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Abstract: This paper considers vital signs (VS) such as respiration movement detection of human
subjects using an impulse ultra-wideband (UWB) through-wall radar with an improved sensing
algorithm for random-noise de-noising and clutter elimination. One filter is used to improve the
signal-to-noise ratio (SNR) of these VS signals. Using the wavelet packet decomposition, the standard
deviation based spectral kurtosis is employed to analyze the signal characteristics to provide the
distance estimate between the radar and human subject. The data size is reduced based on a defined
region of interest (ROI), and this improves the system efficiency. The respiration frequency is estimated
using a multiple time window selection algorithm. Experimental results are presented which illustrate
the efficacy and reliability of this method. The proposed method is shown to provide better VS
estimation than existing techniques in the literature.

Keywords: vital sign; ultra-wideband impulse radar; wavelet packet decomposition

1. Introduction

Noncontact measurement of vital signs (VS) has been the subject of significant research in recent
years. It is used in applications such as health monitoring [1–5], heart rate variability analysis [6],
monitoring chronic heart failure (CHF) patients [7], cancer radiotherapy [8], search and rescue [9], and
animal health care [10–13]. Continuous wave (CW) radar has been used extensively for VS detection [14–21].
Many detection techniques have been proposed in the literature [22–41]. Ultra-wideband (UWB)
impulse radar is one of the most effective methods for VS detection due to the high resolution and
penetrability and low-power radiation [11–15].

A variable time window algorithm was used to estimate the human heart rate in [4]. Human
cardiac and respiratory movements have been analysed using the fast Fourier transform (FFT) and
Hilbert–Huang transform (HHT) [22,23]. To avoid the codomain restriction in arctangent demodulation
(AD), an extended differentiate and cross-multiply (DACM) method was proposed in [24]. In [25],
respiration-like clutter was suppressed using an adaptive cancellation method. A phase-based method
is proposed to detect the heart rate based on the UWB impulse Doppler radar [26]. A short-time
Fourier transform (STFT) was used for VS detection in [27]. However, these methods cannot accurately
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estimate the frequencies of VS signals due to the presence of harmonics. Further, STFT performance is
sensitive to the window length. Ensemble empirical mode decomposition (EEMD) and a frequency
window were used to remove clutter and harmonics in [28], but this increases the receiver complexity.
In [28], singular value decomposition (SVD) was employed to detect the period of human respiration
signals in very low signal to noise and clutter ratio (SNCR) environments. An adaptive Kalman filter
was developed to extract respiration signals from UWB radar data in [29]. However, incorrect results
were obtained when no subject was present. A constant false alarm rate (CFAR) technique was used
in [32] to remove clutter and improve the SNR of VS signals. Static clutter was removed using linear
trend subtraction (LTS) in [34]. In [36], a higher order cumulant (HOC) method was used to suppress
noise based on the fact that the noise can be approximated as Gaussian. In [37], an EEMD method
was presented to analyse human heart rate variations. An extended complex signal demodulation
(CSD) technique was considered in [38] to eliminate the wrapped problem with the DACM algorithm.
A state space (SS) method was proposed in [40] for VS detection over short distances. The usefulness
of these algorithms is limited by the complexity of real VS signal environments. In particular, they are
not effective for clutter removal, respiration signal extraction, and respiration and heart rate estimation
in long distance and through-wall conditions. As a result, improved techniques are required for VS
signal detection.

In this paper, a new method is presented to accurately estimate VS parameters even in low SNR
conditions such as long range and through-wall. The time of arrival (TOA) is determined using the
wavelet transform (WT) of the kurtosis and standard deviation (SD) of the received UWB signals.
Further, a method to estimate the respiration frequency is presented. The performance of this method
is compared with that of several well-known algorithms using data obtained with the UWB radar
designed by the Key Laboratory of Electromagnetic Radiation and Sensing Technology, Institute of
Electronics, Chinese Academy of Sciences. The contributions of the paper can be summarized as:

1. The signal to noise and clutter ratio (SNCR) of the received UWB pulses is improved using an
improved filter.

2. Based on the distance estimate, the region of interest (ROI) containing VS signals is defined to
reduce the data size and improve the system efficiency.

