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Abstract: Yellow rust, a widely known destructive wheat disease, affects wheat quality and causes
large economic losses in wheat production. Hyperspectral remote sensing has shown potential for the
detection of plant disease. This study aimed to analyze the spectral reflectance of the wheat canopy
in the range of 350–1000 nm and to develop optimal spectral indices to detect yellow rust disease
in wheat at different growth stages. The sensitive wavebands of healthy and infected wheat were
located in the range 460–720 nm in the early-mid growth stage (from booting to anthesis), and in the
ranges 568–709 nm and 725–1000 nm in the mid-late growth stage (from filling to milky ripeness),
respectively. All possible three-band combinations over these sensitive wavebands were calculated
as the forms of PRI (Photochemical Reflectance Index) and ARI (Anthocyanin Reflectance Index)
at different growth stages and assessed to determine whether they could be used for estimating
the severity of yellow rust disease. The optimal spectral index for estimating wheat infected by
yellow rust disease was PRI (570, 525, 705) during the early-mid growth stage with R2 of 0.669, and
ARI (860, 790, 750) during the mid-late growth stage with R2 of 0.888. Comparison of the proposed
spectral indices with previously reported vegetation indices were able to satisfactorily discriminate
wheat yellow rust. The classification accuracy for PRI (570, 525, 705) was 80.6% and the kappa
coefficient was 0.61 in early-mid growth stage, and the classification accuracy for ARI (860, 790, 750)
was 91.9% and the kappa coefficient was 0.75 in mid-late growth stage. The classification accuracy of
the two indices reached 84.1% and 93.2% in the early-mid and mid-late growth stages in the validated
dataset, respectively. We conclude that the three-band spectral indices PRI (570, 525, 705) and ARI (860,
790, 750) are optimal for monitoring yellow rust infection in these two growth stages, respectively.
Our method is expected to provide a technical basis for wheat disease detection and prevention in
the early-mid growth stage, and the estimation of yield losses in the mid-late growth stage.

Keywords: yellow rust disease; different growth stages; three-band spectral index; wheat infection;
hyperspectral remote sensing
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1. Introduction

Yellow rust disease, caused by the fungus Puccinia striiformis, is a serious threat to wheat
production and impacts the yield and quality of wheat [1,2]. The disease is known to occur in
more than 60 countries worldwide and is the most important wheat disease in China [3]. In extreme
situations of very susceptible cultivars and under favorable weather conditions, yellow rust can reduce
the yield by 100% [4]. Conventional stress-detection methods usually range from detection by the
naked eye to random monitoring, which is highly subjective, labor intensive, and time consuming.
Even worse, when management and policy decisions are based on imprecise and inaccurate data from
traditional monitoring results to evaluate the damage, it may cause costly mistakes [5]. In precision
agriculture, the timely detection of crop diseases at different growth stages are critical to the effective
management of the economy and agriculture [6].

Advancements of remote-sensing techniques provide opportunities for the non-destructive
detection of plant diseases, especially hyperspectral technology [7]. Hyperspectral analysis is an
ideal tool to capture biophysical variations caused by infestations of crops on account of its abundant
narrow bands and high spectral resolution. These advantageous characteristics have been proven
to enable information about plant growth to be obtained efficiently and to discriminate among
diseases [8–10]. Hyperspectral remote sensing can detect subtle changes in the biophysical and
biochemical characteristics of plants caused by various types of stress [11]. For example, Das et al. [12]
pointed out that the four wavebands of 760 nm, 990 nm, 680 nm, and 540 nm could be used to
significantly distinguish rice infected with bacterial leaf bight disease from healthy rice by using
stepwise discrimination analysis. Mahlein et al. [11] proposed that the sugar beet rust index composed
of spectral information at 570 nm, 513 nm, and 704 nm based on the RELIEF-F algorithm could
distinguish sugar beet rust from other diseases. In previous studies concerned with yellow rust
disease, Moshou et al. [1] found that the wavebands centered at 680 nm, 725 nm and 750 nm were
the most sensitive bands for yellow rust detection. Bravo et al. [13] used a quadratic discriminating
model combined with the sensitive wavebands (at 543 ± 10 nm, 630 ± 10 nm, 750 ± 10 nm, and
861 ± 10 nm) for yellow rust discrimination with the coefficient of determination of 0.96. Although
the spectral reflectance can reflect the physiological status of plants for disease detection based on in
situ hyperspectral analysis, the spectral data also contain information about the canopy structure and
soil background.

Vegetation indices that combine the sensitive bands in a certain mathematical form can enhance
the reflectance sensitivity of plant parameters and reduce the effects of various types of background
interference. These indices can be used to estimate crop yield [14,15], detect variations in the leaf
area index [16,17], biophysical variables [18,19], and identify crop diseases [20,21]. Several spectral
indices drawn from the literature have shown potential for plant disease detection. For instance,
Huang et al. [22] reported that the spectral vegetation index, the photochemical reflectance index (PRI),
was strongly correlated with the yellow rust disease index in wheat. Devadas et al. [4] found that the
anthocyanin reflectance index (ARI) could distinguish wheat infected by yellow rust from healthy
wheat and that affected by other rust diseases (leaf rust and stem rust). Rumpf et al. [23] detected beet
diseases in the earliest stages based on a support vector machine (SVM) and a spectral index. Several
vegetation indices can be used to detect yellow rust in wheat. These results indicated that spectral
reflectance and vegetation indices can be used as a non-destructive remote-sensing technique to detect
different crop pests and diseases. However, the spectral indices they proposed may be only suitable
for several growth stages or even for one stage of the growth period of wheat.

In practice, the characteristics of wheat at different growth stages of post-infection yellow rust
are different. The first symptoms of yellow rust disease are the appearance of yellow spots on the
upper side of wheat leaves. With on-going pathogenesis these spots become yellow and bacteria
spores are formed. These symptoms begin by manifesting themselves in yellow, orange, and then
dark brown colors. The final symptom is dry leaf [4,24]. The disease reduces plant vigor and may
cause it to become withered or die [25]. The canopy growth status changes during the growth period,
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and may result in an inconsistent relationship between the vegetation index and the status of yellow
rust at different growth stages. At present, many researchers assumed the crop population to be a
homogeneous body during the entire growth period; thus, they usually explored the sensitive bands
and constructed a vegetation index for disease discrimination by pooling the observed data from
different growth stages for the entire growth period [26]. The study of yellow rust in wheat during the
entire growth period is attracting less attention. Therefore, finding the optimal vegetation index may
contribute to enhancing the accuracy and stability of monitoring models for wheat affected by yellow
rust at different growth stages.

