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Abstract: The safety monitoring and tracking of aircraft is becoming more and more important.
Under aerodynamic loading, the aircraft wing will produce large bending and torsional deformation,
which seriously affects the safety of aircraft. The variation of load on the aircraft wing directly affects
the ground observation performance of the aircraft baseline. To compensate for baseline deformations
caused by wing deformations, it is necessary to accurately obtain the deformation of the wing shape.
The traditional aircraft wing shape measurement methods cannot meet the requirements of small size,
light weight, low cost, anti-electromagnetic interference, and adapting to complex environment at the
same time, the fiber optic sensing technology for aircraft wing shape measurement has been gradually
proved to be a real time and online dynamic measurement method with many excellent characteristics.
The principle technical characteristics and bonding technology of fiber Bragg grating sensors (FBGs) are
reviewed in this paper. The advantages and disadvantages of other measurement methods are compared
and analyzed and the application status of FBG sensing technology for aircraft wing shape measurement
is emphatically analyzed. Finally, comprehensive suggestions for improving the accuracy of aircraft wing
shape measurement based on FBG sensing technology is put forward.
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1. Introduction

The USA is the birthplace of aircraft. In recent decades, the USA aircraft research and development
technology has been leading the world and different aircraft used in various fields have been developed.
The National Aeronautics and Space Administration (NASA) of the USA and aviation environment
company jointly developed a solar powered UAV named “Helios”. As shown in Figure 1, its main
function is to verify the feasibility of the long time flight of the solar powered aircraft. However, in 2003,
the Helios suddenly broke up in the air during a test flight to validate fuel cell technology. During the
flight test, due to the upward bending of the two wings caused by turbulence, the whole wing was
pitched and oscillated heavily, which exceeded the distortion limit of the aircraft structure and finally
disintegrated in the air [1–3]. The investigation results show that the main reason for the wing
disintegration in the air is the use of inappropriate analysis methods to evaluate the wing layout
design, which makes Helios very sensitive to turbulence. This case reminds us of the importance of
structural design and real-time dynamic measurement of the aircraft during flight.
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Figure 1. (a) Test photos of Helios Solar powered UAV; (b) Aerial disintegration photos of Helios [1–3]. 

With the continuous development of aviation industry, the structure design of modern aircraft 
is developing towards the direction of large-scale and complex. Therefore, the requirements of 
aircraft design are more stringent, which makes the working environment of aircraft structure tend 
to be complicated, and the forms of deformation are becoming more and more diversified. In 
addition, the problems such as excessive deformation amplitude and low service life of wing caused 
by impact and vibration are becoming more and more prominent, which put forward higher 
requirements for deformation detection of aircraft structure. 

As shown in Figure 2, to test aircraft wing shape sensing, the NASA Langley Research Center 
conducted first flight validation testing in 2008 [3]. The whole experiment conducted 18 flights tests 
and recorded 36 flight-hours. Researchers used fiber optic and strain gages in the test and performed 
multiple flight maneuvers. The results show that Fiber optic and conventional strain gages have 
excellent agreement and the FBG system performed well throughout entire flight. 

 

Figure 2. Real-time aircraft wing shape measurement using fiber optics sensors [3]. 

As shown in Figure 3, under the background of fiber optic sensing technology, the USA Marine 
Corps has begun to use a new fatigue life tracking method to record the real flight loads on the 
aircraft, which can effectively track the structural dynamic deformation of the aircraft and help to 
extend the service time of the aircraft [4]. The USA Marine Corps hopes to track the deformation of 
the aircraft in real time without major structural changes after the full adoption of the new 
deformation measurement algorithm and then let AV-8B harrier jet able to serve until 2030. 

Figure 1. (a) Test photos of Helios Solar powered UAV; (b) Aerial disintegration photos of Helios [1–3].

With the continuous development of aviation industry, the structure design of modern aircraft is
developing towards the direction of large-scale and complex. Therefore, the requirements of aircraft
design are more stringent, which makes the working environment of aircraft structure tend to be
complicated, and the forms of deformation are becoming more and more diversified. In addition,
the problems such as excessive deformation amplitude and low service life of wing caused by impact
and vibration are becoming more and more prominent, which put forward higher requirements for
deformation detection of aircraft structure.

As shown in Figure 2, to test aircraft wing shape sensing, the NASA Langley Research Center
conducted first flight validation testing in 2008 [3]. The whole experiment conducted 18 flights tests
and recorded 36 flight-hours. Researchers used fiber optic and strain gages in the test and performed
multiple flight maneuvers. The results show that Fiber optic and conventional strain gages have
excellent agreement and the FBG system performed well throughout entire flight.
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As shown in Figure 3, under the background of fiber optic sensing technology, the USA Marine
Corps has begun to use a new fatigue life tracking method to record the real flight loads on the aircraft,
which can effectively track the structural dynamic deformation of the aircraft and help to extend the
service time of the aircraft [4]. The USA Marine Corps hopes to track the deformation of the aircraft in
real time without major structural changes after the full adoption of the new deformation measurement
algorithm and then let AV-8B harrier jet able to serve until 2030.
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Less structurally-rigid wings could be critical to future long-range, fuel-efficient airliners and 
designing aircraft with highly flexible, lightweight performance has good application prospects. As 
shown in Figure 4, the NASA Langley Research Center tested the performance of fiber optic sensing 
system (FOSS) on X56 in 2017 [3]. Researchers used 2D shape sensing to measure wing deflection and 
to make sure if the flutter modes exits and the results verified the excellent characteristics of FOSS in 
wing shape measurement. 
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Real time online detection of aircraft wing deformation plays an important role in ensuring 
future safe operation of aircraft. Researchers propose that the embedded intelligent sensors can be 
used to monitor the internal condition of aircraft in real time, which is very important for monitoring 
the dynamic deformation of aircraft wings and aircraft safety [5,6]. While the traditional online 
deformation measurement system brings convenience, the additional weight caused by strain gages, 
signal transmission cables and signal processing units cannot be ignored. Therefore, in the 
deformation detection and measurement process of aircraft, researchers have done a lot of research 
on the application of the new generation of FBGs in aircraft wing shape measurement. The cost 
performance of its reliability guarantee system has great advantages and development prospects. 