3. To obtain the respiration frequency more accurately, the time window selection algorithm is
proposed to remove the random noise.

The remainder of this paper is organized as follows. In Section 2, the VS signal model is introduced.
The proposed detection method is presented in Section 3 and the performance of this method is
compared with several well-known techniques in Section 4. Finally, Section 5 concludes the paper.

2. Vital Sign Model

A model similar to that in [36] for UWB impulse radar signals is employed here. Slow time
denotes the received pulses while fast time represents the range. Figure 1 illustrates the received pulses
which have been modulated by the periodic human respiration movements [27].

The distance can be expressed as

d(t) = d0 + Ar sin(2π frt) (1)

where d0 is the distance between the center of the human thorax and the radar, t is the slow time, Ar is
the respiration amplitude, and fr is the respiration frequency. The received UWB impulse radar signal is

R(τ) = ∑N−1
n=0 u(τ − nT − τr) ∗ hr(τ)

+
N−1
∑

n=0

P
∑

p=1,p 6=r
u
(
τ − nT − τp

)
∗ hp(τ) + a(τ) + q(τ) + g(τ) + ω(τ)

(2)

where ∗ denotes convolution, u(t) is the transmitted UWB pulse, τ is the fast time, T is the pulse
period, n is the slow time index with N samples, τr is the time delay from UWB radar to the human
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subject, r denotes the response from human respiratory movements, hr(τ) is the response from the
human subject, P is the number of the static objects, τp is the time delay from UWB radar to other
objects, hp(τ) is the response from all other objects, a(τ) is the linear trend, w(τ) is additive white
Gaussian noise (AWGN), q(τ) is nonstatic clutter, and g(τ) is unknown clutter. The time delay can be
expressed as

τϑ = τ0 + τr sin(2π frnT) (3)

where τ0 = 2d0/v and τr = 2Ar/v, v is the light speed. The fast time period is δT with sampling
interval δR = vδT/2. The received signal can be expressed as a M× N matrix R with elements

R[m, n] = h[m, n] + c[m, n] + a[m, n] + w[m, n] + q[m, n] + g[m, n] (4)

where m is the fast time index and M is the corresponding number of samples, h[m, n] is the received
pulses from human subject in digital form, c[m, n] is the received pulses from static object in digital
form, a[m, n] is the linear trend in digital form, w[m, n] is AWGN in digital form, q[m, n] is non-static
clutter in digital form and g[m, n] is unknown clutter in digital form.
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Figure 1. An illustration of the received radar pulses.

In a static environment, the ideal signal after clutter removal is

R(τ) = ∑ N−1
n=0 u(τ − nT − τr) ∗ hr(τ) (5)

Taking the Fourier transform (FT) gives

Y(mδT , f ) =
+∞∫
−∞

R(τ)e−j2π f tdt (6)

and the two dimensional (2-D) FT gives

Y(mδT , f ) =
+∞∫
−∞

Y(υ, f )ej2πυτdυ. (7)

where

Y(υ, f ) =
+∞∫
−∞

+∞∫
−∞

R(τ)e−j2π f te−j2πυτdtdτ (8)
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Y(υ, f ) =
+∞∫
−∞

avU(υ)e−j2π f te−j2πυτv(t)dt

= avU(υ)e−j2πυτ0
+∞∫
−∞

e−j2πυmb sin (2π frt)e−j2πυmh sin (2π fht)e−j2π f tdt
(9)

U(υ) is the FT of a UWB pulse, f is the spectrums of the slow time, and υ is the spectrums of the fast time.
Using Bessel functions, Formula (12) can be expressed as

Y(υ, f ) = avU(υ)e−j2πυτ0

+∞∫
−∞

(
+∞

∑
k=−∞

Jk(βrυ)e−j2πk frt

)(
+∞

∑
l=−∞

Jl(βhυ)e−j2πl fbt

)
e−j2π f tdt (10)