Our study aimed to detect yellow rust disease in wheat during different growth stages.
The objectives of this study were to: (1) illustrate the response characteristics of hyperspectral
reflectance under yellow rust infection at different growth stages over the spectral range 350–1000 nm;
(2) discuss the sensitivity of spectral indices to discriminate wheat affected by yellow rust at different
growth stages; (3) develop optimal three-band spectral indices for yellow rust discrimination during
different growth stages; (4) evaluate the performance of these new indices. Monitoring yellow rust in
wheat is helpful for guiding crop production, which would facilitate effective precision agricultural
research and management.

2. Materials and Methods

2.1. Experimental Area

Experiment 1 (Exp. 1): The canopy experiments were conducted at Beijing Xiaotangshan
Precision Agriculture Experiment Base, in Changping District, Beijing (40◦10.6′N, 116◦26.3′E) during
the 2002–2003 growing seasons. The soil had an approximate nutrient content of 1.42–1.48% of
organic matter, 0.08–0.10% of total nitrogen, 58.6–68.0 mg/kg of alkali-hydrolysis nitrogen, 20.1–55.4
mg/kg of available phosphorus, and 117.6–129.1 mg/kg of rapidly available potassium. The wheat
cultivars “Jing 411”, “98-100”, and “Xuezao” were selected for their varied resistance to yellow rust,
i.e., “Jing 411” has strong resistance to yellow rust, “98-100” has moderate resistance, and “Xuezao”
is highly susceptible to infection. Seeds were sown in rows on 4 September 2002. The wheat was
inoculated with yellow rust pathogen (3, 9, 12 mg/100 mL spore solution) on 4 April using spores
inoculated to induce different severity of yellow rust disease according to the National Plant Protection
Standards. The wheat area of each different inoculation concentration is about 1.2 ha with an even
constitution of the three cultivars. In the yellow rust experiment, the distance between control and
inoculation plots was approximately 5 m, with the control plots treated with pesticides to prevent
infection. In this study, the different plots were initiated in the same way with 200 kg/ha nitrogen and
450 m3/ha water and thereafter managed under the same conditions.

Experiment 2 (Exp. 2): A series of canopy hyperspectral observations were conducted of the winter
wheat crop at the Langfang Experimental Station, Institute of Plant Protection, Chinese Academy of
Agricultural Sciences (39◦30′42”N, 116◦36′07”E) in Hebei Province, China from April to May 2018.
A winter wheat cultivar, “Mingxian 169”, which is highly susceptible to yellow rust, was used in
the experiment. It was sown on 4 October 2017 and was inoculated with yellow rust pathogen
(9 mg/100 mL) on 12 April by artificial inoculation. The experimental field contained one control
group and two fields were used for experimenting with wheat infected with yellow rust. Each field
occupied an area of approximately 3× 16 m2. Each field had 8 sample plots, and each sample plot with
an area of 1 m2 were selected in the field for canopy spectral measurement. For the control group and
the groups infected by yellow rust, the canopy spectral measurements were repeated 8 and 16 times,
respectively. All groups were prepared similarly when sowing took place (200 kg/ha nitrogen and
450 m3/ha water) and were subsequently managed under the same conditions.
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2.2. Canopy Spectral Measurements

The spectral reflectance of the canopy was collected with an ASD FieldSpec spectrometer
(Analytical Spectral Devices, Boulder, CO, USA). The spectrometer was fitted with a 25◦ field-of-view
fore optic in the spectral range between 350 nm and 2500 nm. The spectral resolution was 3 nm and
10 nm in the 350–1000 nm and 1000–2500 nm ranges, respectively. All canopy spectral measurements
were taken at a height of 1.3 m above the ground. A 40 cm × 40 cm BaSO4 calibration panel was
measured to correct the reflectance. The spectrum of each sample was measured 20 times and then
the mean was used as the reflectance spectrum. All spectral reflectance measurements were collected
between 10:00 and 14:00 (Beijing local time) under cloudless conditions.

In Experiment 1, the spectral measurements were recorded 5 times, starting from 207 days after
sowing (DAS) and ending 239 DAS. This period included the jointing stage (207 DAS), booting stage
(216 DAS), anthesis stage (225 DAS), filling stage (230 DAS), and milky ripeness stage (238 DAS).
In each growth stage of winter wheat, 31 spectral reflectance samples were selected (5 healthy samples
and 26 infected samples) with different severity levels of yellow rust for further study. In Experiment 2,
the canopy spectral reflectance was obtained during the major growth stages consistent with those in
Experiment 1, from the jointing to the milky ripeness stage. For experiment 2, 7 healthy and 15 infected
samples were selected in each growth stage. In particular, the severity of the disease pathogen and the
growth stages were also recorded.

2.3. Assessment of Disease Index

The disease index (DI) was used to describe the severity of crop diseases [2]. In each plot, 40 wheat
plants were randomly selected to measure the incidence of wheat yellow rust. Human error was
eliminated by ensuring that all incidents of yellow rust disease were assessed by the same person under
the guidance and supervision of a professional who majored in plant protection. According to the
National Rules for the Investigation and Forecasting of Crop Diseases (GB/T 15795-1995), the formula
for calculating the DI is as follows [22]:

DI = ∑ x f
n∑ f

× 100 (1)

where x is the value of the incidence level, n is the value of the highest disease severity gradient (n = 8),
and f is the number of leaves for each degree of disease severity.

