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Abstract: The Internet of Things (IoT) contains sets of hundreds of thousands of network-enabled
devices communicating with central controlling nodes or information collectors. The correct
behaviour of these devices can be monitored by inspecting the traffic that they create. This passive
monitoring methodology allows the detection of device failures or security breaches. However,
the creation of hundreds of thousands of traffic time series in real time is not achievable without
highly optimised algorithms. We herein compare three algorithms for time-series extraction from
traffic captured in real time. We demonstrate how a single-core central processing unit (CPU) can
extract more than three bidirectional traffic time series for each one of more than 20,000 IoT devices
in real time using the algorithm DStries with recursive search. This proposal also enables the fast
reconfiguration of the analysis computer when new IoT devices are added to the network.
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1. Introduction

The Internet Protocol (IP) provides connectivity to millions of smart and autonomous devices.
They range from small health monitors, ambient sensors, and location notification devices to seismic
sensors, traffic cameras, and generic computers. The smart devices represent a new wave in
network-connected elements that is expected to surpass the number of computer hosts. Different
predictions estimate between 20 to 200 billion of these devices by 2020 [1,2].

The service architecture for each type of device differs, but a centralised information-collecting
element is typical. Deployed devices typically communicate with a central collector using virtual
private networks offered by mobile communication companies or local Internet service providers
(ISPs) [1]. An example scenario would be energy consumption-metering devices deployed in
households; they communicate with the central office using power lines. Other examples include
sensors deployed in remote wind power production towers that communicate using cellular networks,
temperature and pressure sensors for weather forecasting, and location devices for fleet tracking
logistics [3]. The Internet of Things (IoT) ecosystem offers a plethora of examples of large populations
of small sensing devices that collect information and send them to centralised hosts.

The process of monitoring the availability of these ‘things’ is a difficult task, owing to the large
number of devices. It can be achieved by active or passive monitoring. Any type of check that actively
communicates with the devices would inject a large amount of traffic into the access networks, whereas
passive monitoring techniques do not add any load to the network or the devices. Passive monitoring
can be based on a time-series analysis of network traffic from each device. These traffic time series can
be used to verify device liveliness by detecting periods of network traffic silence (Figure 1). For cellular
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operators, traffic time series are fundamental for evaluating traffic patterns from different types of
IoT devices. It is noteworthy that these devices typically employ a cellular network [4], competing
for resources with smartphone users [5]; therefore, network dimensioning requires traffic profiles for
different cellular user types.
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Traffic time series can also be used for security monitoring. The analysis of anomalies in device
traffic patterns can be used to detect erratic behaviour from the smart devices due to malfunctions or
security violations [6]. Currently, the IoT ecosystem offers many devices with low security, and has
already been used for the distributed denial-of-service (DDoS) attacks [7]. Monitoring the network
activity from these devices to the centralised hosts (or to any other destination) is critically important
for providing early intrusion detection.

Creating a per-device time series requires classifying each network packet when hundreds of
thousands of classes are defined. Each packet could belong to only one class; therefore, it is considered
in the time series for one device, or multiple time series could be created for each device. For example,
all of the traffic that a device sends to its configured centralised collector could be recorded in a time
series while separately accounting for all the traffic it sends to other destinations in a different time
series (to detect anomalies). Therefore, time-series extraction requires the multi-label classification of
packets, where a given packet may be assigned to several classes: one for each time series for which it
has to be accounted.

Most sensors collect little and infrequent information; therefore, the network traffic they create
presents a low bitrate. Low-rate information includes, for example, the location information sent
from sensors installed in cars from a rental company. However, other sensors produce higher bitrates,
for example, seismic sensors or surveillance cameras. In a traffic aggregation point or a location
close to a collector in a large population of devices, millions of packets per second are expected [8],
implying several gigabits of traffic per second.