FBGs has been widely used in deformation measurement of large structures due to its small size, 
light weight, strong anti-electromagnetic interference ability and self-tuning function [7,8]. FBG uses 
wavelength coding, which is slightly affected by the fluctuation of system light source and external 
factors [9]. It is suitable for online measurement of stress, strain and temperature outside or inside 
the structure in a complex environment. Moreover, with the development of science and technology, 

Figure 3. Fiber optic sensing technology applied to fatigue life tracking of AV-8B harrier jet [4].

Less structurally-rigid wings could be critical to future long-range, fuel-efficient airliners and
designing aircraft with highly flexible, lightweight performance has good application prospects.
As shown in Figure 4, the NASA Langley Research Center tested the performance of fiber optic sensing
system (FOSS) on X56 in 2017 [3]. Researchers used 2D shape sensing to measure wing deflection and
to make sure if the flutter modes exits and the results verified the excellent characteristics of FOSS in
wing shape measurement.
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Real time online detection of aircraft wing deformation plays an important role in ensuring
future safe operation of aircraft. Researchers propose that the embedded intelligent sensors can
be used to monitor the internal condition of aircraft in real time, which is very important for
monitoring the dynamic deformation of aircraft wings and aircraft safety [5,6]. While the traditional
online deformation measurement system brings convenience, the additional weight caused by strain
gages, signal transmission cables and signal processing units cannot be ignored. Therefore, in the
deformation detection and measurement process of aircraft, researchers have done a lot of research
on the application of the new generation of FBGs in aircraft wing shape measurement. The cost
performance of its reliability guarantee system has great advantages and development prospects.

FBGs has been widely used in deformation measurement of large structures due to its small size,
light weight, strong anti-electromagnetic interference ability and self-tuning function [7,8]. FBG uses
wavelength coding, which is slightly affected by the fluctuation of system light source and external
factors [9]. It is suitable for online measurement of stress, strain and temperature outside or inside
the structure in a complex environment. Moreover, with the development of science and technology,
the manufacturing and application technology of carbon fiber materials is more and more mature, and it
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is widely used in aerospace structures because of its advantages of light weight, high strength [10–13].
Thus, researchers have done a lot of research on the application of FBGs in aerospace field.

Through the above-related introduction, this paper takes the FBGs as the research object.
Firstly, the paper introduces the structure principle, sensing principle, FBG multiplexing technology,
bonding process analysis and the layout optimization of sensors. Then, the research status of aircraft wing
shape measurement technology based on different methods is analyzed. Finally, a summary is made to
make recommendations for aircraft wing shape measurement and monitoring system based on FBGs.

2. Working Principle and Technical Characteristics

In 1978, K.O. et al. of the Canadian Information Research Center first discovered the photosensitive
effect of germanium-doped fiber, and successfully developed the world’s first fiber grating by standing
wave method [14]. In 1988, Meltz et al. of the East Hartford Joint Technical Research Center used two
coherent ultraviolet beams to write hydrogen-loaded fiber into FBGs by side-exposing interference
fringes. The fabrication technology makes Fiber Bragg grating have potential application value [15].
In 1993, Hill et al. put forward the phase mask method, which promoted the industrialization of Bragg
grating applications, and promoted the application of Bragg grating in the sensing field [16].

2.1. Structure Principle of Fiber Optic

The optical fiber technology can be divided into single-mode fibers and multi-mode fibers.
According to the different application scenarios, the single-mode fibers can be divided into helically
wrapped single fibers, parallel fibers, orthogonal fibers and so on [13]. Multi-mode fibers are usually
used for 3D shape sensing and Lally et al. [17] first used helical multi-mode fibers for real-time shape
sensing with OFDR Rayleigh scattering interrogation technique. However, the FBGs are generally only
possible in single-mode fiber. As shown in Figure 5, ordinary fiber optic structures generally include fiber
core, cladding and coating, which are basically the same as the fiber materials used in communications.
Among them, the fiber core plays the role of transmitting light signals. Its diameter is in the range of
5-50 µm. Its main composition is silicon dioxide, which is doped with germanium dioxide to improve its
refractive index n1. The diameter of the cladding is about 125 µm of silica. The cladding needs to be doped
with dopant to reduce its refractive index n2. The coating material is generally polymer composite material,
which can realize the bending and corrosion resistance of the fiber core and its outer diameter is about 250
µm [18,19]. The schematic diagram of the fiber optic is shown below.
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The process of transmitting light in fiber optic obeys the principle of total reflection. The refractive
index n1 of the fiber doped with dopant is larger than that of the cladding refractive index n2.
According to Fresnel’s law, when the incident angle of light incident on the fiber interface is greater
than the critical angle, total reflection occurs at the interface between the fiber core and the cladding,
and all the light propagates along the fiber core [20]. The schematic diagram of the propagation of
light in fiber optic is shown in Figure 6.
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Ordinary fiber optic sensors can only transmit signals. These sensors are non-intrinsic fiber optic
sensors. FBGs cannot only transmit signals, but also sense signals. It is an intrinsic fiber optic sensor.
FBG is written by ultraviolet rays in the fiber core, the written grating area has a strong sense of
physical signals in the external environment. For reflective gratings, when the light source passes
through the grating area, the wavelength is equal to the amount of light reflected back from the
Bragg center wavelength, and the light of other wavelengths passes through the grating area [21].
The schematic diagram of the FBGs is shown in Figure 7.
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2.2. Working Principle of FBG Sensor

The working principle of FBG sensor is actually to use the changes of the physical environment
around the FBG sensor such as stress, strain and temperature to form the grating period or fiber core
refractive index changes. It makes the central wavelength of Bragg grating shift, and a mathematical
model is established through the center wavelength shift and measurement. Then the variation of
stress and strain can be obtained.