We have

e−jz sin (2π f0t) =
+∞

∑
k=−∞

Jk(z)e−j2πk f0t (11)

where βr = 2πAr, and βh = 2πAh, so then Formula (7) is given by

Y(mδT , f ) = av

+∞

∑
k=−∞

+∞

∑
l=−∞

Gkl(τ)δ( f − k fr − l fh) (12)

where

Gkl(τ) =

+∞∫
−∞

U(υ)Jk(βrυ)Jl(βhυ)ej2πυ(τ−τ0)dυ (13)

When mδT = τ0, the maximum of Formula (13) is obtained as

Ckl = Gkl(τ0) =

+∞∫
−∞

U(υ)Jk(βrυ)Jl(βhυ)dυ (14)

Y(τ0, f ) = av

+∞

∑
k=−∞

+∞

∑
l=−∞

Cklδ( f − k fr − l fh) (15)

The respiratory signal with l = 0 is given by

Ck0 =

+∞∫
−∞

S(υ)Jk(βrυ)J0(βhυ)dυ (16)

However, linear trend, non-static clutter, and other clutter exist in the received signals. This
along with AWGN makes detection difficult, as can be seen by comparing Figure 2a,b which show a
respiration signal without and with AWGN [30], respectively.Sensors 2018, 18, x FOR PEER REVIEW  5 of 25 
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3. VS Detection Algorithm

A flowchart of the proposed detection method is given in Figure 3 and the steps are described
below. Five healthy volunteers from the Key Laboratory of Electromagnetic Radiation and Sensing
Technology, Institute of Electronics, participated in this research. All participants consented to
participate and were informed of the associated risks. The experiments were approved by both
Ocean University of China and the Chinese Academy of Sciences and were performed in accordance
with the relevant international guidelines and regulations.Sensors 2018, 18, x FOR PEER REVIEW  6 of 25 
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3.1. Clutter Suppression

VS signals are typically corrupted by significant static clutter which can be estimated as

J =
1

M× N

M

∑
m=1

N

∑
n=1

R[m, n] (17)

and the signal after cancellation is
Ω[m, n] = R[m, n]− J (18)

The LTS algorithm can be used to remove the linear trend term expressed as [27,30]

W = ΩT − X
(

XTX
)−1

XTΩT (19)

where X = [x1, x2], x1 = [0, 1, . . . , N − 1]T, x2 = [1, 1, . . . , 1]TN , and T denotes the matrix transpose.

3.2. SNR Improvement

The received signal depends on the dielectric constant, humidity, and polarization of the
electromagnetic wave, and estimating these values can be difficult [36]. Therefore, a bandpass filter is
used rather than a matched filter. In this paper, two fifth-order Butterworth filters are employed, a
low-pass filter with normalized cutoff frequency 0.1037 and a high-pass filter with normalized cut off
frequency 0.0222. The filter output is

Λ[m, n] = α1W[m, n] + α2W[m− 1, n] + . . . + α6W[m− 5, n]− β2W[m− 1, n]− . . .− β6W[m− 5, n] (20)
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where α and β are the coefficient vectors. A smoothing filter which averages seven values in slow time
is used to improve SNR which gives

Φ[k, n] =

7×γ+6
∑

m=7×γ
Λ[m, n]

7
(21)

where γ = 1, . . . , bM/7c and bM/7c is the largest integer less than M/7.

3.3. TOA Estimation

Gaussian noise is a major factor affecting VS signals. The spectral kurtosis can be used to
extract non-Gaussian signals and their position in frequency [42,43] and has been employed in many
applications [44–48]. An improved TOA estimation algorithm is presented here, which is based on the
standard deviation (SD) and kurtosis.

The kurtosis for each fast time index m in Φ is given by [44]

K =
E
[
(Φ[m, n])4

]
{

E
[
(Φ[m, n])2

]}2 (22)

where E[•] denotes expectation. The kurtosis is three for a Gaussian distribution [45] and the excess
kurtosis is given by

K̃ = K− 3 (23)

The excess kurtosis is considered in this paper, and this is given in Figure 4a for the data acquired
with a volunteer located at a distance of 9 m from the radar outdoors. This shows that the difference in
excess kurtosis between when a target is present and not present is small. Thus the SD is combined
with the excess kurtosis.