2.4. Commonly Used Spectral Indices in YR Detection

Spectral indices are widely used for monitoring, analyzing, and mapping temporal and spatial
variation in vegetation [27]. Spectral indices are the basis for many applications of remote sensing in
crop management because they are highly correlated to biophysical and biochemical crop variables [28].
As pigment content provides information on the physiological state of leaves, pigment-specific
vegetation indices may be also useful in detecting the amount of stress caused by fungal diseases.
The efficiency of spectral indices to identify and discriminate between healthy and infected yellow
rust disease can be evaluated by calculating the vegetation indices related to different physiological
parameters (Table 1). This list of 15 indices related to hyperspectral indices was compiled from the
literature and they were further tested for their ability to detect yellow rust infection in this study. These
indices are the Structural Independent Pigment Index (SIPI), Photosynthetic Radiation Index (PRI),
Transformed Chlorophyll Absorption in Reflectance Index (TCARI), Normalized Difference Vegetation
Index (NDVI), Normalized Pigment Chlorophyll Index (NPCI), Plant Senescence Reflectance Index
(PSRI), Physiological Reflectance Index (PhRI), Anthocyanin Reflectance Index (ARI), Modified Simple
Ratio (MSR), Ratio Vegetation Structure Index (RVSI), Modified Chlorophyll Absorption Reflectance
index (MCARI), Yellow Rust Index (YRI), Greenness index (GI), Triangular Vegetation Index (TVI),
and Nitrogen Reflectance Index (NRI).
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Table 1. Published spectral indices tested in this study.

Define Formula Related to Reference

Structural Independent
Pigment Index, SIPI (R800 − R445)/(R800 − R680) Pigment content [4,29]

Photochemical
Reflectance Index, PRI (R570 − R531)/(R570 + R531) Photosynthetic

radiation [30,31]

Transformed
Chlorophyll Absorption

in Reflectance Index,
TCARI

3((R700 − R675) − 0.2(R700 − R500)/(R700/R670)) Chlorophyll a + b
concentration [32]

Normalized difference
vegetation index, NDVI (R830 − R675)/(R830 + R675)

Leaf area index;
photosynthetically

active radiation
(PAR) or biomass

(PAB)

[16]

Normalized Pigment
Chlorophyll Index, NPCI (R680 − R430)/(R680 + R430) Chlorophyll ratio [4]

Plant senescence
reflectance index, PSRI (R680 − R500)/R750

Pigment content; leaf
senescence and

ripening
[17]

Physiological Reflectance
Index, PhRI (R550 − R531)/(R550 + R531) Light use efficiency [30]

Anthocyanin Reflectance
Index, ARI (R550)−1 − (R700)−1 Anthocyanin content [10,33]

Modified Simple Ratio,
MSR (R800/R670 − 1)/sqrt(R800/R670 + 1) Leaf area [34]

Ratio Vegetation
Structure Index, RVSI (R712 + R752)/2) − R732

Internal structure
parameter [35]

Modified Chlorophyll
Absorption Reflectance

index, MCARI
((R701 − R671) − 0.2(R701 − R549))/(R701/R671) Chlorophyll

absorption [36]

Yellow rust index, YRI (R730 − R419)/(R730 + R419) + 0.5R736 Wheat disease [31]

Greenness index, GI R554/R677 Pigment content [37]

Triangular vegetation
index, TVI 0.5(120(R750 − R550) − 200((R670 − R550)) Plant status [38]

Nitrogen reflectance
index, NRI (R570 − R670)/(R570 + R670) Nitrogen status [39]

2.5. Testing the Performance of Vegetation Indices

In this study, linear regression was employed to model the relationship between indices (existing
spectral indices and optimized spectral indices) and yellow rust disease index at different growth
stages and to validate the models. The coefficient of determination (R2) was used to evaluate the
performance of spectral indices.

In addition, the linear discrimination analysis (LDA) model was used for testing and evaluating
the performance of the vegetation indices in terms of detecting yellow rust disease. Linear discriminant
analysis uses the non-parametric K-means clustering method to establish a classification model and has
been widely used in the classification of crop diseases [2,6]. In the model, the actual measured disease
index (DI) was used as samples for training and evaluating the spectral indices at different growth
stages. In consideration of practical application, the disease index of the canopy was quantitatively
classified into two classes, healthy and diseased, for modeling. Leave-one-out cross validation was
applied to verify the classification accuracy, this means that each sample was used as validation
sample in this model, and the other N-1 sample was used as training sample (N is the total number
of samples), Finally, N models will be obtained, and the average of the classification accuracy of the
validation samples of the N models was used as a performance criterion to the LDA model, specifically,
the overall accuracy, producer’s accuracy, user’s accuracy, and kappa coefficient were used to evaluate
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the LDA model from different aspects. The LDA model was implemented using SPSS 20.0 software
(IBM Corporation, New York, NY, USA).

3. Results

3.1. Canopy Spectral Reflectance of Wheat Yellow Rust Disease at Different Growth Stages

The spectral response properties of the wheat canopy to fungi stress were very important
for discriminating yellow rust infection levels in precise disease management using hyperspectral
remote-sensing data. The average canopy reflectance spectra of healthy and yellow rust infected at
five growth stages are shown in Figure 1. Healthy green plants have high absorption in the visible
region except in the green band, whereas in the infrared region the reflectance was high [40]. During
these periods, the shape of the reflectance curve of the healthy wheat canopy and that infected by
yellow rust was basically similar in that it remained constant with strong absorption by photosynthetic
pigments in the visible region and exhibited a high reflectance plateau in the near infrared region
(Figure 1a,b). Generally, with the increasing growth stage, the reflectance of trend to increase in the
visible region and initially increased then decreased in the near-infrared region (Figure 1a) [41].

Compared with the healthy wheat, the spectral reflectance of the yellow rust infected wheat
was increased in visible light, while it decreased in the near-infrared region at the same growth stage
(Figure 1a,b). The differences of spectral reflectance magnitude between healthy and infected wheat
were not obvious in the 207 DAS and 216 DAS during jointing stage and heading stage, but it was
distinct in the late stages when sowing days (Figure 1c). During 225 DAS, 230 DAS, and 238 DAS,
yellow rust-infected wheat had a higher visible reflectance from 500 nm to 700 nm than healthy wheat,
and the reflectance in the near infrared region was lower than healthy wheat. From the perspective of
growth period, the spectral differences showed a stronger response in 520–710 nm and 730–1000 nm
at 238 DAS than 207 DAS for both healthy and yellow rust-diseased samples (Figure 1c), especially
in the red region and near infrared region. This change might relate to the content of pigments in
mesophyll tissue and the senescence process of leaves [42]. The dynamic change patterns of canopy
spectral reflectance under different growth stages of winter wheat provided a basis for analyzing and
construction quantitative relation of DI to canopy spectral reflectance characteristics in wheat.
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Figure 1. Average reflectance curves of (a) healthy wheat and (b) wheat infected by yellow rust;
(c) spectral ratio of healthy and yellow rust-infected wheat at five stages starting on the day of sowing
until 207, 216, 225, 230, and 238 days after sowing.