Creating hundreds of thousands of time series based on source and destination when each packet
can account for more than one class is not a trivial problem. This level of monitoring is typically
performed by collecting NetFlow statistics from IP routers and postprocessing those flows to create
the time series [9–11]. However, NetFlow monitoring presents time-resolution limitations. When a
flow has finished, aggregated counters are provided. While the flow is active, the periodic dumps of
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all of the flows in memory of the networking device are sent to the NetFlow collector. Owing to the
large amount of active flows, this collection has a periodicity of several minutes, thus losing all of the
details below this scale. Most analysis and prediction algorithms require several measurement points
in the time series, which would require several minutes to be collected from flow records. Reaction
times in the order of several minutes are not appropriate for critical devices such as health monitoring
sensors or probes in a nuclear plant. However, reducing the period of active flow collection in NetFlow
statistics implies a higher load on the networking equipment, making it unfeasible.

The objective of this work is to validate that time-series extraction directly from a network packet
stream can be performed sufficiently fast, and for a sufficiently large class set, to cope with the expected
IoT scenarios. The traffic stream can be obtained by mirroring the packet flow at a network switch.
This is a common functionality offered by most enterprise class switches. We focus on the extraction
of traffic volume time series, namely the byte or packet counters, from a passive monitoring probe.
Our test probe processes several gigabits per second of traffic in real time, providing the time series
with a resolution better than one second.

Packet classification algorithms are a central part of this system. They assign each packet to a
single class or multiple classes of equivalence. Packet classification is a well-studied problem [12–14].
If the number of classes is not large, a simple linear search for every packet over the class list
is typically sufficient. However, depending on the traffic arrival rate and the computing power,
above a certain number of classes, reviewing every class in sequence could consume too much time.
Then, the analysis machine cannot cope with traffic at line rate without splitting the work among
several central processing unit (CPU) cores, thereby increasing hardware costs. Several algorithms
have been proposed and used to reduce the number of classes to visit [13,14]. Within hardware systems,
optimal performance can be achieved using structures based on ternary content addressable memories
(TCAMs) [15]. They can perform comparisons in parallel with all of their content cells. However,
they incur high development costs for the ad-hoc hardware solution.

Software-based packet classification solutions sort the classes into binary search trees (also called
“tries”). As classes typically involve IP sources and destination addresses, a hierarchy of search tries
is used: first for the destination address, and subsequently for the source address. This hierarchy
enables identifying the location of the relevant classes in only a few operations. The complexity in
classification grows with the number of bits in the input classification information. However, this is
at the expense of algorithm complexity and the memory that is required to store the search tries’
structure. Probabilistic classification structures such as neural networks or Bloom filters, which are
quite common in other classification scenarios, are not appropriate for the problem at hand. They have
been used when high uncertainty in the classification is present or when the number of possible classes
is very small [16,17]. On the contrary, the classification for time-series extraction in an IoT scenario is
deterministic: it is based entirely on source and destination addresses, and it must classify packets
when a large number of classes is defined. Neural networks and Bloom filters, being probabilistic,
can produce wrong classification results. Failure in classification in one of these structures for a pair of
source and destination network addresses does not happen for random independent packets, but rather
for every packet in a time series between the same pair of addresses; therefore null or flat-line time
series would result. On the other hand, both techniques require at least as many computing elements
as the number of possible classes. For neural networks, at least one neuron is required for each
possible class. Using Bloom filters, at least one filter is required for each class. Both structures can be
implemented in parallel hardware architectures; however, in software implementations, they present a
linear complexity with the number of classes, which in the present scenario we will show can reach
hundreds of thousands of classes.

A survey of packet classification algorithms can be found in [12]. They are proposed for
quality of service and security filtering scenarios. We herein evaluate how these algorithms apply
to the time-series computation problem when the number of classes is as large as that expected in
IoT scenarios.
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To calculate the traffic time series for monitoring purposes, a packet has to be assigned to every
class to which it belongs. The algorithm cannot stop whenever it obtains the best matching class, but it
has to search over all the classes that may apply. We have selected three algorithms that can be used
for multi-label classification: the linear list of rules search, the simple hierarchical tries [12], and the
set-pruning tries [12]. Other popular algorithms such as the grid-of-tries [18] have to be discarded,
because they do not comply with the multiclass requirement.

