage regulators for each core and allows the core to simultaneously
use different voltage and frequency settings. Cluster DVFS (Figure 1c) uses multiple on-chip regulators
to drive a set of voltage/frequency islands.
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This paper proposes a lightweight learning-directed DVFS technique called CPN-DVFS.
For classifying the task behavior into suitable speed frequencies, the proposed CPN-DVFS was
designed to apply to both single-core and multicore embedded systems. The purpose was to transform
a DVFS problem into a classification problem with task characteristics. An Artificial Neural Network
(ANN) method was employed to execute this learning control algorithm. In our previous study [21],
the CPN learning-directed concept was preliminarily adopted for computational time prediction on
single-core platforms. In this study, we improve the CPN learning-directed concept presented in
this previous study, and further propose a novel CPN-DVFS scheme to modern multicore embedded
platforms, and design a new experimental environment on multicore platforms. For the comparative
performance evaluation with the CPN-DVFS scheme, the DVFS for the single-core and multicore
environments in previous studies [14,17,21] were also implemented in the experimental platforms.
The previous studies [14,17] performed learning-based DVFS and eDVFS [21] based on the calculated
model of the CPU stall time and power consumption to minimize total energy consumption in
multicore platforms. The main contributions of our study are as follows: (1) an efficient lightweight
learning-directed DVFS algorithm is proposed for both single-core and multicore embedded systems;
(2) users are allowed to define the acceptable level of performance; (3) it achieves power savings of up
to 42%.

3. Counter Propagation Networks

This section introduces the CPN that is used in the proposed learning-directed algorithm.
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3.1. Counter Propagation Networks

CPN area mixed network that combine supervised and unsupervised learning. CPN, which were
proposed by Hecht-Nielson [20], act as a statistically optimal self-programming lookup table. A CPN
consists of an input layer, a competitive layer, and an output layer, as shown in Figure 2. The input
and competitive layers form the Kohonen network, whereas the competitive and output layers form
the Grossberg network. It adopts the winner-take-all learning rule in the training process. Only one
neuron in the competitive layer can be the winner. The CPN model has a training pair (X, Y). This pair
contains the input vector x1 . . . n and output vector y1 . . . n. W is a weight matrix between the input layer
and competitive layer. π is a weight matrix between the competitive layer and output layer. In the
competitive layer, neurons are generated dynamically rather than located in advance. The Kohonen
network is an unsupervised learning network that computes the Euclidean distance between the input
vector and weights of each competitive layer node (hidden node), and determines the winner node
with the shortest distance. The Grossberg network then uses the winner node’s weights as outputs
and adjusts the output weights according to supervised learning. In this study, the CPN model was
used to identify the task behavior and predict the corresponding frequency according to the memory
access rates (MARs, as defined in [8]) and the performance that a user expects. Thus, the predicted
frequency can be applied to the CPU during the computation time.
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3.2. CPN Learning

The CPN training process has two levels: unsupervised and supervised learning. Unsupervised
learning computes the similarity or distance from an input vector X to the weight matrix W, as
mentioned previously. If the distance is acceptable, then the old weight wj

old is changed as follows:

In (2), α is a learning speed between 0 and 1. X(t)Xt is an input vector at time interval t. wj
old

is the chosen node’s old weight. If the distance is not acceptable, then a new node is added in the
competitive layer and assigned the weight wj

old woldj to the new node’s weight.

wj
new = wj

old + αX(t)− wj
old. (2)

After the CPN finishes unsupervised learning, the training starts supervised learning. The goal
of this supervised learning process is to obtain mapping for input objects to desired outputs, given
training sets that consist of input and output pairs. If the chosen node in the competitive layer is
present, then it changes according to the following formula:

In (3), β is a learning speed between 0 and 1. y(t) is the supervised output vector at time interval t.
π

j
old is the old weight in the output layer. If the chosen node in the competitive layer does not exist,

then a new weight is added to a new hidden node (4).