The SD is given by [44]

SD =

√√√√√ N
∑

n=1
(Φm − µ)2

N − 1
(24)

And the kurtosis to SD (KSD) is defined as K̃/SD. Figure 4b shows the KSD for the radar data
described above. This indicates that there is a significant difference in the KSD between when a subject
is present and not present. Figure 4d shows that the KSD in the target area is approximately periodic.
Figure 4d gives the FTT of the KSD in Figure 4d, which confirms the KSD periodicity. The KSD when a
subject is not present is shown in Figure 4c.

The STFT [49–51] and wavelet transform (WT) [52–54] have been widely used to analyze VS
signals. However, the STFT performance depends on the length which can be difficult to determine.
As a consequence, the WT is considered here as it also provides the advantage of scalability in the
frequency domain [55]. For a given time domain signal z(τ), the continuous WT is

C =
1√
a

∞∫
−∞

z(τ)ψ
(

τ − b
a

)
dτ (25)

where ψ((τ − b)/a) is the wavelet with scaling parameter a and translation parameter b, and ¯ denotes
complex conjugate.
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The Morlet wavelet is considered here as it is widely used because of its simple implementation
and is given by

ψ(τ) = e−
τ2
2 cos(5τ) (26)

The discrete WT is employed in this paper, which is

D =
1√
a∑

n
z(n)ψ

(
n− b

a

)
(27)

The resulting time-frequency matrix when a target is present is shown in Figure 5a and when a
target is not present in Figure 5b. The VS signal is indicated in the red region. The range between the
radar receiver and target can be estimated as

L̂ = v× τ̂/2 (28)

where τ̂ is TOA estimate corresponding to the maximum value in the matrix.
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3.4. Frequency Estimation

3.4.1. Data Reduction

The index of the TOA estimate τ̂ in Φ can be expressed as

= = τ̂/2δT (29)

The human respiration frequency is usually between 0.2 and 0.4 Hz with amplitude 0.5 to
1.5 cm [56]. Thus, ε ∈ [=− 10,=+ 10], which has a range of approximately 8 cm is considered as the
region of interest (ROI) containing the respiration signal. ROI constants for all the human subjects, and
it is independent of the height, weight, size of the person. Figure 6a shows a slow time signal in the
ROI, while a slow time signal not in the ROI is given in Figure 6b. To further illustrate the differences,
Figure 6c shows 10 randomly selected slow time signals in the ROI, Figure 6d shows 10 randomly
selected slow time signals not in the ROI, and Figure 6e shows all the slow time signals in the ROI.
These show that the transmitted radar signals have been modulated by the human respiration signal.
Thus, only signals in the ROI are used to estimate the respiration frequency. In the radar system, 4096
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3.4.2. Noise Removal

To estimate the respiration frequency more accurately, the wavelet packet decomposition of each
slow time signal in the ROI is used [57,58]. For each slow time signal in Figure 6a where Φε(n), ε ∈
[=− 10,=+ 10], we have

Φε(n) =
∞

∑
i=−∞

aiψ
∗(n− i) +

∞

∑
j=0

∞

∑
i=−∞

dj2j/2ψ
(

2jn− i
)

(30)

where

ai =
∞

∑
n=−∞

Φε(n)ψ∗(n− i) (31)
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are the scaling coefficients and

dj = 2j/2
∞

∑
n=−∞

Φε(n)ψ∗
(

2jn− i
)

(32)

are the wavelets.
The corresponding Welch power spectrums of the individual wavelets are given in Figure 7 [59].

The x-axis is normalized frequency which is given by

fn = f /(π fs) (33)

where fs denotes the slow time sampling frequency. This figure shows that d6 is concentrated in the
0.1 to 0.5 Hz frequency range, while the other wavelets are concentrated in higher (>1 Hz) or lower
(<0.1 Hz) frequencies. As a result, to reduce noise the VS signals are extracted using d6.Sensors 2018, 18, x FOR PEER REVIEW  10 of 25 

 
(a)                          (b)                         (c)  

 
(d)                        (e)                            (f) 

 
(g)                            (h) 

Figure 7. The Welch power spectrum of (a) d1, (b) d2, (c) d3, (d) d4, (e) d5, (f) d6, (g) d7, and (h) d8. 