3.2. Sensitive Regions to Discrimination of Wheat Yellow Rust in Different Growth Stages

An independent t-test was applied to examine the statistical significance of healthy and infected
samples in the range 350–1000 nm of the five growth stages. The spectral bands that were significant
in the response (p < 0.001) are shown in Figure 2. The correlation analysis of the growth stage until
207 DAS was not obvious, because the symptoms of yellow rust disease had not yet emerged during
this period (corresponding to the jointing stage). The green, red, and red-edge wavebands in the visible
region are sensitive to wheat yellow rust discrimination in the four other growth stages; in addition,
the near infrared region wavebands were also sensitive to disease discrimination in the periods
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230 DAS and 238 DAS. The sensitive bands were selected by conducting correlation analysis between
the spectral reflectance and yellow rust disease index in these four growth stages. The sensitive bands
were in the regions 694–711 nm and 519–720 nm in the periods 216 DAS (corresponding to the booting
stage) and 225 DAS (corresponding to the anthesis stage), respectively. The bands sensitive to yellow
rust discrimination were located in the regions 554–717 nm and 772–936 nm for the period 230 DAS
(corresponding to the filling stage), whereas for 238 DAS (corresponding to the milky ripeness stage)
they were located in 594–701 nm and 731–1000 nm. These results indicated that there were differences
among the different growth stages in terms of spectral bands for yellow rust monitoring, although
some of the bands were common to more than one growth stage.
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Figure 2. Wavelengths of correlation between canopy reflectance and yellow rust disease index at a
0.999 confidence level for four different growth stages.

The sensitive regions of 216 DAS and 225 DAS were located in the visible region, whereas those
of 230 DAS and 238 DAS were located in the visible and near infrared regions. In practice, the growth
of healthy wheat was terminated by restricting the supply of nutrient substances in late growth period.
This leads to similarity of the spectral signatures between healthy wheat at the late growth stage
and infected wheat at the early growth stage. The amount of spectral information relating to disease
infection by growth state was reduced by evaluating the four different growing stages as two main
stages, namely the early-mid stage, which includes the jointing and booting stages (216 DAS and
225 DAS), and the mid-late stage, which includes the filling and milky ripeness stages (230 DAS and
238 DAS).

To undertake an initial first pass on the wavebands, correlation analysis was used to assess
whether significant relationships existed between the mean canopy spectra and the yellow rust disease
index of wheat. In the early-mid stage, the green, red, and red-edge region (460–720 nm) showed
high correlation, especially in the red-edge and green regions. In the mid-late stage, part of the green,
red, and red-edge region and the near infrared bands (568–709 nm and 727–1000 nm) showed a
high correlation with wheat infected by yellow rust, especially in red-edge and near infrared regions
(Figure 3). This is attributed to the time lag between rust infection and internal structural damage
during the early stage of yellow rust infection [4], causing the near infrared region to be insensitive
in this stage but sensitive in the mid-late growth stage. Table 2 summarizes the information about
the disease index (DI) of wheat yellow rust under different growth stages in different experiments
according to Section 2.3.
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Table 2. The range value of disease index (DI) and corresponding sample size for different severity
levels of disease in different growth stages and different experiments.

Experiments DI Range
Number of Samples in Different Growth Stages

Early-Mid Growth Stage Mid-Late Growth Stage

Experiment 1 (2003)
DI: <5% 21 10

DI: 5–30% 29 3

DI: >30% 12 48

Experiment 2 (2018)
DI: <5% 22 14

DI: 5–30% 17 1

DI: >30% 5 29

3.3. Response of Existing Spectral Indices to Yellow Rust at Different Growth Stages

Spectral indices have been developed to estimate different plant parameters using a few
wavelengths. Table 3 summarizes the responses of all spectral indices to yellow rust disease at
different growth stages and in all growth stages. We found that these selected 15 indices manifested
excellent potential for discriminating yellow rust disease throughout the growth stage (p < 0.001),
except for TCARI (p < 0.01). However, not all spectral indices selected were all able to significantly
discriminate wheat yellow rust in each growth stages. The response of the vegetation indices to yellow
rust at different growth stages differs from that of all growth stages; for example, TCARI, PhRI, RVSI,
and MCARI are sensitive to yellow rust discrimination and are insensitive to the mid-late growth stage,
and YRI showed a significant response in the mid-late growth stage but is insensitive to the early-mid
growth stage. Of these indices, PRI showed the highest correlation of determination with R2 = 0.65
at the early-mid growth stage, and ARI showed good relationships with yellow rust disease with
R2 = 0.81 at the mid-late growth stage. The response of the same index in different growth stages to
yellow rust disease is different and is mainly affected by the mechanism whereby vegetation becomes
disease-infected [4]. At all growth stages, the two indices ARI and PRI showed higher coefficients
of determination (R2 = 0.85 and 0.83, respectively). This shows that ARI and PRI can effectively
identify wheat yellow rust disease, which is consistent with the research of Devadas et al. [10] and
Huang et al. [22]. Among these indices, SIPI, PRI, NDVI, PSRI, ARI, MSR, GI, and NRI showed
excellent potential for discriminating yellow rust disease in different growth stages (p < 0.001) and
they were used for subsequent study.
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Table 3. Response of spectral indices and yellow rust disease index at different growth stages.

Spectral Indices
Response to Yellow Rust at Different Growth Stages

Early-Mid Growth Stage Mid-Late Growth Stage All Growth Stage

SIPI 0.52 *** 0.60 *** 0.67 ***
PRI 0.65 *** 0.78 *** 0.83 ***

TCARI 0.30 *** 0.005 0.07 *
NDVI 0.40 *** 0.62 *** 0.72 ***
NPCI 0.52 *** 0.79 ** 0.80 ***
PSRI 0.53 *** 0.68 *** 0.74 ***
PhRI 0.48 *** 0.07 0.19 ***
ARI 0.50 *** 0.81 *** 0.85 ***
MSR 0.36 *** 0.68 *** 0.73 ***
RVSI 0.42 *** 0.05 0.40 ***

MCARI 0.58 *** 0.06 0.29 ***
YRI 0.001 0.36 *** 0.47 ***
GI 0.29 *** 0.71 *** 0.67 ***

TVI 0.10 ** 0.54 *** 0.64 ***
NRI 0.27 *** 0.65 *** 0.66 ***

* Indicates the correlation is significant at the 0.950 confidence level. ** Indicates the correlation is significant at the
0.990 confidence level. *** Indicates the correlation is significant at the 0.999 confidence level.