π
j
new = β

(
y(t)− π

j
old

)
, (3)
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πnew = y(t). (4)

3.3. CPN Algorithm

The purpose of the CPN training algorithm is to obtain the mapping from x(t) to y(t). The CPN
learning algorithm is displayed in Table 1. The algorithm is divided into these steps:

(1) At the initial phase, the weight W and π are all set at zero. ∆ is the acceptable distance. N is the
number of hidden nodes and is initialized as zero. t is the learning counter.

(2) First, the initial node is generated in the hidden layer. For all training data, the CPN learning
algorithm compares the Euclidean distances between x(t) and W.

(3) Second, the minimum distance between x(t) and W is found. After computing all the distances,
the minimum distance D can be identified. If D is higher than ∆, then the CPN learning algorithm
builds the new node in the hidden layer. If D is lower than ∆, then the minimum distance node j
is chosen.

(4) The final step is to adjust the weight wj and π j according to the input x(t) and output y(t). If the
training process is not finished, then it reverts to reading input training data.

Table 1. CPN learning algorithm.

Algorithm: CPN Algorithm

Parameters:α ∈ [0, 1]β ∈ [0, 1]∆ ∈ [0, ∞]
Initialization:
Weight vector wj and πj are all zeroed.
Weight vector x(t) and y(t) are training samples.
t = 1, N = 0.

1: Build the first hidden node.
2: N = 1, t = t + 1
3: For every training data input do

4: Choose the nearest node:D
(

wj, x(t)
)
= min

j=1∼N
D
(

wj, x(t)
)

5: if D ≤ ∆ is true then
6: Update the weight vector:
7: wj

new = wj
old + α

[
x(t)− wj

old

]
8: π

j
new = π

j
old + β

[
y(t)− π

j
old

]
9: t = t + 1
10: else then
11: Build the new hidden node.
12: N = N + 1, t = t + 1
13: end if
14: end for

Training process of CPN is the construct process of topology, as the acceptable distance ∆ set
lower, the nodes in the hidden layer increase, hyperparameters grows. The training time requirement
is also affected from the setting of acceptable distance, ∆. After the training process is complete,
the network functions as a lookup table. Figure 3 presents an example of the lookup table. The input
vector x is compared with the weight matrix W in the Kohonen network to identify the nearest weight
wi. The output weight vector πi associated with wi is selected as the output vector yi. This is highly
similar to the function of a nearest-match lookup table.
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4. Learning-Based DVFS Schemes

In this section, the proposed learning-based DVFS schemes for single-core and multicore
processors are introduced and explained in the following subsections.

4.1. Single-Core CPN-DVFS Scheme

Previous studies [6–8] have indicated that the CPU frequency appears in a close relationship with
both CPU and memory utilization. Hence, we employed the memory access rates (MAR) indicator in
this study to represent the memory access property of a program. The definition of MAR is displayed as

MAR =
Ncache miss
Ninstr exec

. (5)

These values obtained from the performance monitor unit (PMU) are applied to compute the
data of MAR and system performance to build up the relation between the CPU frequency and the
PMU data. In this study, we applied several benchmarks from MiBench [3] in the experiments and
collected five types of features: system performance, numbers of instructions executed, data cache
misses, instruction cache misses, and CPU frequencies. Table 2 shows part of the instruction counts of
MiBench [3], this study applied 80% of the instructions of the following seven benchmark programs
from it including basicmath, bitcount, susan, jpeg, mad, sha, and fast Fourier transform (FFT) for
training. By the native Linux system performance analyze toolkit, Perf, these five types of features can
be collected in our training and testing experiments. Figure 4 illustrates the topology of the CPNs used
in the proposed learning-based DVFS algorithm. The input data are the performance and number of
executed instructions as well as the data cache miss and instruction cache miss rates. The appropriate
CPU frequency is thus determined as the output result. During the training process discussed in
Section 3, mapping is obtained from the input data to generate the desired output results. Therefore,
we applied different frequencies in this study for the benchmark programs and collected information
about the task behavior for each time interval by the PMU.
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Table 2. Selected part of MiBench benchmark instruction counts.

