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Abstract: With the increasing of satellite sensors, more available multi-source data can be used for
large-scale high-precision crop classification. Both polarimetric synthetic aperture radar (PolSAR) and
multi-spectral optical data have been widely used for classification. However, it is difficult to combine
the covariance matrix of PolSAR data with the spectral bands of optical data. Using Hoekman’s
method, this study solves the above problems by transforming the covariance matrix to an intensity
vector that includes multiple intensity values on different polarization basis. In order to reduce the
features redundancy, the principal component analysis (PCA) algorithm is adopted to select some
useful polarimetric and optical features. In this study, the PolSAR data acquired by satellite Gaofen-3
(GF-3) on 19 July 2017 and the optical data acquired by Sentinel-2A on 17 July 2017 over the Dongting
lake basin are selected for the validation experiment. The results show that the full feature integration
method proposed in this study achieves an overall classification accuracy of 85.27%, higher than that
of the single dataset method or some other feature integration modes.

Keywords: GF-3; PolSAR data; Sentinel-2A; optical data; data integration; crop classification;
Dongting lake basin

1. Introduction

As for the demand of large-scale and high-efficiency crop mapping, remote sensing technology
can substitute for the traditional field measurement and it can observe the same area many times
in a short revisit time. Nowadays, optical data and polarimetric synthetic aperture radar (PolSAR)
data are often used for crops’ monitoring and the integration of multi-source data sets can help to
achieve high-precision classification results. However, in the integrated classification, some effective
features extracted from data of different sensors cannot be used at the same time, so that the potential
of integrated datasets cannot be fully explored. Particularly, the covariance matrix of PolSAR data is
difficult to be combined with multi-spectral optical data for classification. Considering the covariance
matrix contains rich polarimetric information, this paper applies Hoekman’s method [1], the matrix
can be transformed to an intensity vector, detailed in Section 3.2. Such intensity vector has nine bands,
denoting the intensity values on different polarization bases, which has the similar data structure with
the spectral bands of optical data, so it is easy to combine these two kinds of information. In addition,
some other useful features are extracted, including the polarimetric features, as the radar vegetation
index (RVI) and the decomposed Yamguichi four components, as well as some optical features as the
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normalized difference vegetation index (NDVI) and the information entropy describing the texture
information. The spectral characteristics in the optical data are mainly used to indicate the changes
in the moisture and chlorophyll content of the crop leaves [2,3]. In the PolSAR data, the backscatter
information of the multiple polarimetric channels are used to describe the structure, orientation
distribution and dielectric constant characteristics of crops [4–9]. Generally speaking, the optical and
PolSAR data can characterize different properties of crops. These two data are mutually independent
and complementary to each other. There are some methods developed for using each of these data set
for crop classification, including the PolSAR classification methods [10–19] and the optical classification
methods [20–24]. However, the limited kinds of observation measurements by single type of satellite
is hard to fully represent the characteristics of targets and the combination of multi-source data can be
used for crop classification [25–32].

Nowadays, data fusion and data integration are two common combination modes of multi-source
data. Particularly, compared with the data integration methods, there are more data fusion methods,
as PCA fusion method [33,34], Brovey fusion method [35,36], Gram-Schmidt transform fusion
method [37,38], wavelet transform method [39–42]. However, the dimension of feature sets extracted
in data fusion is generally three, corresponding to the RGB channels for visual representation. Due to
the number of feature sets extracted in data fusion is fewer than the data integration, the classification
accuracy of data fusion method is lower [43]. So, the data integration is applied in the classification.

Furthermore, the extracted feature sets can be applied into crop classification.
Available classification algorithms include the maximum likelihood algorithm [44], the support vector
machine (SVM) [29,45], the neural network [46], the deep learning algorithm [47]. Among which,
the maximum likelihood algorithm is based on the probability distribution of the characteristics of
feature sets, which is simple and easy to be operated. But its classification accuracy is low, because the
selected distribution model may not be suitable for all terrain types. Other three methods all belong to
machine learning algorithms, which use training samples for iterative learning. And the classification
rules can be generated to identify the unknown objects. The neural network and deep learning
algorithm require a large number of training samples and the training process is time-consuming,
caused by the high model complexity. Whereas, the SVM algorithm is to convert the feature sets into
high dimensional space through a kernel function and to generate a classification plane. It needs only
a few training samples and has low modeling complexity and good usability. So, it has been applied in
many cases of classification and recognition of objects.