3.4. Construction of the Vegetation Index

Sensitive bands containing mainly spectral information of crop variables are the foundation and
precondition for constructing a spectral index [41]. It is known from Section 3.2 that in different
growth stages, the spectral regions that are sensitive to wheat affected by yellow rust are different,
with the sensitive bands occurring across a wide region. However, PRI is composed of two green
bands, and ARI is composed of green and red-edge bands, and are the best vegetation spectral indices
for monitoring wheat diseases. Inspired by this information, we attempted to propose indices that
combine three-band indices in the form of PRI and ARI in the wavelength ranges that are sensitive to
wheat with yellow rust disease. The new three-band indices are expressed as Equations (2) and (3).

PRI(λ1, λ2, λ3) =
Rλ1 − Rλ2

Rλ1 + Rλ3
(2)

ARI(λ1, λ2, λ3) =
1

Rλ1 − Rλ2
− 1

Rλ2 − Rλ3
(3)

where Rλ1, Rλ2, and Rλ3 are the spectral reflectance of random wavelengths from the sensitive bands
in Section 3.2 at different growth stages, and λ1 6= λ2 6= λ3.

These indices were designated using all possible band combinations available for the sensitive
wavelength ranges. A large number of indices provide many opportunities to study the changes in
the biophysical and biochemical characteristics of a crop subjected to stress. However, hyperspectral
narrowband data offer high correlation between adjacent bands, and using all the bands would only
increase the computational complexity without adding additional information. In addition, the best
information is contained in only a few selected bands and the remainder becomes redundant [43].
According to studies by Thenkabail et al. [43], maintaining the narrowband width at 3 nm achieves
optimal results in the quantitative modeling of agricultural crops. Therefore, to enable us to select
the optimal index for detecting yellow rust, combinations of all possible spectral indices in both of
the above forms with a bandwidth of 3 nm were proposed for subsequent analysis of different stages.
In this study, the yellow rust disease index was set as the independent variable and all possible spectral
indices as the dependent variable. Then, quantitative regression analysis was performed to investigate
the relationship between the yellow rust disease index and combinations of all the bands of the new
three-band indices in different growth stages. The coefficients of determination (R2) were calculated
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and adopted as the comprehensive index to evaluate the ability of spectral indices to invert wheat
yellow rust severity. Figure 4 shows three-dimensional slice maps of the R2 values for estimation of
the yellow rust disease index in different growth stages with the two types of proposed three-band
spectral indices, respectively. The x-, y-, and z-axes represent the wavelength regions that are sensitive
to the discrimination of yellow rust disease. The aforementioned procedures were implemented by
self-programming using MATLAB software.

Sensors 2018, 18, x FOR PEER REVIEW  10 of 20 

 

investigate the relationship between the yellow rust disease index and combinations of all the bands 
of the new three-band indices in different growth stages. The coefficients of determination (R2) were 
calculated and adopted as the comprehensive index to evaluate the ability of spectral indices to invert 
wheat yellow rust severity. Figure 4 shows three-dimensional slice maps of the R2 values for 
estimation of the yellow rust disease index in different growth stages with the two types of proposed 
three-band spectral indices, respectively. The x-, y-, and z-axes represent the wavelength regions that 
are sensitive to the discrimination of yellow rust disease. The aforementioned procedures were 
implemented by self-programming using MATLAB software. 

 
Figure 4. Three-dimensional slice maps of the correlation coefficients (R2) for the relationships 
between the yellow rust disease index and the new indices calculated from all possible three-band 
combinations at 3 nm band sampling intervals from the wavelengths sensitive in the different growth 
stages. (a) and (b) R2 of PRI (λ1, λ2, λ3) (Photochemical Reflectance Index) at the early-mid and mid-
late growth stages, respectively; (c) and (d) R2 of ARI (λ1, λ2, λ3) (Anthocyanin Reflectance Index) at 
the early-mid and mid-late growth stages, respectively; λ1, λ2, and λ3 are the wavelengths sensitive 
to yellow rust discrimination. 

According to the correlation coefficient (R2) of all possible indices and the yellow rust disease index, 
the maximum value of PRI (λ1, λ2, λ3) (R2 = 0.672) was higher than that of ARI (λ1, λ2, λ3) (R2 = 0.651) in 
the early-mid growth stages, whereas the maximum value of PRI (λ1, λ2, λ3) (R2 = 0.828) was lower 
than that of ARI (λ1, λ2, λ3) (R2 = 0.889) in the mid-late growth stages in Figure 4. In this study, the 
three-band spectral indices with a large correlation coefficient were selected for subsequent research 
on the identification of wheat affected by yellow rust disease in the same growth stage. Therefore, 
the optimal vegetation index in the early-mid growth stage is the combination of the three bands of 
PRI (λ1, λ2, λ3), which correspond to the maximum correlation coefficient, and the best index is the 
three-band spectral index of ARI (λ1, λ2, λ3) for the mid-late growth stage.  

In the early-mid growth stage, all three wavelengths of the three-band optimal PRI (λ1, λ2, λ3) 
of the index exploited the green and red-edge bands. In the mid-late growth stage, all wavelengths 
of the three-band optimal ARI (λ1, λ2, λ3) of the index consisted of the red-edge and near infrared 
bands. The three-band optimized indices composed of the central spectral bands in the zones with 
the highest R2 were selected [44]. Therefore, the bands of 570 nm, 525 nm, and 705 nm were selected 

Figure 4. Three-dimensional slice maps of the correlation coefficients (R2) for the relationships between
the yellow rust disease index and the new indices calculated from all possible three-band combinations
at 3 nm band sampling intervals from the wavelengths sensitive in the different growth stages. (a) and
(b) R2 of PRI (λ1, λ2, λ3) (Photochemical Reflectance Index) at the early-mid and mid-late growth
stages, respectively; (c) and (d) R2 of ARI (λ1, λ2, λ3) (Anthocyanin Reflectance Index) at the early-mid
and mid-late growth stages, respectively; λ1, λ2, and λ3 are the wavelengths sensitive to yellow
rust discrimination.