Benchmark Small Instruction Count Large Instruction Count

basicmath 65,459,080 1,000,000,000
bitcount 49,671,043 384,803,644

susan.corners 1,062,891 586,076,156
susan.edges 1,836,965 732,517,639

susan.smoothing 24,897,492 1,000,000,000
jpeg.decode 6,677,595 990,912,065
jpeg.encode 28,108,471 543,976,667

mad 25,501,771 272,657,564
sha 13,541,298 20,652,916
FFT 52,625,918 143,263,412

FFT.inverse 65,667,015 377,253,252
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As shown in Figure 4, the inputs are instructions executed, data cache misses, system performance,
and instruction cache misses. The output result is a frequency. On the basis of the characteristics of
input samples and acceptable distance ∆, the hidden nodes Hn are dynamically generated.

The system performance is difficult to evaluate when the system is running. Numerous studies
have used the execution time as an indicator while measuring the performance, which is defined as [6]

Performance = 1− PFloss = 1−
(

Tfn − Tfmax

Tfmax

)
, (6)

where PFloss is the performance loss, f max is the maximum frequency, and fn is a frequency lower than
f max. Tfn and Tfmax are the task execution times at frequencies of fn and f max, respectively. However,
the samples in this study were collected during a fixed-length period; thus, the mere execution time
could not be relied onto evaluate the performance. By definition, the highest performance occurs at the
highest frequency. The execution of a running program can be divided into two parts. The first part
involves the time allocated in ideal CPU operations. The second part pertains to the time allocated
in external memory accesses, which are determined by the number of cache misses and are closely
related to the behavior of the running program. Therefore, a scoreboard method is used to compute
the performance score

µ = ρ·Ninstr + σ·Nmem, (7)
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ρ is a weight of the CPU instruction executed (Ninstr), and σ represents the factor of the memory access
scores (Nmem). µ is the computation performance factor. Assume the maximum value of µ is 100 at the
highest frequency. The highest frequency data can be used to calculate ρ and σ scores. Thus, ρ and σ

can be calculated by solving linear equations. However, the highest frequency data have many pairs.
Therefore, the results of all ρ and σ scores calculated are averaged. The performance score µ can be
calculated at other frequencies according to the CPU and memory operation. Table 3 lists examples
for the PXA270 platform. The test samples are obtained from the selected benchmarks of Mibench (as
listed in Table 2). Notably, at a 312-MHz frequency, the performance score is 100. This is because of the
high memory access time. It is an effective point for savings power without any other performance
loss. For a 416-MHz frequency, the performance score is 63 because of a shorter memory access time.
It is a CPU-bound interval that loses a lot of performance when the frequency is reduced to 416 MHz.

Table 3. PXA270 performance score examples.

CPU Frequency
(MHz)

Performance Score
(0~100)

Instructions
Executed

(
×105) Data Cache Miss(

×103) Instruction Cache
Miss

(
×102)

512 100 1514 67 266
512 100 969 1433 847
416 63 1207 116 168
416 82 1236 344 300
312 94 981 692 35
312 100 1035 1471 13
208 60 660 421 16
156 69 250 796 35
104 65 305 689 211

After training the CPN model, users can choose an acceptable performance between 0% and 100%
according to different requirements. In the experiments, the CPN model was used to identify task
behavior and to predict the corresponding frequency according to the MAR and performance that a user
has chosen. Thus, the predicted frequency could be applied to the CPU during the computation time.

Our previous study [7] determined that the lowest energy consumption generally appears at
an operating speed other than the highest and lowest frequencies. Hence, setting the lowest CPU
frequency does not entail the lowest energy consumption. The next section demonstrates that the
lowest energy consumption generally appears when the performance score is set at approximately
70% in our experiment platform. Table 4 shows the CPN-DVFS algorithm. At the initial stage,
the CPN-DVFS resets the PMU counter registers and obtains the weight vector wj and πj from the
training phase. In every execution interval, the algorithm stops, obtains the input vector x(t) from
the PMU, and identifies the minimum distance between x(t) and W. The ideal frequency is the
corresponding output πj.