As shown in Figure 8, when a broadband light source is incident to FBG, a small part of the incident
light is reflected back at the corresponding wavelength due to the periodic refractive index of the FBG,
and the rest of the light will be transmitted, thus the FBG acts as a light filter. According to the fiber
coupled mode theory, the reflection wavelength of Fiber Bragg grating satisfies the following formula:

λB = 2ne f f Λ (1)

where λB is Bragg wavelength, ne f f is refractive index and Λ is Bragg period.
The main factors affecting the center wavelength shift are temperature and strain, the formula [22]

can be expressed as:
∆λB
λB

= (1 − Pe)ε + (α + ζ)∆T (2)

where ∆λB is Bragg wavelength shift, Pe is the photo-elastic coefficient of the fiber core material, ε is
the longitudinal strain, α is the thermal expansion coefficient of the fiber optic, ξ is the thermo-optic
coefficient and ∆T is the temperature variation.
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If the experiment is conducted at constant temperature, Equation (2) can be re-written as:

∆λB
λB

= (1 − Pe)ε (3)

It can be seen that the Bragg wavelength shift is linear with the strain without considering the
effect of temperature.
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2.3. FBG Multiplexing Technology

In 1996, M A Davis et al. [24] first applied FBGs wavelength division multiplexing technology
to shape sensing and amplitude analysis. They mounted the fiber optic cable on the cantilever beam
and detected the overall bending shape of the beam based on the strain detected in the fiber optic.
In order to measure the deformation of large aircraft wing, distributed FBGs measurement method can
be used to realize sensing monitoring. Distributed strain sensing based on Rayleigh scattering can be
divided into optical time domain reflectometry (OTDR) and optical frequency domain reflectometry
(OFDR). OTDR is the simplest way for strain measurement of interrogation technique. The principle of
OTDR is based on launching a laser light pulse and collect Rayleigh backscattered light from the same
fiber sensor. The principle of OFDR is when a continuous laser source is swept in frequency domain
in period time, the collected backscattered light then generates data comparable to OTDR results.
In the process of using distributed strain sensing measurement, researchers have found two kinds of
fiber grating multiplexing technology, which can simultaneously measure the parameters of different
measuring points. The technique that allows multiple FBGs with different Bragg wavelengths to be
interrogated by different laser wavelengths is known as wavelength division multiplexing (WDM)
and the technique that allows multiple FBGs connect with a light source is known as spatial division
multiplexing (SDM) [25].

2.3.1. Wavelength Division Multiplexing Technology

As shown in Figure 9, principle of wavelength division multiplexing (WDM) technology is that
FBGs are connected in series through fiber optic, and each FBG sensor is arranged in the required
monitoring position [26].
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The advantage of WDM is to reduce the number of FBG channels, simplify the sensor network and
save the layout space. The disadvantage of WDM is its weak anti-jamming capability. To avoid overlaps
of FBG central wavelength to interrogate sensors, the number of FBGs it limited to 10–100 s in the same
fiber when using WDM [25]. Moreover, if the fiber optic connected by FBGs is damaged, the whole
demodulation channel will be damaged [27,28]. Sometimes it will affect the data measurement of other
channels and reduce the accuracy of sensor measurement. Therefore, when using WDM technology to
measure the structural deformation of aircraft wings, we need to pay attention to the fact that each FBG
sensor needs to be unfolded naturally and cannot be bent. The offset of the center wavelength between
adjacent FBGs on the fiber string must be less than the difference between the center wavelengths of
two FBGs. In addition, the maximum offset of the center wavelength of the first FBG sensor cannot
intersect with the minimum offset of the second FBG sensor center wavelength, which can satisfy most
practical measurement applications.

2.3.2. Spatial Division Multiplexing Technology

As shown in Figure 10, the principle of spatial division multiplexing (SDM) technology is
to connect multiple FBGs in series on multiple channels to realize the measurement of different
measurement points in the structure space [29–31].
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The advantage of SDM is that the parallel topology is adopted and each channel is independent
and non-interference. Even if one of the measurement channels is damaged, the whole measurement
system will not be affected. This method eliminates the mutual influence between FBGs, reduces the
risk of channel failure, and increases the measurement intensity. However, the disadvantage of SDM is
that a large number of demodulation channels are occupied and the efficiency is reduced [32–34].

These two methods have their own advantages and disadvantages. In the experiment of measuring
wing, according to the structure size and measurement requirements of the measured wing, we can
combine two methods and arrange FBG sensor reasonably. Through the two methods complement each
other, make up for each other’s shortcomings, so as to achieve better measurement results.
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3. Influence Factors of FBGs Strain Transfer Efficiency

High precision measurement of stress and strain is very important for dynamic deformation
measurement and evaluation of aircraft wing. The diameter of fiber core of is very thin and sensitive.
In order to improve the strain measurement accuracy and stability of FBGs, we need to analyze the
factors that affect the measurement accuracy of FBGs, in which the bonding process of FBG sensor
directly affects the accuracy of FBG sensor in the experiment.

Through the analysis, we can know that the strain transfer rate of FBGs is directly affected by the
adhesive bonding process. Therefore, it is necessary to analyze the main factors affecting the strain
transfer rate in the adhesive bonding process, so as to improve the strain transfer rate.

3.1. FBGs Strain Transfer Coefficient

In the adhesive bonding process of FBGs, the grating area of FBGs is deformed synchronously
with the adhesive bonding position due to the constraint effect of the bonding layer, and the strain rate
of them is equal under ideal conditions.