According to the correlation coefficient (R2) of all possible indices and the yellow rust disease
index, the maximum value of PRI (λ1, λ2, λ3) (R2 = 0.672) was higher than that of ARI (λ1, λ2, λ3)
(R2 = 0.651) in the early-mid growth stages, whereas the maximum value of PRI (λ1, λ2, λ3) (R2 = 0.828)
was lower than that of ARI (λ1, λ2, λ3) (R2 = 0.889) in the mid-late growth stages in Figure 4. In this
study, the three-band spectral indices with a large correlation coefficient were selected for subsequent
research on the identification of wheat affected by yellow rust disease in the same growth stage.
Therefore, the optimal vegetation index in the early-mid growth stage is the combination of the three
bands of PRI (λ1, λ2, λ3), which correspond to the maximum correlation coefficient, and the best index
is the three-band spectral index of ARI (λ1, λ2, λ3) for the mid-late growth stage.

In the early-mid growth stage, all three wavelengths of the three-band optimal PRI (λ1, λ2, λ3)
of the index exploited the green and red-edge bands. In the mid-late growth stage, all wavelengths
of the three-band optimal ARI (λ1, λ2, λ3) of the index consisted of the red-edge and near infrared
bands. The three-band optimized indices composed of the central spectral bands in the zones with
the highest R2 were selected [44]. Therefore, the bands of 570 nm, 525 nm, and 705 nm were selected
in the early-mid growth stage, and the bands of 860 nm, 790 nm, and 750 nm were selected in the
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mid-late growth stage. Finally, the three-band indices of PRI (570, 525, 700) and ARI (860, 790, 750)
are proposed as the optimal indices for the discrimination of wheat yellow rust in the early-mid and
mid-late growth stages, respectively.

3.5. Performance of New Spectral Indices for the Two Main Growth Stages

3.5.1. Comparison of the Relationship Between the Yellow Rust Disease Index and Selected
Spectral Indices

The best performing published spectral indices for yellow rust monitoring in previous studies
(Section 3.2) were tested against the new indices proposed in this study. Figure 5 shows scatter plots
of the relationship between the severity of yellow rust and the new indices and commonly used
vegetation indices for the different growth stages. In this study, the PRI (570, 525, 705) was linearly
related to the yellow rust disease index in the early-mid growth stage and produced the highest R2

value of 0.669, which is higher than that of the best-performing published index PRI (R2 = 0.65) and
ARI (R2 = 0.50). The coefficient of determination of the linear regression model for ARI (860, 790, 750)
and the yellow rust disease index is 0.89 in the mid-late growth stage, which is 0.11 and 0.08 higher
than PRI and ARI, respectively. This suggested that PRI (570, 525, 705) and ARI (860, 790, 750) greatly
improve the accuracy of estimation of the yellow rust disease index of wheat, which is highly sensitive
for the early-mid and mid-late growth stages of the canopy, respectively.
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3.5.2. Ability of New Spectral Indices to Discriminate Yellow Rust Disease at Different Growth Stages

In the actual analysis, for a disease index less than 0.05, the canopy spectrum of healthy and
infected samples is similar. Therefore, samples of which the DI is less than 0.05 were considered to
be healthy samples, and the differentiation between healthy wheat and that infected by yellow rust
was used to assess and compare the effectiveness of the two new indices for different growth stages.
The ability of PRI (570, 525, 705) and ARI (860, 790, 750) to discriminate between healthy and infected
wheat at different growth stages is summarized in Table 4 based on the linear discrimination analysis
(LDA) model. The overall classification accuracy and kappa coefficient of PRI (570, 525, 705) was 80.6%
and 0.61 for the early-mid growth stage. In the mid-late growth stage, these values were 91.9% and
0.75 for ARI (860, 790, 750).

Table 4. Overall results of the discriminant model based on the new indices for identifying healthy
wheat and that infected by yellow rust for the different growth stages.

Early-Mid Growth Stage

PRI (570, 525, 705)

Healthy Yellow rust U (%) OAA (%) Kappa

Healthy 20 11 64.5 80.6 0.61

Yellow rust 1 30 96.8

P (%) 95.2 73.2

Mid-Late Growth Stage

ARI (860, 790, 750)

Healthy Yellow rust U (%) OAA (%) Kappa

Healthy 10 5 66.7 91.9 0.75

Yellow rust 0 47 100.0

P (%) 100.0 90.4

Note: P = producer’s accuracy, U = user’s accuracy, OAA = overall accuracy.

The linear discrimination analysis (LDA) model [45] was used to further test the two new spectral
indices that were developed using sensitive band combinations along with other common spectral
indices for crop disease stress. These existing indices, which were obtained from the literature,
were selected for their predictability of the severity of yellow rust in plants sampled across the
different growth stages (Table 5). In the early-mid growth stage, PRI (570, 525, 705) achieved the best
classification accuracy (80.6%) for the discrimination between healthy and wheat infected by yellow
rust, followed by PRI and ARI with an overall classification accuracy of 79.0%. In the mid-late growth
stage, ARI (860, 790, 750) achieved the best classification accuracy (91.9%) for the discrimination
between healthy and wheat infected by yellow rust, followed by PRI and NPCI with an overall
classification accuracy of 87.5% and 79.0%. Both the PRI (570, 525, 705) and ARI (860, 790, 750) have
excellent performance in monitoring yellow rust in wheat compared with the existing spectral indices
for the early-mid and mid-late growth stages, respectively. The model based on PRI (570, 525, 705)
and ARI (860, 790, 750) significantly increased the classification accuracy of healthy wheat and that
infected by yellow rust at the early-mid and mid-late growth stages with the canopy, respectively.

3.6. Testing New Spectral Indices on a Different Database

To further validate the ability of PRI (570, 525, 705) and ARI (860, 790, 750) to detect yellow
rust disease, independent data were used in Experiment 2. Scatter plots of the relationship between
the severity of yellow rust disease and the best-performing indices of PRI (570, 525, 705) and ARI
(860, 790, 750) are shown in Figure 6 for the different growth stages. The PRI (570, 525, 705) showed an
R2 value of 0.89 in the early-mid growth stage, and ARI (860, 790, 750) showed an R2 value of 0.92
in the mid-late growth stage, respectively, which generated a higher coefficient than PRI and ARI in
the corresponding growth stage. This indicates that the regression model with PRI (570, 525, 705) and
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ARI (860, 790, 750) has the apparently stability to estimate the severity of yellow rust disease in the
early-mid and mid-late growth stages, respectively.