This work demonstrates that the hierarchical tries with recursive search can be used to build
passive monitoring systems that can monitor tens of thousands of IoT devices in real time, with fast
reconfiguration when devices are added or removed.

In Section 2 of this paper, the network scenario is presented, selected algorithms are described,
and the methodology for performance evaluation is explained. In Section 3, the algorithms are
compared using several performance metrics. Section 4 concludes the paper.

2. Methodology

2.1. Scenario

We consider an ISP offering network connectivity to IoT devices. These devices are separated into
different groups. The network provider assigns addresses to the devices in order to create these groups.
For example, a group could contain all of the devices in one building (or in the same region), or all of the
devices with the same type of sensor. For some IoT applications (e.g., ubiquitous sensors), these groups
may contain hundreds of thousands of devices, each one with an individual network address.

Network addresses are a sequence of bits that is used as a network locator, and are assigned
according to the network protocol (IPv4, IPv6 . . . ). Different protocols use different numbers of bits in
the sequence (32 in IPv4, 128 in IPv6...) or even variable length addresses. A given host, such as the
controller for a group of devices, will be assigned a well-known network address. Groups of devices
in the same network will be assigned an address in the same so-called subnetwork, namely a set of
addresses with the same prefix bits. The first p bits in an address are called a prefix of size p.

Monitoring traffic from a large population of IoT devices requires classifying traffic coming from
or going to different single network addresses or network address prefixes. Figure 2 shows the scenario
under consideration. Several groups of devices communicate with different destinations through
the ISP’s network. This communication is bidirectional; the controllers may send requests to the
devices, and the devices may send data to the controlling hubs. Monitoring this communication
implies separating different views of the traffic. We can examine traffic from a single device or from a
group of devices. We can be interested in traffic from a group of devices to one controlling server, or in
the opposite direction from one controlling hub to a group of devices. It may be interesting to separate
traffic from groups of devices to any address to detect whether devices are being used to perform
denial-of-service attacks to Internet targets, or detect communications with suspected malware hubs.

An ISP monitoring system has to cope with this diversity of traffic flows. Every flow of interest
can be described by a source and a destination. Every source and destination may be a single network
address or a group of addresses given by a network address prefix with a length of p bits. We define
a class as any combination of source and destination addresses in which the monitoring system is
interested. A passive monitoring device that examines every network packet going through the ISP’s
network has to decide whether the packet belongs to any possible class of interest.

We denote C = {Ci}, where Ci = (si, di) is the set of classes of interest for the monitoring system.
The elements of C are our traffic-flow classes.

si is a source prefix, and di is a destination prefix. They may be prefixes, full addresses (a prefix of
n bits), or the “any host” address (represented by a prefix with 0 bits).

S is the set of source prefixes of interest S = {si}. The number of elements in S is NS. Similarly,
D is the set of destination prefixes of interest D = {di}. The number of elements in D is ND. C is the
set of classes of interest. C is a subset of the Cartesian product SxD.
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The number of elements of C that can be used may be as large as NS x ND, in case we are
interested in every possible source–destination combination. In a real scenario, only a subset of these
combinations will have to be monitored, and the number of classes in the set will be NC < NS ND.

As the number of addresses and prefixes of interest increases, it is more difficult for
traffic-processing software to classify packets on a larger set of classes in real time.

2.2. Algorithms and Data Structures

We herein evaluate three popular algorithms for multi-label packet classification. The algorithms
store the list of classes in different data structures. Every network packet can be matched against any
class stored in these data structures. We compare the performance of these algorithms in scenarios
with a large number of classes, NC. We will measure the performance based on the packet processing
speed and its memory footprint.

Table 1 contains the symbols describing the classes used in the data structure examples that follow.
A packet may belong to several classes, i.e., a packet from S12 to C1 should be in classes one, three,
and six.