The paper is organized as follows. Section 2 illustrates the study area and datasets.
Section 3 describes the main detailed steps of the proposed method, including data preprocessing,
feature extraction and integration and SVM classification. Section 4 presents the experimental results.
Section 5 makes some detailed discussions for the results. Finally, we draw some conclusions in
Section 6.

2. Study Area and Dataset

The study area is located in the southeastern Dongting Lake basin, Hunan, China (Figure 1).
The main crops there are rice, watermelon and lotus. With the steady stream of irrigation support from
Dongting Lake, there grows the single-season rice (Rice1) and the two-season rice (Rice2). We selected
the GF-3 polarimetric SAR data acquired on 19 July 2017 and Sentinel-2A optical data on 17 July 2017,
for crop classification. The specific imaging parameters of GF-3 data and Sentinel-2A data are shown in
Tables 1 and 2, respectively. Hereon, the research based on the satellite GF3 can expand the application
of GF-3 data in agriculture. As the first C-band synthetic aperture radar (SAR) satellite in China,
it owns 12 imaging modes with the highest spatial resolution of 1 m [48]. GF-3 satellite is able to
monitor the ocean and the land under any weather conditions. Moreover, its unique left and right side
looking modes improve its ability of quick response to the emergence of disasters.
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Figure 1. The location of the study area and the used data coverage, the yellow and orange rectangle 
denotes the GF-3 PolSAR data and the Sentinel-2A optical data, respectively. The red rectangles 
outline the experimental area. 

Table 1. Main imaging parameters of GF-3 satellite. 

Item Parameter 
Polarization mode HH, HV, VH and VV 

Chirp Bandwidth (MHz) 40 
Centre frequency (GHz) 5.400012 

Band C-band 
Range pixel spacing (m) 2.248443 

Azimuth pixel spacing (m) 4.733369 
Acquisition Type Stripmap (QPSI) 

Start time 2017-07-19, 22:26:57.615189 
Stop time 2017-07-19, 22:27:01.799853 

Incidence angle 38.16° 

Table 2. Main imaging parameters of Sentinel-2A satellite. 

Item Parameter 
Swath (km) 290 

Acquisition time 2017-07-17, 11:05:41.26 
Spectral bands R (Band 4), G (Band 3), B (Band 2), NIR (Band 8) 

Centre Wavelength (nm) R (665), G (560), B (490), NIR (842) 
Bandwidth (nm) R (30), G (35), B (65), NIR (115) 

Spatial Resolution (m) R (10), G (10), B (10), NIR (10) 
Reference Radiances 𝐿  

(W m−2 sr−1 µm−1) 
R (108), G (128), B (128), NIR (103) 

Signal-to-Noise Ratios @ 𝐿  R (142), G (168), B (154), NIR (174) 

We collected the crop information through an in-situ survey. We kept a record for crop types 
and their growth stages. The crop types were identified through the regional agricultural expertise 
and farmers. Finally, the training samples and testing samples were separately selected (Figure 2) 
according to the basic sampling principle [49,50] and the detailed information of samples are listed 
in Table 3. 

Figure 1. The location of the study area and the used data coverage, the yellow and orange rectangle
denotes the GF-3 PolSAR data and the Sentinel-2A optical data, respectively. The red rectangles outline
the experimental area.

Table 1. Main imaging parameters of GF-3 satellite.

Item Parameter

Polarization mode HH, HV, VH and VV
Chirp Bandwidth (MHz) 40
Centre frequency (GHz) 5.400012

Band C-band
Range pixel spacing (m) 2.248443

Azimuth pixel spacing (m) 4.733369
Acquisition Type Stripmap (QPSI)

Start time 2017-07-19, 22:26:57.615189
Stop time 2017-07-19, 22:27:01.799853

Incidence angle 38.16◦

Table 2. Main imaging parameters of Sentinel-2A satellite.