3.4.3. Spectral Analysis 

As mentioned above, the respiration period is between 2.5 and 5 s. As a result, it is challenging 
to estimate the respiration frequency accurately using a time window of less than 5 s. Further, the 
estimation accuracy is affected by inhomogeneous respiration, so the time window should be at 
least 3 to 6 periods [4]. An FFT is performed on d6 and the maximum value is the respiration 
frequency estimate.  

For a time window wT , the resolution is 

1 wf TΔ =  (34) 

Accurate estimation requires that 

rf fΔ �  (35) 

so 

rf fρ= × Δ  (36) 

where ρ  is an integer chosen to satisfy (35).  
Figure 8a shows the time windows used which are given by 

1 1w w wχ χ ς−= +…+ +  (37) 

Figure 7. The Welch power spectrum of (a) d1, (b) d2, (c) d3, (d) d4, (e) d5, (f) d6, (g) d7, and (h) d8.

3.4.3. Spectral Analysis

As mentioned above, the respiration period is between 2.5 and 5 s. As a result, it is challenging
to estimate the respiration frequency accurately using a time window of less than 5 s. Further, the
estimation accuracy is affected by inhomogeneous respiration, so the time window should be at
least 3 to 6 periods [4]. An FFT is performed on d6 and the maximum value is the respiration
frequency estimate.

For a time window Tw, the resolution is
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∆ f = 1/Tw (34)

Accurate estimation requires that
∆ f � fr (35)

so
fr = ρ× ∆ f (36)

where ρ is an integer chosen to satisfy Formula (35).
Figure 8a shows the time windows used which are given by

wχ = w1 + . . . + wχ−1 + ς (37)

where wχ is the length of the ith window and ς denotes the increase in length. Increasing the window
length improves the frequency resolution which is given by

∆ fχ =
fs

wχ
, χ = 1, 2, . . . (38)

where fs is the sampling frequency, and ς satisfies [4]

ς = ρ
fs

fr
(39)

This increase in window length results in an increase in the complexity of the radar system as
multiple FFTs must be computed. Further, this approach cannot reduce the harmonics of the respiration
signal [4] due to the different frequency spectrum lengths.

To improve the frequency resolution and reduce the harmonics while keeping the complexity
reasonable, another multiple time window technique is employed which is shown in Figure 8b. In this
case, the time windows have the same length so the frequency resolution is

∆ f =
fs

wi
, i = 1, 2, . . . , q (40)

where wi is the length of the ith window, and q is the number of windows.
The radar system can only process data of length 2φ. Therefore, the window length is chosen to

be wi = 512 samples with an overlap of G = 256 in Figure 8b. Each radar measurement provides 1024
samples, so q = 3 sets of data are acquired forξε, ε ∈ [=− 10,=+ 10]. Thus, the system parameters are
N = 512, ∆ f = 0.05 Hz, ρ = 4 and φ = 9.
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A frequency window of 0.1 to 0.8 Hz was previously used to reduce the clutter and improve SNR.
However, a window is not necessary with the proposed approach due to the defined ROI. As a result,
only an FFT is performed on each signal
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Ω[δ] = FFT{ξλ} (41)

Cumulants are employed to remove harmonics and clutter

H(i) =
21

∑
j=1

Ωj(i) (42)

The frequency is then estimated as
fr = H[µr] (43)

where µr corresponds to the index of the maximum value in Formula (37).

4. Data Acquisition

4.1. UWB Impulse Radar

Figure 9a shows the UWB impulse radar used for data acquisition. It contains one transmitter
and one receiver and is controlled by a wireless personal digital assistant. Table 1 gives the system
parameters. The UWB pulses are transmitted with a 400 MHz center frequency and a 600 kHz
pulse repetition frequency. The data are obtained for 124 ns time windows. M = 4096 samples are
obtained in fast time and N = 512 pulses in slow time which requires 17.6 s. A combination of
the equivalent-time [60] and real-time [61] sampling methods is employed which provides better
performance than with only one method. Figure 9b shows the received signal matrix R obtained with
one male volunteer outdoors at a distance of 9 m from the radar. The VS signal is not noticeable
because of the large path loss due to the long-range and through-wall conditions. This indicates that
VS signal detection in real environments is challenging.
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Table 1. The UMB Impulse Radar Parameters.