Table 1. Class definitions for the examples in the algorithm and description of the data structures.

#class Source Destination

1 S1 C1 Traffic from sensor group S1 to controller C1
2 S11 C1 Traffic from sensor S11 to controller C1
3 S12 C1 Traffic from sensor S12 to controller C1
4 S0 M1 Traffic from any sensor to malware host M1
5 S11 M1 Traffic from sensor S11 to malware host M1
6 S1 Any Traffic from sensor group S1 to anywhere

A. Linear Search (LS) over the List of Classes

As a simple reference algorithm, using linear search (LS), every packet is evaluated sequentially
against all of the NC classes in C as shown in Figure 3. The list of classes is stored in a simple linked
list or in an array. The expected per-packet processing time depends on the number of classes NC as
O(NC).

B. DStries with Recursive Search

A data structure called a DStrie [12] is built to store all of the classes. This structure is composed
of several substructures called tries, which are created as follows.
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A binary search tree (trie) is a data structure that can store a set of network address prefixes.
Prefixes are stored in a decision tree starting with the first bit of the address. For example, to store the
binary prefix 0011, four nodes are created on the tree. The first bit is 0, the second is 0, the third is
1, and the fourth is 1. Data associated with prefix 0011 would be stored at the red node in Figure 4.
Those associated with prefix 1001 would be stored at the green node in Figure 4, and those associated
with the prefix of length 0 bits (representing any address) would be stored at the root node. Decision
nodes that are not required to reach any of the stored prefixes are not in the tree. Every node in the
tree is associated with a prefix, but that prefix may not be stored in the tree. For example, in Figure 4,
the node for prefix 001 does not contain any stored information, but it exists because it is required to
reach prefix 0011. Meanwhile, the node for prefix 010 is not in the tree. The tree is built by adding to
all of the decision nodes that are required to reach the stored prefixes of the tree.Sensors 2018, 18, x FOR PEER REVIEW  7 of 16 
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Figure 4. Destination prefix binary search tree (trie).

The DStrie data structure has to store classes with a source prefix and a destination prefix. It is
composed of two levels of tries. The high-level trie stores destination prefixes. Every time a packet is
examined, its destination address is searched for in the destination trie to find all of the destination
prefixes that may apply to that address. A class also contains a source prefix; therefore, every node
in the destination trie that stores a prefix also stores a pointer to a second-level trie containing the
source prefixes.

A given traffic class is stored in the node that is indicated by its source prefix in the source trie that
is pointed to by the node in the destination trie corresponding to its destination prefix. An example is
shown in Figure 5.
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Figure 5. DStrie for recursive search example.

To classify a packet with a given source and destination address, first, the destination address is
searched for in the destination trie. After the destination is found, the source is searched for in the
corresponding source trie. A packet that verifies a destination node also verifies every destination in
the path from the root to the final node in the destination trie. Thus, a given packet has to be searched
for in every source tree of any destination node in the path, from the root to the best destination prefix.

The classes are stored in only one place in the structure; however, to search for every possible
class, multiple source tries must be searched recursively. In the example shown in Figure 6, to classify
a packet with source S12 and destination C1, the destination address is searched for in the topmost
trie. Two nodes match: the root node corresponding to any address, and the node corresponding to
C1. In both nodes, the source trie searched for the source address. In the first one, node S1 points to
class six. In the latest, the search in the source trie obtains S1 and S12 pointing to classes three and one,
respectively. Thus, the search results in three hits.

The number of operations that is required to match an address in this type of trie depends on
the average bit length of the prefixes that are stored in the trie, as this yields the average depth of the
binary tree. In our evaluation scenario, a significant amount of full-length prefixes are stored in the
destination trie (individual devices), as well as in every source trie. Therefore, the expected time to
match an address down a tree should be O(n) , where n is the number of bits in network addresses.

The time to process a packet is given by the time that it takes to search a source address in a source
tree multiplied by the average number of source tries that have to be traversed, which is also O(n).
Therefore, the total time should be in the order of O(n̂2).