Item Parameter

Swath (km) 290
Acquisition time 2017-07-17, 11:05:41.26
Spectral bands R (Band 4), G (Band 3), B (Band 2), NIR (Band 8)

Centre Wavelength (nm) R (665), G (560), B (490), NIR (842)
Bandwidth (nm) R (30), G (35), B (65), NIR (115)

Spatial Resolution (m) R (10), G (10), B (10), NIR ( 0)
Reference Radiances Lref

(W m−2 sr−1 µm−1)
R (108), G (128), B (128), NIR (103)

Signal-to-Noise Ratios @ Lref R (142), G (168), B (154), NIR (174)

We collected the crop information through an in-situ survey. We kept a record for crop types
and their growth stages. The crop types were identified through the regional agricultural expertise
and farmers. Finally, the training samples and testing samples were separately selected (Figure 2)
according to the basic sampling principle [49,50] and the detailed information of samples are listed in
Table 3.
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Table 3. Field data collected for classification training and testing. 
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Water 5118 4 241,174 86 

Rice (single-season) 3305 5 199,891 81 
Rice (two-season) 3572 5 122,269 91 

Watermelon 2679 4 106,678 52 
Lotus 4193 4 188,068 56 

Bare soil 2841 5 134,727 55 
Forest 1890 5 168,832 52 
Grass 4336 4 208,945 54 

3. Methodology 

The proposed method includes the following steps: data preprocessing, feature extraction and 
integration, SVM classification. The flowchart of the proposed method is shown in Figure 3. 

3.1. Data Preprocessing 

In order to make the extracted features better used for classification, the careful data 
preprocessing is necessary. Firstly, the GF-3 data is polarimetric calibrated. Specifically, the 
backscattering amplitude information on different polarization channels should be corrected 
according to the calibration constants in the header file. Then, the polarimetric coherency matrix 𝑇  
is generated and the Non-Local filtering is used to reduce the speckle noise [51,52]. Finally, the area 
of interest is selected for subsequent experiments. As for the Sentinel-2A data, there are 13 bands, of 
which the selected four bands are commonly used for classification, including red (R), green (G), blue 
(B) and near infrared (NIR) bands. 

Then the two data are registered into the same coordinate system for extracting and integrating 
features. Because the SAR acquisition is side looking, which is different from the central projection of 
optical data, the original optical data is registered into the SAR coordinate system for keeping target’s 
backscattering characteristics. Details are shown in Figure 4. We choose the ground control points 
(GCPs) and then register data sets based on corresponding GCPs. Since the study area has a flat 
terrain, the SAR data has no obvious foreshortening, layover and shadow. So, the registration method 

Figure 2. The training (left) and testing (right) samples in the study area.

Table 3. Field data collected for classification training and testing.

Land Cover
Training Samples Testing Samples

Number of Pixels Number of Plots Number of Pixels Number of Plots

Water 5118 4 241,174 86
Rice (single-season) 3305 5 199,891 81
Rice (two-season) 3572 5 122,269 91

Watermelon 2679 4 106,678 52
Lotus 4193 4 188,068 56

Bare soil 2841 5 134,727 55
Forest 1890 5 168,832 52
Grass 4336 4 208,945 54

3. Methodology

The proposed method includes the following steps: data preprocessing, feature extraction and
integration, SVM classification. The flowchart of the proposed method is shown in Figure 3.

3.1. Data Preprocessing

In order to make the extracted features better used for classification, the careful data preprocessing
is necessary. Firstly, the GF-3 data is polarimetric calibrated. Specifically, the backscattering amplitude
information on different polarization channels should be corrected according to the calibration
constants in the header file. Then, the polarimetric coherency matrix T3 is generated and the Non-Local
filtering is used to reduce the speckle noise [51,52]. Finally, the area of interest is selected for subsequent
experiments. As for the Sentinel-2A data, there are 13 bands, of which the selected four bands are
commonly used for classification, including red (R), green (G), blue (B) and near infrared (NIR) bands.