Parameter Value

center frequency 400 MHz
transmitted signal amplitude 50 V

pulse repeat frequency 600 KHz
number of averaged values (NA) 30

time window 124 ns
number of samples (M) 4092

input bandwidth of the Analog to Digital Converter (ADC) 2.3 GHz
ADC sampling rate 500 MHz
ADC sample size 12 bits

receiver dynamic range 72 dB
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4.2. Experimental Setup

The experiments were conducted at the Institute of Electronics, Chinese Academy of Sciences
and the China National Fire Equipment Quality Supervision Centre. The experimental setups are
illustrated in Figure 10a,b. The human subjects faced the radar breathing normally and kept still.
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Figure 10. The experimental setup for (a) subjects in front of the radar, (b) subjects at an angle to the
radar, (c) through-wall detection outdoors, (d) through-wall detection indoors and (e) the actuator.

The first experiment was conducted outdoors at the Institute of Electronics as shown in Figure 10c
at distances of 6 m, 9 m, 11 m and 14 m with two female (158 cm, 48 kg and 163 cm, 54 kg) and two
male (178 cm, 84 kg and 182 cm, 76 kg) subjects. This environment includes vegetation with moves
in the wind. The wall is 2.7 m high and more than 10 m wide, and is composed of three different
materials including 30 cm of brick, 35 cm of concrete, and 35 cm of pine. The radar is located at a
height of 1.5 m. The second experiment was conducted indoors at the China National Fire Equipment
Quality Supervision Center as shown in Figure 10d at distances of 7 m, 10 m, 12 m and 15 m with one
male subject (172 cm, 74 kg). The wall is 2.5 m in height and 3 m in width. The radar is located at a
height of 1.3 m.

The third experiment was conducted indoors at the China National Fire Equipment Quality
Supervision Center as shown in Figure 10e at distances of 7 m, 10 m and 12 m using an actuator of
size 0.25 × 0.3 m2 to imitate human respiration. The actuator was on a desk 1.3 m above ground and
moved at an amplitude of 3 mm and a frequency of 0.3333 Hz. In the fourth experiment, the actuator
was on a desk 70 cm above ground at a distance of 6 m outdoors at the Institute of Electronics. In the
fifth experiment, the actuator was on a desk 1.3-m above ground at azimuth angles of 30◦ and 60◦with
respect to the radar antenna indoors at a distance of 6 m as illustrated in Figure 10b.

5. Experimental Results

In this section, the performance of the proposed algorithm is compared with the FFT, constant
false alarm rate (CFAR) [32], advanced [35], and multiple higher order cumulant (MHOC) [36] methods
which are well-known in the literature. The clutter removal and SNR improvement are evaluated
using data from the first experiment with a female subject (158 cm, 48 kg) located 9 m from the radar.
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Figure 11 shows the received signal for 18 s. The result after LTS is given in Figure 11a. This indicates
that although the amplitude of the received signal is decreased, the VS signal is more pronounced.
Figure 11b gives the result after filtering in fast time (range), and Figure 11c after filtering in slow time.
This shows that the VS signal is more visible after filtering.Sensors 2018, 18, x FOR PEER REVIEW  14 of 25 
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II Female 163 54 Frequency (Hz) 0.31 0.31 0.26 
SNR (dB) −7.08 −10.6 −11.0 

III Male 178 84 Frequency (Hz) 0.37 0.31 0.37 

Figure 11. The results for the first experiment after (a) linear trend suppression (LTS), (b) range (fast
time) filtering and (c) slow time filtering.