C. Set Pruning DStries

This algorithm presents improvements over DStries with recursive search. A trie is built with
every possible destination prefix as before. However, every class is stored not only in the source tree
given by its destination, but also in the source tries of its children in the destination trie. A class is
stored multiple times, thereby increasing the amount of memory that is used by the data structure.
A certain node in a source trie may point to a list of classes instead of a single class. In Figure 7,
the source trie pointed to by node C1 contains several classes at node S1.
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Figure 7. Set-pruning DStries example.

In this algorithm, the search that is undertaken for every packet is simpler than that in DStries with
recursive search (see Figure 8). Every packet destination address is searched for the best destination
match. Afterwards, the source address is searched for through a single source tree for all of the matches.
A single source trie is inspected per packet, but typically, the source tree is denser. The algorithm
consumes more memory by storing redundant information to achieve a faster structure traversal.
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The expected time to match a packet is in the order of traversing a search tree for the destination
address, and subsequently another one for the source address. Therefore, the expected running time is
O(2n).

We have implemented all of the algorithms mentioned herein inside a custom time-series
computing software that uses a pcap [19] file as input. We use it to evaluate the computing time
for several real-world traffic traces.

2.3. Network Traffic for Performance Evaluation

To evaluate the performance of these algorithms, network traffic and sets of classes are required.
Several traffic captures have been used to provide network packets for classifications (Table 2). The class
list to observe is generated from the prefixes and addresses that are present in the captured traffic.
The purpose is to generate a realistic scenario. If random prefixes and addresses were generated,
most of them would be discarded quickly in the classifier, because they could be found in short
branches of the tries. This would yield a false positive bias towards the DStries methods.

We extract every network address that is present in the traffic trace, as well as every network
prefix using prefix length p = 24. This list is used to generate every possible combination of a source
prefix and destination address, and its corresponding source address and destination prefix. This set
of combinations is used as the maximal classes set. To test an algorithm, a subset of NC of these classes
is randomly extracted. The trace is processed with this set of classes to evaluate the processing speed.
The average number of packets that is processed per second is recorded, as well as the time spent
building the classes’ structure into memory and the total memory footprint.

For every classification algorithm, the experiment is repeated using random subsets of classes
with different NC sizes.

Table 2 shows the primary statistics from the traffic traces that are used in the evaluation. All of
them are IPv4 (n = 32 bits) packet traces. Trace upna1h was captured at a university Internet access
link supporting the traffic from more than 2000 devices. Trace iot1h was captured at a production IoT
network with at least 200,000 operating devices. We captured approximately one hour of traffic at both
links. Each of the traces contains more than 50 million packets. When real IoT traffic is not available,
the research community resorts to generic IP traffic from desktop computers. Using trace upna1h,
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we show that the absolute values in the evaluation depend heavily on the traffic pattern. No valid
conclusions could have been extrapolated from generic Internet traffic alone. The specific case of traffic
from a real IoT scenario must be taken into consideration in the evaluation, as we do.

Table 2. Global statistics from the evaluation traffic traces.

trace duration #packets bytes throughput average packet size #unique address #prefixes 24 bits #classes

upna1h 1 h 193 M 170 GB 381 Mbps ~880 B 290 k 211 k 1193 k
iot1h 1 h 58 M 9 GB 24 Mbps ~165 B 214 k 8.9 k 724 k

Both traces contain a large number of different network addresses in use (more than 200,000).
Trace iot1h concentrates them into approximately 9000 prefixes (p = 24) while upna1h spreads them
out over more than 200,000 prefixes. For upna1h, a maximal class set is built, containing 1.19 million
classes. For iot1h, the maximal class set contains more than 724,000 classes.

Figure 9 shows the different experimental cumulative distribution functions of packet sizes in
each of the traffic traces. The average packet size (indicated by the dashed red line) is much larger in a
generic Internet access scenario (trace upna1h) than in a real IoT scenario (trace iot1h). These sizes will
affect the packet processing speed, as will be shown in the next section.Sensors 2018, 18, x FOR PEER REVIEW  11 of 16 
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traffic trace.