Table 4. CPN-DVFS Algorithm.

Algorithm: CPN-DVFS Algorithm

Parameters: per f ormance ∈ [0, 100]
Initialization:
Reset PMU counter registers.
Get weight vector wj and πj from training phase.
pmu_start() for first times calculate.

1: For every execution interval do
2: Pmu_stop()

3: Choose the nearest node:D
(

wj, x(t)
)
= min

j=1∼N
D
(

wj, x(t)
)

4: target_freq = πj

5: set_freq(target_freq)
6: pmu_start()
7: end for
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4.2. Multi-Core CPN-DVFS Scheme

To adapt the proposed approach to modern computing platforms, we extended the
learning-directed DVFS algorithm to multicore processor systems. In this study, to train the CPN-DVFS
on the Nvidia Tegra K1 multicore platform, we used a single core and three other cores offline to run
the benchmarks and determine the number of cache misses and instructions executed through different
frequencies. The NVIDIA JETSON Tegra K1(TK1) platform supports the adjustment of the voltage
and frequency scales from 51,000 to 2,320,500 kHz and voltage between 760 and 1030 mV. Therefore,
the performance scores can be determined using (7) for adapting the proposed CPN-DVFS on the TK1
platform. In multi-core experiments, we also applied the selected benchmarks from MiBench [3] as
listed in Table 2 in the experiments, and four types of features were collected regarding the CPN-DVFS
training, including performance scores, numbers of instructions executed, cache misses, and CPU
frequencies. Thereafter, we used the collected data to train the CPN-DVFS model, as displayed in
Figure 4.

The learning-directed DVFS algorithm for multicore systems is displayed in Figure 5. Each core
has its own CPN-DVFS instance to predict the suitable voltage and frequency setting under a running
time. In addition, the proposed multicore frequency controller is used to coordinate the dynamic
frequency and voltage adjustment according to each CPN-DVFS prediction result. For multicore
systems, not all of the individual processor cores can adjust their frequency and voltage asynchronously.
A key element of the multicore DVFS technique is the use of one or more voltage regulators that deliver
appropriate power consumption to the corresponding circuits. As shown in Figure 6, the multicore
frequency controller chooses the CPU frequencies predicted from each CPN-DVFS instance according
to the type of multicore DVFS technique. If the target processor supports the per-core DVFS, then
each of the individual cores obtains a different appropriate frequency and voltage setting according to
the CPN-DVFS prediction results. If the target processor supports only the per-chip DVFS, then the
multicore frequency controller chooses the highest frequency among the frequencies determined by
the DVFS results of all cores to maintain the system performance.
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5. Implementation and Measurement

In the Linux kernel, the CPUfreq subsystem provides a modularized interface for managing the
CPU frequencies. In Linux, the policy manager for DVFS is called a governor, which controls the CPU
frequency through the CPUfreq interface.

Figure 7 illustrates the CPUfreq infrastructure, in which the CPUfreq subsystem decouples
the driver of the CPU-specific hardware from the policies. Numerous kernel-level governors have
been supported by Linux for CPU frequency management including the ‘Performance’, ‘Ondemand’,
and ‘Userspace’ governors. The Performance governor uses the highest frequency at all time, and the
Ondemand governor manages the frequency according to the CPU utilization. Linux also provides
the Userspace governor that the user-level governors can control the frequency through the sysfs
interface. Among the governors, Ondemand is normally used as the default DVFS mechanism in
Linux. In this study, we implemented the proposed DVFS mechanism, called the CPN-DVFS governor.
This governor can access the performance counters that realized as the PMU, and set the CPU frequency
directly through the Linux CPUfreq subsystem, which is adopted as an additional CPU frequency
management without interference with the operation behavior of the native Linux CPUfreq module.
The system information such as instructions executed, data cache misses, instruction cache misses
and the workloads can be obtained from the performance counters and the OS scheduler respectively
operated the CPN-DVFS for each 100 ms time intervals during the run-time execution of the programs.
For training the CPN model in Table 1, we used the 80% of instruction counts of the selected seven
benchmarks from MiBench benchmarks as listed in Table 2 to run under each CPU frequency and
collected information about the task behavior for each time interval.
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Actual energy data were collected using a high-performance DAQ. This DAQ was used to collect
the measured data at a rate of 1000 samples/s. The experiment measured the voltages and currents
of the CPU and synchronous dynamic random-access memory (SDRAM) to compute the power
consumption on a PXA270 platform. Other DVFS methods, including the Linux Ondemand governor,
Performance governor, and other learning DVFS governors were also measured for comparative
performance evaluation. Figure 8 illustrates the configuration of our measurement environment.
All power consumption data were collected from real embedded and mobile platforms. For the TK1
platform, because the energy consumption of CPU and memory could not be separately obtained from
the TK1 platform (in contrast to the PXA270 platform experiment), the overall energy consumption of
the TK1 platform was measured in this study.
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6. Experiments