5.1. Vital Sign Estimation Outdoors

The TOA and frequency estimation performance are now examined using the data from
experiment one with four subjects at different distances. The KSD, TOA, and frequency estimation are
first obtained with one female subject (158 cm, 48 kg). Figure 12 presents the KSD for the four distances
which shows that the KSD is larger in the ROI. The range results after WT decomposition of the KSD
are shown in Figure 13. The range errors are 0.12 m at 6 m, 0.17 m at 9 m, 0.11 m at 11 m and 0.14 m
at 14 m. The slow time signals in the ROI at the four distances are given in Figure 14. All indicate
modulation by human respiration. Figure 15 presents the corresponding frequency estimation which
gives values of 0.26 Hz at 6 m, 0.31 Hz at 9 m, 0.31 Hz at 11 m and 0.26 Hz at 14 m. Further, it indicates
that the harmonics have been effectively suppressed.
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The SNR of the VS signal can be expressed as [37]

SNR = 20 log10
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where ν1 is the zero frequency index and ν2 is the index of fs/2. Figure 16 gives the results for the
CFAR method with subject III, and the corresponding advanced method (AM) results are shown in
Figure 17. The red squares denote the estimates while the black ellipses denote the true values. These
figures show that these methods cannot provide accurate range estimates, while the previous results
indicate that the proposed method performs well even at a distance of 14 m. The frequency estimates
and corresponding SNRs for the four subjects with the proposed algorithm are given in Table 2. Table 3
presents the results with subject I for four different algorithms. These tables show that the proposed
method provides more accurate range and frequency estimates, and high SNRs.
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Table 2. VS Estimates for Four Subjects at Different Distances.

Subject Gender Height (cm) Weight (kg) Parameter 6 m 9 m 11 m

I Female 158 48
Frequency (Hz) 0.26 0.31 0.31

SNR (dB) −4.92 −7.56 −8.29

II Female 163 54
Frequency (Hz) 0.31 0.31 0.26

SNR (dB) −7.08 −10.6 −11.0

III Male 178 84
Frequency (Hz) 0.37 0.31 0.37

SNR (dB) −6.52 −9.52 −12.9

IV Male 182 76
Frequency (Hz) 0.37 0.31 0.37

SNR (dB) −7.12 −9.48 −11.3

Table 3. Performance for Subject I with Four Methods.

Method Parameter 6 m 9 m 11 m

CFAR
Range Error (m) 4.36 6.72 9.54
Frequency (Hz) 0.10 0.72 0.46

SNR (dB) −8.22 −12.86 −15.26

Proposed
Range Error (m) 0.12 0.17 0.11
Frequency (Hz) 0.25 0.31 0.31

SNR (dB) −4.91 −7.55 −8.28

MHOC
Range Error (m) 2.43 1.56 7.25
Frequency (Hz) 0.45 0.52 0.44

SNR (dB) −6.85 −9.58 −12.35

AM
Range Error (m) 5.46 4.67 3.98
Frequency (Hz) 0.12 0.74 0.63

SNR (dB) 0.84 −3.69 −6.59

5.2. VS Estimation Indoors

The data from the second experiment obtained indoors at the China National Fire Equipment
Quality Supervision Center with a male subject (172 cm, 74 kg) is now considered. Figure 18 shows the
KSD for distances of 7 m, 10 m, 12 m and 15 m. The range estimates after WT decomposition of the
KSD are given in Figure 19. The corresponding errors are 0.04 m at 7 m, 0.05 m at 10 m, 0.08 m at 12 m
and 0.07 m at 15 m. These results indicate that the range is estimated more accurately indoors, largely
due to the fact that the wind causes movement in the environment.
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Figure 19. Range estimation for the second experiment at distances of (a) 7 m, (b) 10 m, (c) 12 m and
(d) 15 m from the radar.

Figure 20 shows the frequency estimation results and the estimates are 0.37 Hz at 7 m, 0.31 Hz
at 10 m, 0.31 Hz at 12 m and 0.37 Hz at 15 m. The frequency estimates, SNRs and range errors for
three methods are given in Table 4. The FFT method has the worst performance and cannot provide
accurate frequency and range estimates. Adding a frequency window after the FFT can improve the
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SNR [62], but the range and frequency estimates are still poor, especially at long distances. Conversely,
the proposed method has excellent performance at all distances.
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Figure 20. Frequency estimation for the second experiment at distances of (a) 7 m, (b) 10 m, (c) 12 m
and (d) 15 m from the radar.