Table 5. Comparison of the ability of PRI (570, 525, 705), ARI (860, 790, 750), and common indices to
discriminate between healthy wheat and wheat infected by yellow rust at different growth stages.

Index

Early-Mid Growth Stage
(216 DAS, 225 DAS)

Mid-Late Growth Stage
(230 DAS, 238 DAS)

Overall
Classification
Accuracy (%)

Recall Overall
Classification
Accuracy (%)

Recall

Healthy
(%)

Yellow
Rust (%)

Healthy
(%)

Yellow
Rust (%)

PRI (570, 525, 705) 80.6 95.2 73.2 / / /
ARI (865, 790, 750) / / / 91.9 100.0 90.4

PRI 79.0 90.5 73.2 87.5 100.0 84.6
ARI 79.0 81.0 78.0 77.4 100.0 73.1
SIPI 77.4 81.0 75.6 58.1 100.0 50.0

NDVI 77.4 76.2 78.0 79.0 100.0 75.0
GI 74.2 66.7 78.0 69.4 100.0 63.5

MSR 71.0 71.4 70.7 71.0 80.0 69.2
PSRI 77.4 81.0 75.6 77.4 100.0 73.1
NRI 69.4 76.2 65.9 64.5 100 57.7
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Table 6 shows the ability of PRI (570, 525, 705) and ARI (860, 790, 750) to discriminate between
healthy wheat and wheat infected by yellow rust. The PRI (570, 525, 705) showed a higher classification
accuracy of wheat infected by yellow rust with an overall classification accuracy of 84.1% compared
with the existing spectral indices for the early-mid growth stage, i.e., 2.3% and 4.6% higher than PRI
and ARI, respectively. For the mid-late growth stage, ARI (860, 790, 750) achieved the best classification
accuracy (up to 93.2%) for discriminating between healthy wheat and that infected by yellow rust,
with the classification accuracy of healthy wheat being as high as 100.0% and that of wheat infected by
yellow rust reaching 90.0%, which are higher than the results obtained for existing spectral indices.
Consequently, the new indices for yellow rust monitoring were tested with independent data and
the validation indicated that the indices performed well for experimental data from different years,
wheat cultivars, and sites. Then, PRI (570, 525, 705) and ARI (860, 790, 750) performed reliably
in terms of detecting wheat infected by yellow rust disease in the early-mid and mid-late growth
stages, respectively.

Table 6. Comparison of the ability of PRI (570, 525, 705), ARI (860, 790, 750), and common spectral
indices to discriminate between healthy wheat and wheat infected by yellow rust for data from
different databases.

Index

Early-Mid Growth Stage
(216 DAS, 225 DAS)

Mid-Late Growth Stage
(230 DAS, 238 DAS)

Overall
Classification
Accuracy (%)

Recall Overall
Classification
Accuracy (%)

Recall

Healthy
(%)

Yellow
Rust (%)

Healthy
(%)

Yellow
Rust (%)

PRI (700,520,575) 84.1 100 72.0 / / /
ARI (865,790,750) / / / 93.2 100.0 90.0

PRI 81.8 100 68.0 90.9 92.9 90.0
ARI 79.5 100 64.0 90.9 100 86.7
SIPI 72.7 100 52.0 72.7 100 60.0

NDVI 77.3 100 60.0 88.6 92.9 86.7
GI 72.7 89.5 60.0 90.9 100 86.7

MSR 70.5 84.2 60.0 84.1 92.9 80.0
PSRI 72.7 100 52.0 81.8 100 73.3
NRI 70.5 89.5 56.0 90.9 100 86.7

4. Discussion

Monitoring crop disease throughout all the growing stages provides a favorable basis for guiding
the precise management of agriculture by guiding the site-specific application of fungicide for disease
prevention in the early growth stage, as well as assess the yield loss in the later stage [46,47]. The most
obvious symptoms of winter wheat infected with stripe rust were green fading and the deformation of
leaf tissue, which change the morphological and physiological parameters such as biomass, chlorophyll
level, and water content, and also cause changes in their corresponding spectra [21,48]. The difference
in the spectral response of infected and healthy wheat is the basis of optical diagnostics for crop diseases.
In Figure 2, the sensitive wavelength regions that enable yellow rust disease to be discriminated differ
for different growth stages. At the early stage of infection, yellow rust funguses tend to reproduce
in large quantities, and the physiological and biochemical characteristics of infected plants are not
obvious [8]. Thereby, the sensitive wavelength range of yellow rust discrimination in the booting stage
is located in the region 694–711 nm. As the disease develops, disease pathogens can induce changes
in the biophysical and biochemical parameters of plants, such as variations of several pigments,
water content, and canopy structure [47]. In addition, leaf color changes due to pustules or lesions
cause the physiological and biochemical characteristics of plants to change under the influence of
diseases [4,49], which in turn changes the response of a series of spectral features. Furthermore, the
sensitive wavelength range of the filling and milky ripeness stages are located in the visible and near
infrared regions. This is because of the time lag between rust infection and the breakdown of the



Sensors 2019, 19, 35 15 of 19

internal leaf structure in the early-mid growth stage of yellow rust infection research. Infected wheat
in the early-mid stage is not sensitive to near infrared region, contrary to the mid-late stage [4].

According to previous studies related to the remotely-sensed detection of wheat infected by yellow
rust disease, we found that ARI and PRI were reported as efficiently vegetation indices for yellow rust
disease monitoring at the canopy scale [4,22], which was consistent with our results. It should be noted
that PRI was used to track changes in the photosynthetic efficiency, which is the normalized form of the
reflectance of 570 nm and 531 nm [30]. Based on the form of PRI, by combining all three possible bands
over the sensitive wavelengths, we were able to select the three bands of 570 nm, 525 nm and 705 nm
to construct the spectral index PRI (570, 525, 705) with sensitivity to the discrimination of yellow rust
disease in the early-mid growth stage. The bands 570 nm and 525 nm lie in the green region. Wheat
is infected by yellow rust disease, in which case pathogens interfere with their photosynthesis by
affecting the chloroplasts and cause their degeneration. This induces strong spectral responses, which
are closely linked to the green band in the visible region [21]. According to Xue et al. [50], the band
centered at 526 nm is often the result of strong absorption by plant chlorophyll and carotenoids for
photosynthetic production, and can be considered as representative of green plant photosynthesis.
The band at 570 nm appears in both the three-band and two-band spectral indices of PRI. Wavelengths
from the green bands were also used for discriminating wheat diseases [22]. Thus, these bands are
critical for the discrimination of crop infected by disease. The band at 705 nm is located in the red-edge
region and is an indicator of plant stress [24]. A similar result was reported by Moshou et al. [1], where
the reflectance of the band centered at 705 nm is sensitive to the detection of wheat infected by yellow
rust. In this study, the accuracy of the model (80.6%) for PRI (570, 525, 705), which is 1.6% higher than
that of the best-performing published index PRI, suggested that PRI (570, 525, 705) is highly sensitive
for detecting yellow rust disease in the early-mid growth stage (Table 5).