As shown in Figure 11, the adhesive bonding mechanical transfer model [35–38] consists of FBGs,
adhesive layer and measured structure, and the model is shown as follows:
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Assuming that the fiber grating is only axially deformed and ignoring the Poisson effect,
the formula [38] of strain transfer rate can be expressed as:

α(x) =
ε f (x)

εm
= 1 − cos(hkx)

cos(hkL)
(4)

where α(x) is the strain transfer rate, L is the half length of the grating area, k is the coefficient
determined by the ratio of the elastic modulus of the fiber to the coating layer, h is the thickness of the
adhesive layer, εf (x) is the strain of fiber core, εm is the matrix strain at the adhesive site, x is a certain
position in the axial direction of the grating area.

According to the above formula, for variable x, we can conclude that the strain transfer rate is
inversely proportional to the distance to the gate area. The closer to the center of the grating, the greater
the strain transfer rate is. When it comes to the center of the grating area, the strain transfer rate reaches
the maximum. The average strain transfer rate over the entire length of the grating area is:

α = 1 − sin(hkL)
kL cosh(kL)

(5)

3.2. Influencing Factors of Strain Transfer Rate

The average strain transfer rate of the sensor is related to the length of the grating area and the
thickness of the adhesive layer. In addition, it is also related to the elastic modulus of the adhesive
layer and Poisson ratio, the elastic modulus of the coating and Poisson ratio.



Sensors 2019, 19, 55 9 of 25

Through experiments by researchers, the relationship between influencing factors [39–43] and
strain rate is deduced and shown as follows in Table 1.

Table 1. Analysis of influencing factors.

Influencing factors Relation

Adhesive layer Inverse ratio
Length of sensor grating area Direct ratio

Elastic modulus of adhesive layer Direct ratio

Through the proportional relationship in the above table, we know that the thickness of the
adhesive layer is inversely proportional to the strain transfer rate of the sensor. That is to say, the smaller
the thickness of the adhesive layer is, the higher the transmission rate will be. However, in practical
application, the adhesive layer must have a certain thickness, otherwise, the adhesive layer will fall
off easily. If the thickness of the adhesive layer is too large, the transfer rate will be too low to affect
the accuracy of the sensor. Therefore, the allowable range of adhesive thickness to meet the working
conditions is determined before operation. Then, on the basis of being firm, the adhesive thickness is
as small as possible.

The strain transmission rate of FBG sensor is proportional to the grating length. In other words,
the greater the grating area length is, the higher the strain transfer rate will be. Although the length of
grating area becomes longer, the strain transfer rate will be higher, which will lead to the measurement
area becomes longer, and the strain of a certain point cannot be accurately measured. It will make the
measurement accuracy lower. On the one hand, the long FBG sensor is damaged easily by mechanical
collision during operation, which makes the sensor layout and measurement inconvenient. On the
other hand, if the length of grating area is too long, it will lead to uneven coating and uneven thickness
of the adhesive layer. Therefore, it is necessary to increase the grating area length of the sensor to
increase the strain transfer rate on the basis of selecting the appropriate length of adhesive layer and
avoiding the excessive length of the measuring area.

4. Comparative Analysis of Other Measurement Methods

The method of aircraft wing shape measurement has been improving and diversifying along with
the development of aircraft. In 1922, A. Baumhaluer and C. Konin proposed a mass balance method
that effectively prevents the control surface flutter. In the late 1920s, H.G. Kussner, W.J. Duncan and
R.A. Frazer summarized the wing flutter problem and established the corresponding theoretical
basis. Then T. Theodorson proposed a feasible method to solve the flutter problem on the basis of
obtaining the exact solution of the resonant aerodynamics in the wing control surface in 1934. In the
1950s, supersonic aircraft began to develop continuously and researchers focused on the deformation
measurement and flutter theory of delta wing and small aspect ratio swept-back wing. By the year 70s,
the emergence of computers brought great changes to the traditional aeroelastic theory [44]. The test
method of flutter airworthiness has also undergone profound changes, which represents the arrival of
subcritical test technology.

This section first introduces and analyzes the working principle, advantages and disadvantages
of strain gages measurement, laser measurement and visual measurement in aircraft wing shape
measurement. Then, we summarize the advantages and disadvantages of these methods, highlighting
the advantages of FBGs in measurement.

4.1. Measuring Deformation with Strain Gages

For real time load measurement related to aircraft wings, the commonly used method is a relatively
extensive "strain gages/load calibration" method developed in the 1950s.

As shown in Figure 12, a series of discrete traditional strain gages are installed on the wing, and a
series of concentrated loads are applied on the wing surface to calibrate the response of the strain
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gages. Then the measured values are input into the software to run the results of the load formula in
real time. This method is time-consuming, energy-consuming, cost high and large volume [45–47].
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4.2. Measuring Deformation with Laser

The principle of laser measurement is to use laser beam as a signal source to illuminate the
reflection target of the wing surface. Then, the reflected beam is transmitted to the signal processing
system through an optical receiving system and a photodetector. The system measures the target point
by point and obtains the deformation parameters of the wing surface according to the distance or other
information [48,49].

As shown in Figure 13, the measurement method [50] is to perceive the deformation of
the wing structure by application of laser scanning and Image Pattern Correlation Technique
(IPCT) [51,52]. This method has the advantages of high accuracy and good real-time performance.
However, the measuring method is based on laser source, and the life of laser source is shorter in
long-term use. It is difficult to realize the full field deformation measurement of large structures.
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4.3. Visual Deformation Measurement

With the development of computer vision, the visual measurement method for aircraft wing
deformation is proposed and applied step by step. The visual measurement method has many
advantages, so it has been widely studied by researchers. It can be divided into several categories
according to the difference of the measured patterns.
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The NASA Langley Research Center developed a video model deformation (VMD) technology for
high speed wind tests [53,54]. VMD technology is a digital photogrammetry technology which uses CCD
camera to record and process digital video images. The technique has been a research hotspot for the
last 30 years and has been applied to deformation measurement of wind tunnel models. As shown in
Figure 14, it fixes the LED feature points on the F/A-18 wing model and uses Optotrak Flight Flexibility
Measurement System to measure these points. The deflection curves of the wing are measured by the
system. This method is not only easy to implement, but also has high accuracy. However, this method still
has the shortcomings of insufficient measurement points and cannot make full use of resources in flight
test, so it is often used in wind tunnel test or some ground static test [55–58].
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Figure 14. Video model deformation (VMD) measurement system [54].