Then the two data are registered into the same coordinate system for extracting and integrating
features. Because the SAR acquisition is side looking, which is different from the central projection of
optical data, the original optical data is registered into the SAR coordinate system for keeping target’s
backscattering characteristics. Details are shown in Figure 4. We choose the ground control points
(GCPs) and then register data sets based on corresponding GCPs. Since the study area has a flat terrain,
the SAR data has no obvious foreshortening, layover and shadow. So, the registration method based
on the GCPs can achieve a high registered accuracy. At last, the optical data is cut into the interested
area the same as GF-3 data.
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3.2. Feature Extraction and Integration

To fully characterize different crops, we extract the backscattering intensity, backscattering type,
canopy vegetation index from the GF-3 data and the spectral characteristics, spatial texture,
canopy vegetation index from Sentinel-2A data. Since the intensity information is the most direct
representation of the backscattering of radar waves in ground objects, it is extracted firstly.

We use the method proposed by Hoekman in 2003 [1] to transform elements of covariance matrix
C3 into multi-channel intensity vectors. Matrix B can be used to convert the elements of matrix C3 into

an intensity vector
⇀
P , which can represent the backscattering intensity of crops in different polarimetric

channels. The equation is shown specifically as follows:

〈|SHH |2〉
〈|SVV |2〉
〈|SHV |2〉

Re
[
〈SHHS∗VV〉

]
Im
[
〈SHHS∗VV〉

]
Re
[
〈SHHS∗HV〉

]
Im
[
〈SHHS∗HV〉

]
Re
[
〈SHVS∗VV〉

]
Im
[
〈SHVS∗VV〉

]


= B

⇀
P = B



DNhh
DNvv

DN++45

DN−−45

DNll
DNrr

DNh+45
DNhl

DN+45l


9×1

(1)
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B =
1

4π



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
− 1

4 − 1
4 + 1

4 + 1
4 + 1

4 + 1
4 0 0 0

0 0 + 1
2 + 1

2 − 1
2 − 1

2 0 0 0
+ 1

4 + 1
4 + 3

4 − 1
4 + 3

4 − 1
4 0 0 −2

− 3
8 + 1

8 − 1
8 − 1

8 − 1
8 − 1

8 1 0 0
+ 3

8 − 1
8 + 1

8 + 1
8 + 1

8 + 1
8 0 −1 0

+ 3
8 − 1

8 + 5
8 − 3

8 + 1
8 + 1

8 −1 0 0
− 3

8 + 1
8 − 1

8 − 1
8 − 5

8 + 3
8 0 1 0


9×9

(2)

where DN denotes the intensity value and the subscripts denote the received and transmitted
polarization bases: horizontal (h), vertical (v), left circular (l), right circular (r), 45◦ linear (+ or +45) and
−45◦ linear (− or −45).

It is worth noting that the backscattering intensity often contains a number of large magnitude
values. For the normalization during the data combination, we transform the original intensity into
the intensity with backscattering coefficient format (dB) by

⇀
σ = 10log10

(
⇀
P
)

(3)

⇀
σ =



σhh
σvv

σ++45

σ−−45

σll
σrr

σh+45
σhl

σ+45l


9×1

(4)

where
⇀
σ denotes the transformed intensity vector and its detailed values are presented in Formula (4).

The subscripts in
⇀
σ are the same with

⇀
P . Although, the backscattering intensity information can be

characterized by
⇀
σ , the dimension of

⇀
σ in multi-source data integration is large and will lead to data

redundancy. Such redundancy will reduce the classification accuracy and computational efficiency.
The principal component analysis (PCA) algorithm can pick out one or two main eigenvalues to
replace the total eigenvector, so as to increase the classification accuracy and computational efficiency.
In this paper, the sum of the first two principal components’ variance values accounts for 98% of the
total, which can be used to substitute for eigenvector in the calculation. In addition, such two principal
component features σpca1 and σpca2 are extracted.

As for the backscattering type information, the corresponding polarimetric characteristics can be
extracted by the Y4R decomposition method which is proposed by Yamguichi in 2005 [53]. On the
basis of the classical Freeman three-component decomposition, the Y4R decomposition method further
considers the helix scattering mechanism, which makes the backscattering types of polarimetric
decomposition closer to the real situation, so that the Y4R method has been widely used for PolSAR
image classification.