Traffic processing is performed using a single core in a Xeon E5-2609 CPU at 1.7 GHz with 128 GB
of random access memory (RAM). The trace is preloaded in RAM to measure the packet processing
time without disk access influence.

3. Results and Discussion

The input traffic traces were processed by the described algorithms using different random sets
of NC classes. Figure 10a shows a two-minute fragment of the time series for the total traffic in trace
upna1h. Figure 10b shows the extracted time series for one of the classes. In this section, we evaluate
the traffic intensity that a network probe could withstand to create several time series for thousands of
IoT devices in real time.

We span a range from hundreds to hundreds of thousands of classes in the set (i.e., number of
time series to compute simultaneously). The number of supported devices depends on the number
of classes (number of time series) per device. These time series are computed from the input traces
using the three presented algorithms. Sets containing up to 5000 classes are evaluated using the three
algorithms. Larger sets are simulated using only the fastest methods. The throughput obtained in
packets per second, using up to 5000 classes, is shown in Figure 11a (for upna1 trace) and Figure 11b
(for iot1h trace).
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The throughput depends strongly on NC. For the linear search algorithm, the computation time
increases as O(NC); therefore, the throughput decreases proportional to 1

NC
. This is an extremely fast

decay compared to the other algorithms, thereby causing the LS to be non-competitive for thousands
or more classes.

Recursive search and set-pruning DStries algorithms decay more slowly, and achieve more than
one million packets/s for thousands of classes.

The experiment was extended to at least 724,000 classes, excluding the computation of the LS
algorithm, whose results are predicted easily. Figure 12a,b show the packet processing speed for
both traces.

Both algorithms present a similar behaviour in the number of processed packets per second,
with a slightly higher performance in the case of set-pruning DStries. The throughput in gigabytes
(Gb)/s depends on the average packet size. Figure 13 shows the achievable processing bit rate
when considering the average packet sizes. The average per packet processing time in our reference
probe is about four microseconds when 100,000 classes are used, and less than 18 microseconds for
700,000 classes. Less than 1% of the packets suffer a processing time larger than 200 microseconds,
even when 700,000 classes are used. Therefore, the error margin in time-series computation with
samples every second is low.

The upna1h traffic trace presents average Internet packet sizes; therefore, the multigigabit
per-second processing speeds are reached. Trace iot1h was obtained from a real IoT scenario, where the
packets were smaller than the average sizes in the Internet. For a similar number of processed packets
per second, a much smaller traffic bitrate was consumed (approximately one Gb/s). We found it
important to consider the specific traffic characteristics in real IoT traffic.



Sensors 2019, 19, 78 12 of 16

Sensors 2018, 18, x FOR PEER REVIEW  12 of 16 

 

  
(a) (b) 

Figure 11. Packet processing speed for small sets of classes. (a) upna1h trace (b) iot1h trace. 

The throughput depends strongly on 𝑵஼. For the linear search algorithm, the computation time 
increases as 𝑂(𝑵஼); therefore, the throughput decreases proportional to 1 𝑵஼ൗ . This is an extremely 

fast decay compared to the other algorithms, thereby causing the LS to be non-competitive for 
thousands or more classes.  

Recursive search and set-pruning DStries algorithms decay more slowly, and achieve more 
than one million packets/s for thousands of classes. 

The experiment was extended to at least 724,000 classes, excluding the computation of the LS 
algorithm, whose results are predicted easily. Figure 12a,b show the packet processing speed for 
both traces. 

 

  
(a) (b) 

Figure 12. Packet processing speed for large sets of classes. (a) upna1h trace. (b) iot1h trace. 