In order to obtain the deformation information of the full field, Fleming, G. A. et al. [59] carried
out the deformation measurement of the model by Projection Moiré Interferometry (PMI) on the
wing surface in 1999. As shown in Figure 15, this method is based on the VMD measurement system.
On this basis, the measurement range is extended, and the full field distribution of the wing surface
deformation is obtained. Through the system measurement scheme and measurement results, it can
be seen that the method overcomes the problem of few measurement points, and can obtain the
distribution of the full field deformation. However, it is susceptible to the influence of illumination
changes, and the measurement environment is limited, so it is only suitable for some specific ground
deformation measurement [59–64].
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In recent years, the wing shape measurement method based on Image Pattern Correlation
Technique (IPCT) [52,53] has been continuously studied and developed. This method not only has
the advantages of full-field measurement, but also has the characteristics of non-contact and real-time.
It can be used to measure the deformation of wing in flight theoretically. In order to put the method into
production as soon as possible, the method was studied by the German Space Center (DLR) and other
well-known power research institutes and a series of aircraft online testing technologies have been
carried out. In 2013, a successful AIM2 flight test [65] was performed with the NLR Fairchild Metro II.
Aim for the test flight was to test IPCT (shown in Figure 16). The method of the test has the advantages
of flexible meshing and convenient acquisition of displacement vector field or strain field information.
However, the measurement accuracy will be affected by noise and complex weather conditions when
using high-speed camera. At the same time, the measurement accuracy and adaptability of this
method need to be further verified due to the complexity of aircraft wing deformation in dynamic
environment [66–71].
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Figure 16. (a) The interior of the aircraft; (b) The partly speckled on the wing [65].

As shown in Table 2, we can know that the strain gages measurement method has the
disadvantages of large volume, large additional load and high cost. The method of laser measurement
has many shortcomings, such as complex device, poor stability, and cannot be measured in
the full field. Although the visual deformation measurement has many advantages, it is still
affected by site constraints and environment, which affects the accuracy of aircraft wing shape
measurement. Therefore, it is of great significance to find a small volume, light weight, high
precision, strong anti-jamming and high adaptability method for dynamic aircraft wing shape
measurement. Many advantages of FBGs can meet the requirements of high-precision dynamic
deformation measurement in complex environment. Therefore, researchers have done a lot of research
on aircraft wing shape measurement based on FBGs in recent years and we will analyze it in Section 5.
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Table 2. Analysis of the characteristics of three measuring methods.

Method category Advantages Disadvantages

Whether it
Suitable for

Full field
Measurement

Whether it
Suitable for

High Altitude
Flight

Measuring deformation with strain gages
-Long life
-Good frequency response
characteristics

-Long time
installation
-Large volume
-Additional load
- High cost

No No

Measuring deformation with laser -High precision
-Good real-time property

-Complex device
-Poor stability,
-Partial area measurement

No No

Visual deformation
measurement

VMD
measurement system

-Easy to implement,
-High precision -Insufficient measuring points No No

PMI
measurement system

-High precision,
-Full field measurement

-Susceptible to light
-Limited to specific ground
deformation measurements

Yes No

IPCT
measurement system

-High precision,
-Flexible grating division
-Full field measurement

-Influenced by noise and
complex weather conditions Yes No

5. Research Status of Aircraft Wing Shape Technology by FBGs

Researchers have done lots of research and experiments on FBG sensing technology in many fields
of aircraft, especially in Structural Health Monitoring (SHM) field. For example, Ryu et al. [72] used
strain monitoring method in wing structures by FBGs to monitor the buckling behaviour of a wing
box in real-time in 2008. Kosters et al. [73] used surface-mounted FBGs to detect the impact damage
for composite primary aircraft structures in 2010. Mieloszyk et al. [74] used FBGs in smart composites,
they developed SHM systems to monitor shape and defects in composite skin of the aircraft wing in
2011. Gherlone et al. [75] used the strain-based deformation shape reconstruction by FBGs for SHM of
aircraft structures in 2012. Minakuchi et al. [76] used embedded FBGs and life cycle monitoring system
to detect the debonding in composite patches and lap joints in 2013. In the above examples, we can
see that researchers have made a systematic study on the application of FBG sensing technology in
SHM. Therefore, we can deduce that the application of similar techniques and methods to the research
of measurement methods of aircraft wing shape sensing. In this section, several typical cases will be
synthetically analyzed in order to provide ideas for the research of wing shape measurement.

In 2003, in order to verify the effectiveness of FBGs for aircraft wing health monitoring system,
Jung-Ryul Lee et al. [77] of Korea Advanced Institute of Science and Technology (KAIST) designed a
FBG system to test the dynamic strain of the 1/25th scale Boeing 737C wing model (shown in Figure 17)
in the wind tunnel, and measured the the dynamic strain inside the wing. The FBG system is based on
the high-power wavelength-swept fiber laser (WSFL) and signal processing unit. In the configuration
of FBG system, to reduce the errors, a triangular waveform was used to modulate the FP filter and
FPWL was used to eliminate the wavelength non-linearity of the WSFL output. In the process of
electronic signal processing scheme, analog signal processing circuit was used to convert optical signal
to electrical wavelength-encoded signal in the time domain and 20 MHz counter was used for the
system. Besides these, all bare FBGs were re-coated by means of acrylate in which the birefringence
phenomenon of each single mode fiber can happen easily. During the impulse test, a PZT sensor was
chosen and bonded to compare natural frequencies with the results of other sensors and an electric
strain gauge (ESG) was used as a dynamic strain sensor to verify the FBG. Researchers located reference
FBG after the coupler because the use of the coupler induced 50% loss in the intensity of FBGs.