This section reports the experimental results of the proposed learning-based DVFS schemes
and comparative results with the standard Linux DVFS implementations for single-core and
multicore systems.
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6.1. Single-Core Platforms

The experiments were performed on a real platform, the Creator PXA270 development board,
on which the Linux kernel 2.6.25 was ported. The supported frequencies are listed in Table 5.
Two low-resistance sense resistors were used to measure the voltages and currents of the components
such as the CPU and SDRAM. The MAXIM 1586B PMIC board (Maxim Integrated, San Jose, CA,
USA) was used to support the dynamic voltage adjustment. When the frequency was changed,
the corresponding voltage was changed accordingly. The DVFS mechanisms, including the Linux
Ondemand governor [22], Performance governor, memory-aware dynamic voltage and frequency scaling
(MA-DVFS) [7], and off-chip latency driven Dynamic voltage and frequency scaling (OL-DVFS) [13], were
also implemented and measured to compare the experimental results.

Table 5. Supporting frequency list of the Creator PXA270 platform.

CPU Frequency CPU Voltage

104 MHz 0.9 V
156 MHz 10 V
208 MHz 1.15 V
312 MHz 1.25 V
416 MHz 1.35 V
520 MHz 1.45 V

In the experiments for the proposed CPN-DVFS algorithm, the required performance was set
at 70% and 90%. The required performance set at 70% is called CPN-DVFS_70, and the required
performance set at 90% is called CPN-DVFS_90. Figure 9 depicts the probability that the frequency has
been selected for CPN-DVFS_90 and CPN-DVFS_70 on the PXA270 development board. According
to the recorded information, CPN-DVFS_90 selected 520MHz 48% of the time when the programs
were tested and 39% of the time for 416 MHz. However, CPN-DVFS_70 selected frequencies of
312 MHz and below approximately 73% of the time. This demonstrates that the performance set at
70% is more aggressive than that set at 90% regarding energy savings. Figure 10 shows the energy
consumption and execution time of gzip_b in MiBench with the performance set at 70% and 90%.
The CPN-DVFS_70 saves more energy than CPN-DVFS_90 does. However, more execution time is
also induced forCPN-DVFS_70.
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The DVFS implementation generally has two primary overhead items in the operating systems:
DVFS algorithm execution intervals and DVFS computational overhead [3]. One advantage of the CPN
is that it is an extremely lightweight neural network technique. To measure the overhead introduced
by the DVFS algorithm, a type of Linux kernel information, jiffies, is used. The jiffies records the
execution time before and after the DVFS algorithm. In this study, we observed that the DVFS scheme
overhead was very low for the MiBench benchmark. The overhead result is shown in Figure 11;
in mad_s, the proposed DVFS scheme only costs 0.02% overhead within the entire execution period.
The least favorable result is bitcount_s, in which the DVFS overhead cost is approximately 0.12% of the
execution period. However, the overhead of the MA-DVFS and Linux Ondemand governor are 0.4%
to 2%. Therefore, the presented CPN-DVFS algorithm is relatively lightweight.
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Figure 12 presents the CPN-DVFS performance in MiBench benchmarks calculated in real
execution time to confirm the accuracy of the expected performance configuration (i.e., the value set
by the performance factor). For example, the performance of the proposed CPN-DVFS_90 algorithm is
approximately 90%. A similar situation also occurs in the cases of CPN-DVFS_70. The error rates of
the proposed CPN-DVFS performance are all lower than 6%.
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A comparison of the proposed CPN-DVFS algorithm, the Linux Ondemand governor [22],