Both algorithms present a similar behaviour in the number of processed packets per second, 
with a slightly higher performance in the case of set-pruning DStries. The throughput in gigabytes 
(Gb)/s depends on the average packet size. Figure 13 shows the achievable processing bit rate when 
considering the average packet sizes. The average per packet processing time in our reference probe 
is about four microseconds when 100,000 classes are used, and less than 18 microseconds for 700,000 
classes. Less than 1% of the packets suffer a processing time larger than 200 microseconds, even 
when 700,000 classes are used. Therefore, the error margin in time-series computation with samples 
every second is low. 

The upna1h traffic trace presents average Internet packet sizes; therefore, the multigigabit 
per-second processing speeds are reached. Trace iot1h was obtained from a real IoT scenario, where 
the packets were smaller than the average sizes in the Internet. For a similar number of processed 

Figure 12. Packet processing speed for large sets of classes. (a) upna1h trace. (b) iot1h trace.

Sensors 2018, 18, x FOR PEER REVIEW  13 of 16 

 

packets per second, a much smaller traffic bitrate was consumed (approximately one Gb/s). We 
found it important to consider the specific traffic characteristics in real IoT traffic. 

 
Figure 13. Processing speed in bits per second comparison for upna1h and iot1h traces. 

From these results, we can estimate the number of IoT devices that a single-core CPU could 
analyse. The limit depends on the traffic behaviour; therefore, we have included results based on a 
typical IoT profile (extracted from trace iot1h), and on a generic Internet access profile (extracted 
from trace upna1h).  

A single point in Figure 12 represents the maximum average packet arrival rate that could be 
processed for a specific number of classes, 𝑵஼. This number of classes is simply the number of IoT 
devices multiplied by the number of time series per device. The maximum packet arrival rate 
corresponds to the aggregate of traffic from the same number of devices. Assuming certain traffic 
intensity or an average per-device packet arrival rate, the maximum number of devices can be 
obtained. We introduce this intensity as a parameter using the average number of packets per 
second sent by each device. For example, a sensor that collects temperature measures and contacts 
its central repository once per minute, sending all of the measures with the exchange of 12 network 
packets generating 12/60 = 0.2 packets per second (pkt/s). 

Figure 14 shows the maximum number of devices supported in real time versus the number of 
time series to compute per device. As a bidirectional time series requires two classes, the case of six 
time series (six classes) corresponds to three bidirectional time series. This could represent, for 
example, the case of an operator who wants to measure the bidirectional traffic from each IoT device 
to its central collector, any server in its server farm, and everywhere else. The results for 10 time 
series consider the possibility of two extra bidirectional time series per device. We have included the 
results for up to 20 classes per device, or 10 bidirectional time series. Figure 14 is based on the 
devices that generate an average of five pkt/s. 

 

Figure 14. Number of supported devices that generate an average of five pkt/s. 

The results depend on the traffic profile, or how the random traffic process is generated. For a 
present IoT network scenario with six classes per device, and an average of five pkt/s per device, 
more than 40,000 devices are supported. Using 20 classes, at least 20,000 devices are supported in a 

Figure 13. Processing speed in bits per second comparison for upna1h and iot1h traces.

From these results, we can estimate the number of IoT devices that a single-core CPU could
analyse. The limit depends on the traffic behaviour; therefore, we have included results based on a
typical IoT profile (extracted from trace iot1h), and on a generic Internet access profile (extracted from
trace upna1h).

A single point in Figure 12 represents the maximum average packet arrival rate that could be
processed for a specific number of classes, NC. This number of classes is simply the number of
IoT devices multiplied by the number of time series per device. The maximum packet arrival rate
corresponds to the aggregate of traffic from the same number of devices. Assuming certain traffic
intensity or an average per-device packet arrival rate, the maximum number of devices can be obtained.
We introduce this intensity as a parameter using the average number of packets per second sent by each
device. For example, a sensor that collects temperature measures and contacts its central repository
once per minute, sending all of the measures with the exchange of 12 network packets generating
12/60 = 0.2 packets per second (pkt/s).