Span = |SHH |2 + 2|SHV |2 + |SVV |2 = Ps + Pd + Pv + Pc (5)

Ps = fs

(
1 + |β|2

)
(6)

Pd = fd

(
1 + |α|2

)
(7)
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Pv = fv (8)

Pc = fc (9)

where Ps, Pd, Pv and Pc represents the scattering intensity of surface scattering, double scattering,
volume scattering and helix scattering, respectively, fs, fd, fv and fc are the surface, double-bounce,
volume, helix scattering contributions to |SVV |2, α and β denote the reals.
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RVI extracted from PolSAR data can be used as the canopy vegetation index [54] and it applies
the power of different polarimetric channels to reflect the canopy vegetation characteristics of different
phenological stages. The greater the power, the closer the crop canopy is to the forest canopy.

RVI =
8〈|SHV |2〉

〈|SHH |2〉+ 〈|SVV |2〉+ 2〈|SHV |2〉
(10)
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The characteristics of crop spectral information, spatial texture information and canopy vegetation
index are extracted from the Sentinel-2A optical data. Multi-spectral information is more sensitive
to moisture and the chlorophyll component of crop leaves, which can be used to identify the crop
species. In this paper, four common spectral bands (R, G, B, NIR) are extracted to characterize the
spectral information of crops and their corresponding feature vectors are also transformed by PCA
algorithm. The first two principal components Opbandpca1 and Opbandpca2 are extracted, of which
sum can contribute 99% of the overall variance of eigenvector.

Then the information entropy H of image on the red (R) band is used to characterize the spatial
texture information of crops. The information entropy is an indicator of uncertainty measurement.
The greater the value, the higher the uncertainty [55]. As for the image on single spectral band,
the uncertainty is often determined by the richness of texture. The richer the texture information,
the higher the uncertainty.

At last, the normalized difference vegetation index (NDVI) is calculated from red and near
infrared band images by Equation (11). NDVI is used to characterize the canopy properties of different
crops, especially the changes of canopy density and biomass.

NDVI = (NIR− R)/(NIR + R) (11)

Then the extracted features should be integrated before the SVM classification. In order to
eliminate the effects of different features’ scale, this paper normalizes all these features’ range to (0~1).
As shown in Figure 5, the imaging characteristics between PolSAR data and optical data are obviously
different. The features obtained by such two kinds of data are independent and complementary to
each other.

3.3. SVM Classification

Based on the integrated features, the support vector machine (SVM) method is applied to crop
classification. The SVM classifier is an excellent two-class classification model, which can use the kernel
function to map the multi-dimensional feature sets into higher dimensional space, to construct the
classification plane and distinguish different categories. This method can efficiently get high-precision
classification results with a few training samples. The SVM classifier has been successfully applied in
many aspects, such as land use classification mapping, data mining. The kernel function adopted in
this paper is the radial basis function (RBF), which can solve the linear non-separable problem in SVM
classification by nonlinear mapping and it has only several parameters and low model complexity.
After the SVM classification, the results with the SAR coordinate system will be transformed into the
geographic coordinate system.
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information entropy H extracted from the Sentinel-2A data; (e–k) σpca1, σpca2, RVI, Ps, Pd, Ph and Pv

extracted from the GF-3 PolSAR data.

4. Experimental Results

As shown in Table 4, the overall classification accuracy is 85.27% and the Kappa coefficient is
0.8306. As for the misclassification condition, the accuracy of water, lotus pond and vegetation has
even reached 96% and that of the single-season rice, watermelon greenhouse, bare soil and grassland
also reaches 80%. However, the misclassification rate of two-season rice is even higher than 54%.
This is because the two-season rice has similar spectral characteristics as the single-season rice and
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vegetation. The omission rates of water, watermelon greenhouse and lotus pond are lower than 10%
and that of bare soil and grassland is also lower than 20%. Besides, the omission rates of two kinds of
rice are higher than the above five species, around 25%. While the omission rates of the vegetation are
both over 30%. Although PolSAR can distinguish rice in different growing seasons, the classification
accuracy is low, since there are nearly 1/4 of the two-season rice was misclassified as single-season
rice. This could be resulted from the small number of available data. If the multi-temporal images
are available, such two kinds of rice could be distinguished with the temporal information. And the
omitted vegetation pixels here are mainly classified as the two-season rice and grassland. The reason
is that the vegetation mostly grows in undulated mountains, where the speckle noise is stronger in
PolSAR images and reduce the classification accuracy.