the Performance governor, the MA-DVFS [7] and OL-DVFS [13] is presented in Figure 13. In the
OL-DVFS, it used coarse-grained levels (Low α, Med α, and High α) to control the delay and
energy balance. In the implementation, we used Med α to perform the comparative experiments.
As depicted in Figure 13, the proposed CPN-DVFS_70 reduced the energy consumption by 4.88% to
42.63%. By comparison, the MA-DVFS reduced the energy consumption by approximately 31.64%
at most, whereas the OL-DVFS saved 0.82% to 33.32% of energy consumption. Consequently,
the proposed CPN-DVFS_70 demonstrates the most favorable results for energy consumption because
CPN-DVFS_70 can tolerate a longer delay. The proposed CPN-DVFS_90 saved 0.54% to 20.93% of
energy consumption, yielding superior results to those of the Performance and Ondemand governors.
For energy consumption, the CPN-DVFS_90 obtained a result that was slightly inferior to those of
the MA-DVFS and OL-DVFS. Because the CPN-DVFS_90 maintained the performance under a loss
of less than 10% for higher performance requirements. For a fair comparison between energy and
delays, this paper compares the energy delay product (EDP) for the CPN-DVFS_90 in the next figure.
The user-set performance that is lower than the CPN-DVFS_70 is also evaluated. Notably, energy
consumption began to rise when the user-set performance was lower than 70% of the computing
resource. This demonstrates that prolonging the execution time to achieve superior energy savings is
inappropriate. Therefore, users should set the CPU performance at higher than 70%.

Figure 14 presents the EDP results of the benchmarks. A lower EDP value generally implies that
a greater balance between the performance and energy consumption has been achieved. In this study,
the energy consumption and execution time were first normalized to the values of the Performance
governor and then multiplied to obtain the EDP values. According to the results, the proposed
CPN-DVFS_90 consistently yields EDP outcomes that are more favorable than those of the Linux
Ondemand governor, MA-DVFS method, and OL-DVFS. In most benchmarks, the CPN-DVFS_70
obtains, by a slight margin, the least favorable EDP among all governors because CPN-DVFS_70
typically cannot save power by up to 30% when it maintains a performance loss of 30%. These results
indicate that the benchmarks might not be suitable for reflecting the performance of the CPN-DVFS_70
because of the low MAR of the benchmarks. However, the CPN-DVFS_70 could obtain a more
favorable EDP because it can achieve a significant power consumption reduction in memory-intensive
benchmarks. For example, gzip has a higher probability of saving more energy because of its high
MAR. Therefore, the CPN-DVFS_70 achieves a more favorable EDP than other governors do in the
gzip benchmark. Thus, in summary, if performance and energy savings are considered, then the
proposed CPN-DVFS_90 can be the most favorable choice. If energy savings are more crucial than the
performance, then the CPN-DVFS_70 can be used to achieve the most favorable power savings results.
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6.2. Multi-Core Platforms

CMPs have emerged as a key for embedded computing demands. A newer and more powerful
platform, TK1 [23], was used for the multicore DVFS experiment. Jetson TK1 is NVIDIA’s embedded
development platform featuring a Tegra K1 SOC with a quad core 2.3 GHz ARM Cortex-A15 CPU.
The TK1 supports voltage and frequency scales and can be adjusted from 51,000 to 2,320,500 kHz and
760 to 1030 mV. For modern portable and embedded systems, most devices are per-chip DVFS systems
that include the newest TK1 platform. For hardware performance counters, the PMU register provided
by the ARM Cortex-A15 processor is used [26]. Each core receives its own task execution instructions
and memory access counters to predict the frequency by using the CPN-DVFS.