The ARI (860, 790, 750) was constructed by the wavebands of 860 nm, 790 nm, and 750 nm in
the form of ARI, which offered excellent detection of wheat infected by yellow rust disease in the
mid-late growth stage. In the mid growth stage, the rust spores cover the wheat leaves when the
disease is at its peak. This causes the leaves to roll up and rupture the foliar epidermis. The pathogenic
infection changes the canopy density and leaf area, and the near infrared region is a sensitive indicator
for changes in the canopy structure [51,52]. The bands at 860 nm and 790 nm, located in the near
infrared region, can be used to predict the potential differences in photosynthesis and changes in the
canopy structure [50]. In addition, according to Feng et al. [21], spectral wavebands in the red-edge
region (700–750 nm) are regarded as useful parameters to indicate the status of vegetation nutrition,
growth, moisture, and the leaf area. The band at 750 nm is located in the red-edge region and is
sensitive to discriminate yellow rust disease in the mid-late growth stage. This was in agreement with
research using the wavebands at approximately 750 ± 10 nm and 861 ± 10 nm that were also used by
Bravo et al. [13] to discriminate wheat infected by yellow rust from healthy wheat. It was concluded
that red-edge wavelengths should be useful in reflectance studies of crop disease throughout out the
season. The results of this study agree with those reported by Yu et al. [53], who pointed out that
the hyperspectral narrowband of the red-edge in the near infrared region was identified as effective
bands for disease discrimination in vegetation. In this study, the accuracy of the model (R2 = 0.888)
for ARI (860, 790, 750), which is 0.075 higher than that of the best-performing published index ARI,
suggested that ARI (860, 790, 750) is highly sensitive for estimating the severity of yellow rust in the
mid-late growth stage (Figure 5).

In this study, we explored the ability of three-band vegetation indices to discriminate wheat
infected by yellow rust in different growth stages according to the best-performing form of the spectral
vegetation index. The PRI (570, 525, 705) enriches the red-edge information of a crop under disease
stress compared with PRI. This is in accordance with the idea that the red-edge wavelength band is
the most sensitive to differences between infected and healthy wheat. Moreover, ARI (860, 790, 750)
not only takes into account the red-edge information, but also the influence of structural changes in
the canopy because of vegetation infection disease in the mid-late growth stage. The coefficient of
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determination of PRI (570, 525, 705) is 0.669 for estimating yellow rust disease in the early-mid growth
stage. This is lower than for ARI (860, 790, 750) in the mid-late growth stage (R2 = 0.888) in Figure 5.
During different growth stages, it remains difficult to estimate disease severity during the early growth
period, which is due to the underdevelopment of the disease and the resulting spectral similarity
between wheat infected with yellow rust and healthy wheat. However, in the mid-late stage, yellow
rust disease could be distinguished more easily than in the early-mid stages, and the classification
accuracy is up to 91.9% in Table 4. These results are consistent with the study of Sanakran et al. [47]
who indicated that the higher the visible symptoms, the more accurate the disease detection. Based
on these results, the indices of more stable structures can be explored for their ability to discriminate
wheat yellow rust disease in future research, such as geometric forms and the area form. Furthermore,
the canopy reflectance of healthy and infected wheat at different growth stages and under different
degrees of disease severity were collected using a hand-held hyperspectrometer in the spectral range of
350–1000 nm that was used in this study. In the visible wavelength range (400–700 nm), changes in the
leaf pigment can be captured, whereas the near infrared region (700–1000 nm) is related to the status
of the cell structure [54]. However, changes in the plant water content are extended to the shortwave
infrared region (1300–2500 nm), a spectral range that will also be considered in future research for the
detection of wheat infected by yellow rust disease.

5. Conclusions

The timely monitoring of wheat infected by yellow rust disease is critical for agricultural
management of the growth stage. Based on the growth status of wheat and the wavelength regions that
are sensitive to wheat infected by yellow rust in all growth stages, we divided the entire growth stage
into two main stages, i.e., the early-mid growth stage (the jointing and booting stages) and the mid-late
growth stage (the filling and milky ripeness stages). The wavebands sensitive to the discrimination of
wheat infected by yellow rust are located in the visible region for the early-mid growth stage, and in
both the visible and near infrared regions for the mid-late growth stage, respectively. Two three-band
spectral indices, PRI (570, 525, 705) for the early-mid stage and ARI (860, 790, 750) for the mid-late
growth stage, were recommended as the best spectral indices for monitoring yellow rust disease in
wheat. The PRI (570, 525, 705) can more effectively estimate the severity of yellow rust disease with an
R2 of 0.669, and its classification accuracy of healthy and yellow rust infected wheat reached 80.6%
during the early-mid growth stage. The ARI (860, 790, 750) estimated the severity of yellow rust
disease during the mid-late growth stage with higher precision (R2 = 0.888), and the classification
accuracy of healthy and yellow rust infected wheat reached 91.9%. Furthermore, the two novel spectral
indices for the discrimination of yellow rust infection proved accurate for different wheat varieties and
environmental conditions in different growth stages. Nevertheless, additional studies are needed to
confirm the universality of the two new indices for different wheat cultivars and fields. The timely
discrimination of yellow rust disease in wheat is critical for maximizing yield and minimizing adverse
environmental impacts, and to provide data for the local agricultural insurance services. Hence, in the
future, we will consider applying the indices to monitoring wheat infected by yellow rust disease for
different disease severities, rather than simply identifying healthy and infected wheat. Subsequently,
the indices could be applied to hyperspectral airborne or space-borne imagery for monitoring wheat
infected by yellow rust disease in larger field regions in future research.
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