Table 4. Classification accuracy assessment of the integrated dataset.

Pixels Water Rice1 Rice2 Wm Lotus Bare Soil Forest Grass UA (%)

Water 237,449 0 0 0 35 1052 249 377 99.28
Rice1 5 152,273 21,550 9 3014 882 6381 1965 81.83
Rice2 124 44,750 97,382 13 392 1108 41935 13133 48.98
Wm 624 34 3 98,113 68 13364 361 3812 84.30

Lotus 0 104 13 0 179,632 0 270 1790 98.80
Bare soil 2732 591 98 8074 92 113,877 384 3540 88.01

Forest 125 342 2715 0 50 81 106,606 910 96.19
Grass 115 1797 508 463 4785 4363 12642 183,418 88.14

PA (%) 98.46 76.18 79.65 91.98 95.51 84.52 63.14 87.78

Overall Accuracy (%) 85.2745 Kappa coefficient 0.8306

Note: Wm denotes “Watermelon.” The user’s accuracy (UA) indicates the misclassification condition, while the
producer’s accuracy (PA) indicates the omission condition.

5. Discussion

5.1. Comparison with Different Datasets

To validate the proposed full feature integration method, this section compares the results
generated from the integrated data and that from single GF-3 data as well as from the single Sentinel-2A
data (Figure 6). We also assessed the classification accuracies. The evaluated indicators are the rates
of true positive (TP), false negative (FN), true negative (TN) and false positive (FP). These indicators
can fairly evaluate result on each class no matter how many samples are used [56]. We present these
indicators by histograms. The sum of TP’s rate and FN’s rate equals to 1, which can be shown in one
bar of the histogram (Figure 7). And the case is the same for the TN’s rate and FP’s rate (Figure 8).
It can be seen that the overall classification accuracy of the integrated data is the highest, followed by
the single optical data, then the single PolSAR data. The GF-3 PolSAR data alone can distinguish
single-season rice from two-season rice but it will misclassify bare soil, grassland and watermelon
greenhouse mainly with the surface scattering. While the Sentinel-2A data alone performs oppositely
to GF-3 PolSAR data. It shows better classification ability for bare soil, grassland and watermelon
greenhouse, because the spectral information of these three land covers varies greatly. But it cannot
classify the single-season rice and two-season rice as well as the GF-3 data, providing a classification
accuracy of two-season rice of as low as 28%. The proposed integration method takes the advantages
of both two data, so the results have the highest classification accuracy.
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5.2. Comparison with Different Feature Integration Modes

This section aims to validate the advantage of full feature integration proposed by this paper.
Traditional data fusion methods think that both the intensity values of SAR data and the spectral
information of optical data into classification at the same time, leading to data redundancy. But the
intensity of SAR data is different from the spectral information of optical data. The former denotes the
backscattering characteristics, whereas the latter denotes the reflection of sunlight. The classification
results under different feature integration modes will be discussed and the details are shown in Table 5.
In this study, we used three feature integration modes, including (1) GF-3 features (σpca1, σpca2, RVI,
Ps, Pd, Ph and Pv) + Sentinel-2A features (Opbandpca1, Opbandpca2, NDVI and H); (2) GF-3 features
(σpca1, σpca2, RVI, Ps, Pd, Ph and Pv) + Sentinel-2A features (NDVI and H); (3) GF-3 features (RVI, Ps,
Pd, Ph and Pv) + Sentinel-2A features (Opbandpca1, Opbandpca2, NDVI and H). The classification
results are shown in Figure 9 and the accuracy assessments are shown in Figures 10 and 11. It can
be concluded that, the full feature integration method has achieved the highest overall classification
accuracy and larger Kappa coefficient. It is mainly owing to the improvement of the classification
accuracy of vegetation and grassland. And the involvement of more features makes the classification
more accurate and stable. In addition, it can be seen that when the PolSAR features are more involved
(GF-3 (7 bands) + S2A (2 bands)), the classification accuracy of single-season rice and two-season rice
is increased. However, when more optical features are involved (GF-3 (5 bands) + S2A (4 bands)),
the classification accuracy of bare soil and watermelon greenhouse is improved. So, this conclusion is
consistent with that of last section. To sum up, the full feature integration method proposed in this
paper can get a higher classification accuracy.