Several benchmarks from MiBench [3] have been adopted for assignment onto each CPU core
for evaluating the multitasking performance and power consumption. For a parallel benchmark,
ParMiBench [5] was also chosen in the experiments. In Table 6, MiBench1 and MiBench2 represent
combinations of various MiBench benchmarks. MiBench3 runs basicmath, and MiBench4 runs the
gzip benchmark for all cores. To ignore the load balancing from MiBench1 to MiBench4, all MiBench
benchmarks run infinite loops for 20 s. An open source benchmark, ParMiBench, which is intended for
multiprocessor-based embedded systems, was also used in this experiment. For a comparative
performance evaluation with this study’s multicore scheme, the eDVFS with 10% decrease in
performance [21] and the Bayesian classification-based DVFS [17] were implemented on the NVIDIA
Tegra K1platform.

Table 6. Benchmarks for multicore experiments on TK1.

Core1 Core2 Core3 Core4

MiBench 1 bitcount fft basicmath sha
MiBench 2 gzip jpeg mad gunzip
MiBench 3 basicmath basicmath basicmath basicmath
MiBench 4 gzip gzip gzip gzip

ParMiBench 5 Bitcount
ParMiBench 6 Basicmath
ParMiBench 7 Dijkstra

Figure 15 displays the number of executed loops of MiBench1 and MiBench2 on the TK1 platform.
The Performance governor consistently ran at the highest frequency, 2,320,500 kHz. The Linux
Ondemand governor scales the frequency according to the utilization for each core. The TK1
platform is a per-chip DVFS system. Therefore, the multicore frequency controller uses the highest
frequency among the four frequencies determined by the DVFS that are performed on the four cores to
preserve the system performance. The Bayesian power management (PM) [17] also uses the multicore
frequency controller to determine the final frequency for the per-chip DVFS system. As displayed in
Figure 15c, the performance of the CPN-DVFS_90 algorithm is above 90%, and the performance of
the CPN-DVFS_70 algorithm is between 70% and 80%. The purpose of this conservative scheme is to
prevent losing more performance than the one user expected to lose during the CPU-intensive task.
The performance of the proposed CPN-DVFS approaches obtained from MiBench3 and MiBench4
are shown in Figure 16. According to the performance evaluation results, the performance rates of
MiBench3 and MiBench4 obtained by the CPN-DVFS_90 are respectively 90.8% and 92.8% regarding
the performance governor, and the corresponding performance rates of the CPN-DVFS_70 are 69.1%
and 71.4%, respectively. Compared with the performance result of MiBench1 and MiBench2, MiBench3
and MiBench4 were more accurate regarding users’ expected performance configuration. Because
MiBench3 and MiBench4 run the same benchmark for all cores, the CPN-DVFS obtain similar program
behavior and select similar frequencies for all cores. Therefore, MiBench3 and MiBench4 can obtain
results that are closer to the expected performance.
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The comparative results of energy consumptions between the CPN-DVFS algorithm, Linux
Ondemand governor [27], Performance governor, Bayesian PM [14], and eDVFS [28] is provided
in Figure 17. The proposed CPN-DVFS_90 saved 2.3% to 8.8% of energy consumption, indicating
that its achieved results that were superior to those of the Performance and Ondemand governors.
By comparison, the Bayesian PM saved 2.9% to 5.6% and eDVFS saved 2.6% to 6.4% of total
energy consumption. The proposed CPN-DVFS_70 reduced energy consumption by 3.9% to 15.4%.
CPN-DVFS_70 produces the most favorable results for energy consumption because CPN-DVFS_70
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can tolerate a longer delay. In addition, the results of MiBench4 demonstrate that our CPN-DVFS
saved the most energy consumption by 15.4% because of the high MAR in the gzip benchmark.Sensors 2018, 18, x  20 of 24 
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The difference between the benchmarks in ParMiBench and those in MiBench is that the
benchmarks in ParMiBench run on multiprocessor-based embedded systems. Figure 18 displays
the execution time of ParMiBench. The performance of our CPN-DVFS_70 algorithm is between
71.8% and 74%, and the performance of the CPN-DVFS_90 algorithm is between 89.1% and 91.6%.
The performance result is close to the expected performance configuration. Figure 19a presents the
energy consumption of ParMiBench. The Bayesian PM saved 5.6% to 11% of total energy consumption.
The eDVFS gets 2% to 7% results of saving energy consumption. By contrast, the CPN-DVFS_70
significantly reduces energy consumption by 16% to 22%, and CPN-DVFS_90 saved 5.5% to 6.4% of
energy consumption. According to the EDP results of the ParMiBench in Figure 19b, the CPN-DVFS_90
has a superior EDP compared with those of the Linux Ondemand governor, Bayesian PM, and eDVFS
method. The proposed CPN-DVFS_70 also obtains superior EDP results compared with those of the
Bayesian PM. The multicore experiments in Figures 15, 16 and 18 demonstrate that the proposed
learning-directed DVFS method can accurately predict the suitable frequency at the acceptable
performance levels set by users. The proposed CPN-DVFS_70 generates outstanding energy savings
results, and the CPN-DVFS_90 obtains a more efficient EDP than other comparable governors do
regarding the balancing of energy consumption and execution time. In summary, if the performance
and energy savings the most effective choice. If energy savings are more crucial than performance,
then the CPN-DVFS_70 can be used to achieve the most effective power savings results. Through this
method, users can easily achieve effective energy consumption and performance by specifying the
allowable performance loss factors.
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7. Conclusions