The results show that the dynamic strains measured by FBGs have a good agreement with ESG
and PZT sensor [78] inside the wing and the power spectral density obtained by FBG shows good
agreement with those as well. The dynamic strain test in the wind tunnel with various situations
successfully the effectiveness of FBGs in the monitoring system. Through the analysis of the test,
we can find that the researchers used several groups of tests to verify the effectiveness of FBGs. To avoid
the interference of errors, researchers used WSFL, FPWL, analog signal processing circuit and other
methods in the wind tunnel test. Noted that the flutter was detected by embedded FBGs which is
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a hazardous phenomenon for the aircraft wing structure. Therefore, in the research of wing shape
measurement, the influence of flutter status on the accuracy of wing shape measurement and baseline
measurement should be considered.
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In 2005, NASA Langley Research Center published a report on aircraft wing shape measurements
to mitigate accidents caused by system and component failure [79]. In this report, using a distributed
fiber optic strain measurement system combined with beam theory [80–82] and inverse Finite Element
Method (iFEM) [83,84] method for wing structural deformation. As shown in Figure 18, a new
instrumentation based on principles of OFDR was developed for strain measurement with Fiber Optic
Strain System (FOSS). The FOSS has the characteristic of large-scale, densely distributed Bragg gratings
strain sensors. A FOSS fiber and 13 foil gauges were used to build an aluminum beam test article and
the FOSS strain values was used for iFEM model to estimate deflection.

Researchers have carried out detailed design and analysis on the selection of experimental
equipment and the layout of equipment. An aluminum bar with the material of 7076AL which
measures 1219.2 mm × 63 mm × 6 mm was used as instrumented test article to validate the capability
of FOSS and 333 Fiber Optics Bragg Grating sensors were used for measuring axial strain along
the length of the instrumented test article. A thermal-based technique was used to determine first
4 individual grating locations and the rest locations were calculated through linear regression. In the
bonding design of fiber optic, 13 single axis foil gauges were bonded along the centerline of the bar
and foil gauges data acquisition system was calibrated at room temperature. In the fixed form of the
instrumented test article, the mount screws were locked in place by the collar-screw located near the
top of each post instead of screwed into the posts in which the fixed form has more flexibility. In the
strain validity verification, the advantages and disadvantages of FEM and iFEM are analyzed and
the experimental results show that iFEM has the advantages of simple mesh division, fast calculation
speed, less than 5% deflection error and high measurement accuracy. Through the study of NASA
Langley Research Center reports, we can see that the FOSS-iFEM technology has many advantages and
potential application prospects. In this study, iFEM technology is a considerable application in wing
shape measurement combining with FBG technology. This idea may help to improve the measurement
accuracy based on FBGs, simplify the calculation process, and reduce the impact of additional loads.
It may also suitable for measurement in a dynamic environment.
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In 2006, Andrea Cusano et al. [85] of the University of Sanio proposed an aircraft wing model
modal analysis experiment based on embedded FBGs. In this study, considering the effect of vibration
on composite wing modal analysis, researchers used an instrumented impact hammer with the model
of PCB 086C03 to provide mechanical impulsive excitation. The sensitivity of the hammer is 2.3 mV/N
and the frequency is 8 KHz. Four piezoelectric accelerometers (ICP Mod. 35C22) were bonded to the
bottom surface of the wing as reference sensing elements. The voltage sensitivity of the piezoelectric
accelerometers is 10 mV/g, the broadband resolution is 0.0032 g·rms. Four FBG sensors were used
as optical sensing elements. Researchers exploited a sensors interrogation system and a chirped and
strongly apodized fiber grating was used which can reflect linearly varying with optical wavelength.
Passive ratiometric technique was used to provide sensor output and all three signals have been
synchronously detected and stored due to the passive nature of the proposed technique.

As shown in Figure 19, for systematic analysis of the experiment, a grid of 29 excitation white
points has been selected along the composite wing for mode retrieving. The location of grid in
this study is the better place for impact excitation than other places. Researchers took five times
hammer impacts and acquired five excitation-output pairs signals in order to obtained more accurate
data. FRFs and SFRFs determination took the same procedure. The analysis show that bonded
accelerometers data and embedded FBGs can get similar shapes, which means that strain obtained by
embedded FBGs can respond to changes in aircraft wing shape. However, in the process of SHM, this
method is limited to bending modal analysis of simple beams and torsional modal analysis, it may
limit the modal analysis of aircraft wings in complex environments, so Andrea Cusano et al. think it is
necessary to develop a damage monitoring system for complex rhythmic structures based on active
modal analysis which may also be beneficial for wing shape analysis.
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plastics as the material of composite wing box and the length is 6 m. Seven FBG arrays were equipped 
on the wing skin and each array had about 30 or 40 FBGs with 10 mm gauge length. In order to get 
the overall deformation of the wing box, sensing system based on OFDR was chosen and bonding 
eight long-length FBGs with 300 mm and six long-length FBGs with 500 mm around stress 
concentration to get more details on wing structural deformation. 

Figure 19. Two photographs of the wing. (White color) Body and (black) spar in (a); (b) a detail of the
clamped end of the wing [85].

In 2012, Hideaki Murayama et al. [86] of Japan launched a large-scale wing strain measurement
experiment based on FBGs network. As shown in Figure 20, researchers used carbon fiber reinforced
plastics as the material of composite wing box and the length is 6 m. Seven FBG arrays were equipped
on the wing skin and each array had about 30 or 40 FBGs with 10 mm gauge length. In order to get the
overall deformation of the wing box, sensing system based on OFDR was chosen and bonding eight
long-length FBGs with 300 mm and six long-length FBGs with 500 mm around stress concentration to
get more details on wing structural deformation.
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Figure 20. (a) Physical map of composite wing box; (b) Internal structure of wing box [86].