Table 5. Details on different feature integration modes.

Feature Integration Mode GF-3 Features Sentinel-2A Features

GF-3 (7 bands) + S2A (4 bands) σpca1, σpca2, RVI, Ps, Pd, Ph and Pv. Opbandpca1, Opbandpca2, NDVI and H
GF-3 (7 bands) + S2A (2 bands) σpca1, σpca2, RVI, Ps, Pd, Ph and Pv. NDVI and H
GF-3 (5 bands) + S2A (4 bands) RVI, Ps, Pd, Ph and Pv. Opbandpca1, Opbandpca2, NDVI and H
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5.3. Classification Ability of
⇀
σ

The Wishart supervised classification based on the covariance matrix C3 or the coherency matrix
T3 has be widely used. In this study, we substituted the intensity vector

⇀
σ for covariance matrix to

adapt to the SVM classifier. Input variables of the SVM classifier should be multiple independent
bands. Hoekman has proved that the intensity vector

⇀
σ can represent the full polarimetric target

characteristics by a covariance matrix [1] and
⇀
σ is more suitable to crop classification, because it

can describe the biophysical parameter variations of crops. To clarify this point, we compare three
polarimetric classification methods, including (1) Wishart supervised classification with C3, (2) SVM
classification with

⇀
σ and (3) SVM classification with the first two PCA components of

⇀
σ . The results

are presented in Figure 12. As the figure shows, the SVM classification with
⇀
σ has the highest overall

accuracy and kappa coefficient in all methods. We also calculated the rates of TP, FN, TN and FP and
made a comparison (Figures 13 and 14). The comparison shows that the SVM method with

⇀
σ performs

better than the Wishart supervised method in most land covers but the Wishart method has the best
performance in the watermelon greenhouse and the forest region among these three methods. The crop
classification results of the SVM classification with

⇀
σ has the highest accuracy, verifying Hoekman’s

theory that
⇀
σ is more suitable to describe crops. And for the crops, the first two PCA components of

⇀
σ can achieve similar classification results as the whole

⇀
σ . We can conclude that the intensity vector

and its PCA components can be successfully applied into the polarimetric classification and get better
results than the Wishart supervised classification in most crop cases.
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6. Conclusions 

The GF-3 PolSAR data is sensitive to the change of morphological structure during crop growth, 
whereas the Sentinel-2A optical data can show the change of moisture and chlorophyll content in 
crop leaves well. Integrating such two kinds of data can improve the accuracy of crop classification. 
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solve this problem, we used the Hoekman’s method to transform the covariance matrix to an intensity 
vector. The PCA algorithm was applied to reduce the redundancy of feature sets. Then, the training 
samples were selected to do the SVM classification. The classification accuracy of the proposed 
method is higher than that of single data set method and other two feature integration modes and 
the intensity vector has a better performance than the covariance matrix for crop classification. In 
total, full feature integration method proposed by this paper is suitable for crop classification and can 
effectively improve the classification accuracy. Furthermore, this paper expands the application of 
GF-3 satellite in agriculture, proving the great potential in monitoring crops. 
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6. Conclusions

The GF-3 PolSAR data is sensitive to the change of morphological structure during crop growth,
whereas the Sentinel-2A optical data can show the change of moisture and chlorophyll content in
crop leaves well. Integrating such two kinds of data can improve the accuracy of crop classification.
However, some useful features cannot be used in the classification at the same time. Particularly,
the covariance matrix of PolSAR data is hard to be combined with the spectral bands of optical
data. To solve this problem, we used the Hoekman’s method to transform the covariance matrix to
an intensity vector. The PCA algorithm was applied to reduce the redundancy of feature sets. Then,
the training samples were selected to do the SVM classification. The classification accuracy of the
proposed method is higher than that of single data set method and other two feature integration modes
and the intensity vector has a better performance than the covariance matrix for crop classification.
In total, full feature integration method proposed by this paper is suitable for crop classification and
can effectively improve the classification accuracy. Furthermore, this paper expands the application of
GF-3 satellite in agriculture, proving the great potential in monitoring crops.
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