Figure 14 shows the maximum number of devices supported in real time versus the number
of time series to compute per device. As a bidirectional time series requires two classes, the case
of six time series (six classes) corresponds to three bidirectional time series. This could represent,
for example, the case of an operator who wants to measure the bidirectional traffic from each IoT
device to its central collector, any server in its server farm, and everywhere else. The results for 10 time
series consider the possibility of two extra bidirectional time series per device. We have included the
results for up to 20 classes per device, or 10 bidirectional time series. Figure 14 is based on the devices
that generate an average of five pkt/s.

The results depend on the traffic profile, or how the random traffic process is generated. For a
present IoT network scenario with six classes per device, and an average of five pkt/s per device,
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more than 40,000 devices are supported. Using 20 classes, at least 20,000 devices are supported in
a single-core CPU processing machine. For a traffic profile similar to a generic Internet access link,
better results are obtained, especially for low numbers of classes. The results for typical IoT scenarios
are worse, owing to the small average packet sizes.
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Figure 15a,b show the number of supported devices when the amount of traffic generated by each
device is increased from five pkt/s up to 40 pkt/s. Figure 15a considers six time series per device,
and Figure 15b shows the requirement of 10 time series per device. This represents future scenarios
where IoT devices collect more frequent measurements or send larger files to the central collector.
For example, a camera creating a 15-kB image every second could easily result in a traffic intensity of
15 or 20 pkt/s, considering both directions of the traffic.
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Figure 15 shows that by using six classes (three bidirectional time series) and high traffic
intensity-generating devices (up to 40 pkt/s), at least 10,000 devices would be supported by
both algorithms.

Although both set-pruning methods (DStries and DStries with recursive search) offer similar
speed results, they present some hidden drawbacks that must be considered. The data structure that
set-pruning DStries stores in memory duplicates the class information; therefore, its memory footprint
is higher than the one from a simple recursive search or the linear search method. Figure 16 shows
the memory usage for both DStries-based algorithms and both traffic traces. Although the linear
method presents minimal memory usage, it must be discarded as a suitable algorithm, owing to its
low performance in terms of packets processed per second for a large number of classes.
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The second drawback in set-pruning DStries is the difficulty in updating its memory structures.
Whenever a new class has to be added to the structure, the whole structure must be recreated from
scratch. This is simpler than updating the structure incrementally. Adding (or removing) classes must
be performed whenever new IoT devices are added to the network and monitoring platform. This is
typical in large deployment scenarios, as it could be in household metering devices in an electric
company. Figure 17 shows the time that is required to build the DStrie in the reference computer when
a single new class must be added to an already existing structure. The time to build a set-pruning
DStrie for hundreds of thousands of classes may reach several minutes; thus, the algorithm is not
useful if the set of classes to monitor must change frequently.
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4. Conclusions

We herein demonstrated how a single-core CPU could create the traffic time series for tens of
thousands of IoT devices, even when several time series were required for each device. The results
depended on the number of time series desired, and the traffic intensity created by each IoT device.
Considering different traffic profiles, the results were validated using traffic from a real IoT deployment
scenario with more than 200,000 devices, and from a generic Internet access link.

The algorithms of linear search, DStries with recursive search, and set-pruning DStries,
were evaluated. Although the linear search algorithm presented the simplest implementation and the
lowest memory requirements, it provided the worst results regarding the number of time series that
it could compute in real time compared to the other algorithms. It could only be used in extremely
small scenarios. Both DStries with recursive search and set-pruning DStries yielded similar results in
computation speed, and hence the number of devices supported in real time. DStries with recursive
search exhibited lower memory requirements compared to set-pruning DStries; therefore, it is better



Sensors 2019, 19, 78 15 of 16

suited for scenarios with low computing power and memory available in each time-series computing
node. Set-pruning DStries also created complex in-memory structures, and required more time when
a new IoT device had to be added or removed. For highly dynamic scenarios where new nodes
are added frequently, DStries with recursive search is the most suitable algorithm, as it offers the
lowest memory footprint and the lowest modification time. In a single-core CPU, it can create three
bidirectional time series for each one of more than 20,000 IoT devices in real time, when each device
sends an average of 10 packets per second.
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