As shown in Figure 21, in the layout of FBG arrays, the researchers equipped the wing box
with seven FBG arrays (A-1–A-7), eight long-length FBGs with 300 mm gauge length (B-1–B-8),
six long-length FBGs with 500 mm gauge length (B-9–B-14). Each array had about 30 or 40 FBGs with
10 mm gauge length and FBGs were arrayed in a 100 mm pitch along the fiber.

The stress distribution of tensile strain A-1 is obtained by combining finite element analysis with
variable load. As shown in Figure 22, it can be seen that the measured and calculated values have a
good match. The experimental results also show the stress distribution of B-1. It can be seen from
the diagram that the stiffness of B-1 varies locally on the tip of the truss and the strain varies greatly.
The case shows that FBG arrays have good performance in strain and load distribution monitoring of
wing box structure and we can also estimate the applied load with high-precision by using strain data
measured by FBG arrays. The major feature of this case is that FBGs are designed in several FBG arrays
forms according to the needs on different parts of the composite wing box and this measurement
scheme may also have a good effect on the measurement of wing shape.
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In 2012, in order to accurately calculate the deformations of the aircraft wing, Yi Jincong et al. [87]
of Shanghai University proposed an implementation method of FBGs in the deformation detection of
wing structure. Researchers used epoxy resin plate with a trapezoid form as a kind of aircraft wing
model. The dimensions of the wing model is 225 mm × 160 mm × 380 mm × 195 mm as shown in
Figure 23a and the thickness is 1 mm. The experimental setup consists of FBG demodulator, computer,
packaged FBG sensor array and three-dimension reconstruction visualization system as shown in
Figure 23b. By comparison with optical other algorithms [88,89], an algorithm based on FBGs for
deformation reconstruction of an aircraft wing model was proposed by researchers. The algorithm
uses the curvature information measured by FBGs to reconstruct the wing shape. Firstly, the space
coordinate system of the experimental model is established, and the coordinate values of each point in
each curve are calculated according to the curvature. Then the smooth interpolation method is used to
fit and reconstruct multiple curves. Finally, the shape of the surface can be reconstructed accordingly.
By this method, the steady-state deformation and dynamic vibration characteristics of real-time
deformed structures are experimentally studied. Researchers gave various static deformation in
manual way for the wing model and the experimental results show that the reconstructed shape based
on the designed algorithm have a good realistic rendering reality and real time effect. The characteristic
of in this case is that researchers used the simplified wing model with few FBG arrays and OpenGL
technology achieved the deformation reconstruction of the wing model. In the research of wing
shape reconstruction, appropriate models and algorithms are helpful to improve the accuracy of wing
deformation reconstruction. In this case, researchers used an algorithm based on curvature information
combined with FBG arrays to reconstruct the wing shape in which is worth learning.
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Figure 23. (a) Experimental model; (b) The whole experimental setup [87].

In 2016, Matthew J. Nicolas et al. [90] of the USA pointed out that most reports of aircraft wing
shape measurement by FBGs were laboratory-level testing. As shown in Figure 24a, the researchers
took a 5.5 m carbon composite wing of an ultralight aircraft as an example, designed a practical method
to calculate the deflection and out-of-plane load of the wing shape by using a high density FBGs on
a three-tier whiffletree mechanism [91,92]. In the layout of FBGs, two optical fibers along the main
spar was instrumented, one on the upper skin and one on the lower skin. The sensor spacing of FBGs
approximately 12.5 mm, 388 sensors on the upper surface and 390 sensors on the lower surface of the
composite wing in total. Researchers set FBGs and strain gages (approximately 12.7 mm from the fiber)
on the left wing and both left and right wings were set with a tip displacement gage. Labview software
was used to obtain strains and applied loads and two channels was used to get data from 778 FBGs.
In the algorithmic design of the composite wing, the deflection and load algorithms were used based
on classical beam theory and considered only pure bending. Then, the deflected wing shape and the
out-of-plane load accurately obtained by high spatial resolution FBGs measurement.

As shown in Figure 24b, the results of the experiment show that total computed load is within
1.62% of the applied load, the computed out-of-plane loads is within 2% of the applied load,
the calculated deflections for several load cases, and the predictions are within 4.2% of the measured
data, the computed FBG-based loads are within 4.2% of the measured applied loads. Through the
experimental process and data results, we can see that high spatial density of the strains from FBGs can
reveal some physical details not normally obtained from conventional strain gages. Compared with
conventional strain gages, the method designed by the researchers with FOSS system [93,94] can
provides a higher density (every 12.5 mm) of strain measurements and it can be used to determine the
health of the wing by obtaining deformation data.
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lower surface. The type of demodulator they chose is SM130. 

Figure 24. (a) Sketch of test for concentrated and distributed loading with the wing loading stations;
(b) Photo of wing structure under whiffletre loading [90].
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In 2017, Cui Peng et al. [95] of China proposed a feasible method to measure the deformation
of aircraft wings based on FBGs as shown in Figure 25a. Compared with the conventional indirect
measurement method, it uses a specific derivation process to measure the vertical displacement
variation of the wing model. Researchers did experiments and simulations, and bonded FBGs in the
locations of the wing with large strain variation to improve the accuracy of the experimental results.
28 FBGs were divided equally into 4 arrays and the central wavelength in each group were separated
by at least 2 nm. Three arrays were arranged in the upper surface of wing model and one array in
lower surface. The type of demodulator they chose is SM130.
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using multi-elementoptical fiber grating rosettes and the method combined with Timoshenko beam 
theory and iFEM [84,85], the wing frame deformation was measured in real time. The tested wing 
used in the experiment is 1/4-scale model of a kind of aircraft and aluminum-magnesium alloy 
materials were used for spar cap and shear web. As shown in Figure 27, the FBGs were bonded with 
epoxy resin adhesive 3M DP. The maximum strain value of the wing spar during loading test is 1500 με  
and the initial wavelength interval was selected greater than 2 nm. In the procedure of loading, the 
load is increased by 10 kg increments up to 100 kg and recorded the magnitudes of all FBG sensors 
and foil strain gages. In order to ensure the security, the load in some point is limited to 80 kg and 

Figure 25. (a) Flow chart of deformation measurement; (b) Schematic diagram of location of
experimental points [95].