Table 4. VS Estimates for Three Distances.

Subject Gender Height (cm) Method Parameter 7 m 10 m 12 m

I Female 158 Proposed
Frequency (Hz) 0.37 0.31 0.31
Range Error (m) 0.04 0.05 0.08

SNR (dB) −4.87 −6.76 −10.4

II Female 163 FFT+
Window

Frequency (Hz) 0.14 0.20 0.20
Range Error (m) 0.15 0.27 11.7

SNR (dB) −9.08 −13.7 −15.6

IV Male 182 FFT
Frequency (Hz) 11.7 11.7 11.7
Range Error (m) 6.70 9.70 11.7

SNR (dB) −29.4 −31.9 −32.2

5.3. Actuator Signal Estimation

The KSD for the data from experiment three is shown in Figure 21. The corresponding range
estimates obtained using WT decomposition are given in Figure 22, and the signals in the ROI are
shown in Figure 23. Comparing Figures 14 and 23, the modulation is more pronounced with the
actuator than with human respiration. Figure 24 shows the frequency estimation and the estimates are
0.34 Hz at 7 m, 0.32 Hz at 10 m and 0.33 Hz at 12 m. The corresponding deviations are 0.66%, 0.33%,
and 0.24%, respectively. The results for four algorithms are given in Table 5. Again the proposed
method is the best. The detection results using the data from experiment four are shown in Figure 25.
This shows that the proposed algorithm provides better range and frequency estimates compared to
the other methods.
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the radar.
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Table 5. Results with Four Methods at Different Distances.

Method Parameter 7 m 10 m 12 m

Proposed
Frequency (Hz) 0.35 0.32 0.33

Deviation 0.66% 0.33% 0.24%
Range Error (m) 0.026 0.043 0.040

FFT + Window
Frequency (Hz) 0.37 0.37 0.12

Deviation 11% 11% 64%
Range Error (m) 0.23 0.27 11.9

AM
Frequency (Hz) 0.34 0.34 0.34

Deviation 2.5 % 2.5 % 2.5
Range Error (m) 0.40 0.37 8.70

CFAR
Frequency (Hz) 0.37 0.37 0.43

Deviation 11% 11% 28%
Range Error (m) 0.30 0.32 11.7

MHOC
Frequency (Hz) 0.11 0.11 0.08

Deviation 65% 65% 73%
Range Error (m) 0.47 0.62 0.47

5.4. Estimation at Different Azimuth Angles

The influence of the azimuth angle between the subject and radar on the detection performance is
now examined. The beam angle of the antenna in the radar system is 60◦. In previous sections, the
subject and actuator were directly in front of the radar so the azimuth angle was 0◦. In this section,
results are obtained for the data from experiment five with the actuator at a distance of 6 m and
angles of 30 and 60. Figure 26 presents the KSD and range estimates, and the signals in the ROI are
shown in Figure 27. Table 6 compares the results for the proposed algorithm with three other methods.
This indicates that the proposed algorithm provides superior performance, particularly at a 60◦angle.
AM has a better frequency estimate at 30◦but the range error is very high.
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Table 6. Results for Different Azimuth Angles.

Method Parameter 30◦ 60◦

MHOC
Frequency (Hz) 0.37 0.26

Deviation 11% 23%
Range Error (m) 0.51 5.27

AM
Frequency (Hz) 0.34 0.74

Deviation 2.5% 122%
Range Error (m) 13.73 13.73

FFT + Window
Frequency (Hz) 0.14 0.14

Deviation 57% 57%
Range Error (m) 5.56 2.81

Proposed
Frequency (Hz) 0.37 0.37

Deviation 11% 11%
Range Error (m) 0.10 0.10

6. Conclusions

In this paper, a new method for human respiration movement detection was presented based
on an UWB impulse radar. The time of arrival (TOA) of the received UWB signals was estimated
using a wavelet transform (WT), and the human respiration frequency was estimated using a time
window technique. The performance of the proposed method was compared with several well-known
algorithms under different indoor and outdoor conditions. The results obtained indicate that this
technique can effectively suppress clutter and provides superior detection performance.
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