This paper proposed a learning-directed DVFS algorithm for single-core and multicore embedded
systems. It employs a lightweight CPN to perform the prediction instead of using complicated
mathematical models. This study measured the overhead introduced by the DVFS algorithm to
prove that the learning-directed DVFS algorithm is relatively lightweight. The proposed approach
also provides a mechanism for facilitating control over the trade-off between energy consumption
and computation performance. The learning-directed DVFS algorithm was implemented in the
Linux operating system on an Intel PXA270 XScale single-core platform and NVIDIA JETSON Tegra
K1 multicore platform. In the aforementioned experiments, this study implemented the proposed
methods in real embedded devices and collected the actual energy data by using a DAQ to increase
the experimental reliability. According to the single-core experiments, the learning-directed DVFS
algorithm obtained 5% to 20% energy savings with a 10% performance loss constraint and 9% to
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42% energy savings with a 30% performance loss constraint. In the multicore experiments, our
approach saved 2.3% to 8.8% energy with a 10% performance loss constraint and 3.9% to 22% energy
with a 30% performance loss constraint. On the basis of the experimental results, the proposed
CPN-DVFS_70 presents the most outstanding energy savings results, and the CPN-DVFS_90 obtains
a favorable EDP for balancing energy consumption and execution time. For modern handheld and
mobile devices with a battery power source, the proposed method provides an efficient performance
adjustment mechanism to users under various performance requirements. Users can conveniently
choose acceptable performance settings according to their demands and application scenarios, as well
as extend the endurance of their devices.

Although this paper proposed an efficient learning-directed DVFS technique for single-core and
multicore embedded platforms, the proposed technique can be further developed and extended to
high-end high-performance computing (HPC) systems. There are several studies [29,30] working
on the similar issues for HPC systems, we will proceed to the developments and experiments of
HPC systems to validate the performance of the proposed techniques in our future works. As for
the dynamic adjustment schemes, this study collected system performance, numbers of instructions
executed, data cache misses, and instruction cache misses to predict a proper CPU frequency for the
operating system. There is still an additional interesting topic for memory frequency changeable
platform, e.g., Nvidia Jetson Tegra series. We will re-design and optimize our DVFS technique to
integrate the dynamic adjustment scheme for the memory frequencies to propose a new energy-saving
model that is more effective for a memory frequency changeable platform in our future works.
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