In the constant temperature experiment, the change of wavelength is proportional to the strain.
As shown in Figure 25b, Cui Peng et al. increased the load at point 0 gradually from 100 g to 1000 g
with a gradient of 100 g and the test was repeated three times. Then the finite element model of the
wing was established to simulate the relationship between the strain and the displacement. In the
experiment, when the force is applied at point 0, the vertical displacements measured by the FBGs
in experiment under different load pressures is lower than 5% of the average error compared with
those directly measured and the liner fitting function of the experimental vertical displacement is
close to the liner fitting function of the actual vertical displacement as shown in Figure 26. The study,
in this case, combines finite element method with FBGs to verify the feasibility of FBG technology
for measuring vertical displacement and this is a new attempt in the research of wing deformation
measurement method.
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In 2018, Hong Li et al. [96] proposed a new deflection monitoring method for wing spar I-beam
using multi-elementoptical fiber grating rosettes and the method combined with Timoshenko beam
theory and iFEM [84,85], the wing frame deformation was measured in real time. The tested wing used
in the experiment is 1/4-scale model of a kind of aircraft and aluminum-magnesium alloy materials
were used for spar cap and shear web. As shown in Figure 27, the FBGs were bonded with epoxy resin
adhesive 3M DP. The maximum strain value of the wing spar during loading test is 1500µε and the
initial wavelength interval was selected greater than 2 nm. In the procedure of loading, the load is
increased by 10 kg increments up to 100 kg and recorded the magnitudes of all FBG sensors and foil
strain gages. In order to ensure the security, the load in some point is limited to 80 kg and loading of
each point step three times and taking the average. Through the experiment, researchers concluded
that theoretical and simulation results of the resistance gage value are consistent and the deflections
of the wind spar were well estimated from the bonded FBGs. The study, in this case, pointed out
that the FBG rosette can sufficiently monitor the wing structural condition even though they were
positioned in the bonding points between the shear web and spar cap. The main feature of this case
is that researchers used FBG rosette to measuring deflection, and the experimental results verify its
feasibility. Deflection is an important measurement index in the measurement of wing shape and the
study by Hong Li et al. Presents useful information to wing shape measurement system.
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6. Conclusions

In this paper, the research progress and application of FBGs in aircraft wing shape measurement
are reviewed. Combined with the basic principle and performance characteristics of fiber optic
sensor, the multiplexing technology of FBGs is introduced. Besides, the paper introduces the
adhesive bonding principle of distributed FBGs, analyzes the influencing factors of strain transfer
rate in adhesive bonding process and suggestions for improving strain transfer rate are put forward.
Next, the characteristics and limitations of existing methods for measuring aircraft wing deformation,
such as strain gages measurement, laser measurement and visual measurement are introduced.
Finally, eight examples of aircraft wing SHM and deformation measurement based on FBGs are
selected for detailed analysis. According to different needs, researchers used different methods to
apply to different aspects of the wing. Jung-Ryul Lee et al. verified the feasibility of FBGs and
emphasized the influence of flutter status cannot be ignored. The study of NASA Langley Research
Center reports showed the advantages and potential application prospects of FOSS-iFEM technology
on the wing shape monitoring. The research of Andrea Cusano et al. Showed that active modal analysis
is necessary to SHM of complex rhythmic wing structures and this idea can also be used to extract
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abnormal points in wing shape measurement. Hideaki Murayama et al. used specific FBG array layout
and verified its well performance in wing box structure. The enlightenment of this example is that
in order to give full play to the effect of FBGs in the shape measurement of wing box, we can design
different FBG arrays layout according to the strain situation of different positions, so as to achieve
measurement accuracy as high as possible. Yi Jincong et al. designed an algorithm based on curvature
information and reconstruct the wing shape by FBG arrays. It shows that suitable reconstruction
algorithm of the wing shape is necessary for the wing shape measurement. The research results of
Matthew J. Nicolas et al. proved the superiority of FOSS system on aircraft wing shape measurement
and high spatial density of the strains from FBGs can benefit to full-field deformation of wing shape
measurement Cui Peng et al. measured the vertical displacement variation of the wing model by
FBGs and FEM in the constant temperature condition. The experimental results prove the feasibility
of the method. The characteristic of Hong Li et al. research results is that they used FBG rosette to
measuring deflection of aircraft wing and proved its beneficial effect. It may be a good prospect in the
field of wing shape measurement. Moreover, we can find that different types of adhesives are selected
according to different experimental conditions in these cases and the representativeness of the data is
improved by taking the average value to ensure the validity of the experimental data.

Although the literature referenced in this paper is limited and cannot cover all the fields
of wing shape measurement. In view of these representative research results, this paper puts
forward the following comprehensive ideas. For specific wing dimension, we need to determine
the measurement methods we used. It is a good idea to apply FBGs and strain rosette to the full-field
deformation measurement of wing shape. In order to improve the accuracy of the measurement system,
the combination of FOSS system and iFEM can be adopted. In the details of the specific experimental
procedures, the layout of sensors needs to be designed reasonably, which helps to achieve full-field
measurement. Suitable material of adhesive is necessary for the FBG adhesive bonding and then
determine the thickness of the adhesive layer and correlation coefficient, strictly adhere to the adhesive
bonding process, and design the calibration method of FBGs. Good layout design, adhesive bonding
process, and calibration method are helpful to improve the accuracy and stability of the measurement
experiment. Combined with iFEM analysis, modal analysis and related algorithms, we need to study
how the computer can reprogram the sensor network or accurately measure the wing dynamics when
the FBG sensor at a certain position fails or damaged during the extreme flight conditions of an aircraft.
Then it can be applied to transfer alignment and dynamic measurement of aircraft baseline to improve
the measurement accuracy in a dynamic measurement environment.
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