ﬂ SCNSors m\py

Article
Resource Provisioning in Fog Computing;:
From Theory to Practice '

José Santos *3(0 Tim Wauters ¥©, Bruno Volckaert ¥ and Filip De Turck ¥

Department of Information Technology, Ghent University—imec, IDLab, Technologiepark-Zwijnaarde 126,

9052 Gent, Belgium; Tim.Wauters@UGent.be (T.W.); Bruno.Volckaert@UGent.be (B.V.);

Filip.DeTurck@UGent.be (ED.T.)

* Correspondence: josepedro.pereiradossantos@UGent.be; Tel.: +32-483-63-20-04

t This paper is an extended version of a conference paper: Towards Network-Aware Resource Provisioning
in Kubernetes for Fog Computing applications. In Proceedings of the IEEE Conference on Network
Softwarization, Paris, France, 24-28 June 2019.

T These authors contributed equally to this work.

check for
Received: 15 April 2019; Accepted: 12 May 2019; Published: 14 May 2019 updates

Abstract: The Internet-of-Things (IoT) and Smart Cities continue to expand at enormous rates.
Centralized Cloud architectures cannot sustain the requirements imposed by loT services. Enormous
traffic demands and low latency constraints are among the strictest requirements, making cloud
solutions impractical. As an answer, Fog Computing has been introduced to tackle this trend.
However, only theoretical foundations have been established and the acceptance of its concepts is
still in its early stages. Intelligent allocation decisions would provide proper resource provisioning in
Fog environments. In this article, a Fog architecture based on Kubernetes, an open source container
orchestration platform, is proposed to solve this challenge. Additionally, a network-aware scheduling
approach for container-based applications in Smart City deployments has been implemented as
an extension to the default scheduling mechanism available in Kubernetes. Last but not least,
an optimization formulation for the IoT service problem has been validated as a container-based
application in Kubernetes showing the full applicability of theoretical approaches in practical service
deployments. Evaluations have been performed to compare the proposed approaches with the
Kubernetes standard scheduling feature. Results show that the proposed approaches achieve
reductions of 70% in terms of network latency when compared to the default scheduling mechanism.

Keywords: smart cities; IoT; fog computing; resource provisioning; Kubernetes

1. Introduction

In recent years, the Internet-of-Things (IoT) rapidly started gaining popularity due to the wide
adoption of virtualization and cloud technologies. IoT services have been introducing a whole new
set of challenges by transforming everyday life objects into smart connected devices [1]. With the
advent of IoT, Smart Cities [2] have become an even more attractive business opportunity. Smart Cities
aim to reshape different domains of urban life, such as waste management, public transportation
and street lightning. According to [3], by 2022, nearly three-quarters of all connected devices in the
mobile network are expected to be smart devices. Additionally, the share of Low-Power Wide-Area
Network (LPWAN) connections is expected to grow from about 2 percent in 2017 to 14 percent by
2022, from 130 million devices in 2017 to 1.8 billion devices by 2022. LPWANSs are low-power wireless
connectivity solutions specifically meant for Machine-to-Machine (M2M) use cases requiring wide
geographic coverage and low bandwidth. Nowadays, the centralized structure of cloud computing
is facing tremendous scalability challenges to meet the decentralized nature of IoT services due to

Sensors 2019, 19, 2238; d0i:10.3390/s19102238 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-6276-2057
https://orcid.org/0000-0003-2618-3311
https://orcid.org/0000-0003-0575-5894
https://orcid.org/0000-0003-4824-1199
http://www.mdpi.com/1424-8220/19/10/2238?type=check_update&version=1
http://dx.doi.org/10.3390/s19102238
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 2238 2 of 25

the enormous bandwidth demands, high mobility coverage and low latency requirements [4]. As an
answer, Fog Computing [5,6] has emerged as an extension to the Cloud Computing paradigm by
distributing resources on the edges of the network close to end devices, thus, helping to meet the
demanding constraints introduced by IoT services. Waste management platforms, Augmented Reality
applications, video streaming services and smart transportation systems are already envisioned Smart
City use cases for Fog Computing, which will benefit from the nearby real-time processing and data
storage operations to overcome the limitations of traditional cloud architectures [7]. Although the
theoretical foundations of Fog Computing have already been established, the adoption of its concepts
is in early stages. Practical implementations of Fog Computing solutions are scarce. Additionally,
research challenges in terms of resource provisioning and service scheduling still persist. In fact,
setting up a proper Fog-based architecture to support millions of devices and their high demand
heterogeneous applications without dismissing the importance of network latency, bandwidth usage
and geographic coverage is still a challenge to be addressed in Fog Computing [8].

Nowadays, container-based micro-services are revolutionizing software development [9].
Micro-services represent an architectural style inspired by service-oriented computing that has recently
started gaining popularity. An application is decomposed in a set of lightweight autonomous containers
deployed across a large number of servers instead of the traditional single monolithic application [10].
Each micro-service is developed and deployed separately, without compromising the application
life-cycle. Currently, containers are the de facto alternative to the conventional Virtual Machine (VM),
due to their high and rapid scalability and their low resource consumption. In fact, due to their broad
acceptance, several research projects are being conducted on container technologies by IT companies
and open-source communities. The most popular among them is called Kubernetes [11]. Kubernetes is
an open-source container management platform originally developed by Google. Kubernetes simplifies
the deployment of reliable, scalable distributed systems by managing the complete orchestration
life-cycle of containerized applications. Although containers already provide a high level of abstraction,
they still need to be properly managed, specifically in terms of resource consumption, load balancing
and server distribution, and this is where integrated solutions like Kubernetes come into their own [12].
Therefore, in this article, a Fog Computing architecture based on the Kubernetes platform for Smart
City deployments is presented. The proposed architecture has been designed for Antwerp’s City
of Things testbed [13]. Furthermore, intelligent allocation decisions are crucial for proper resource
provisioning in Fog environments. Multiple factors should be taken into account, such as response
time, energy consumption, network latency, reliability, bandwidth usage and mobility [14]. Although
Kubernetes already provides provisioning functionalities, the scheduling feature merely takes into
account the number of requested resources (CPU, RAM) on each host, which is rather limited when
dealing with IoT services.

Thus, a network-aware scheduling approach presented in [15] has been implemented as an
extension to the default scheduling feature available in Kubernetes to enable resource allocation
decisions based on the current status of the network infrastructure. Last but not least, an Integer
Linear programming (ILP) formulation for the IoT service placement problem presented in [16] has
been deployed on the Kubernetes container orchestration platform, showing the full applicability of
theoretical approaches in practical service deployments. Finally, evaluations based on Smart City
container-based applications have been performed to compare the performance of the proposed
provisioning mechanisms with the standard scheduling feature present in Kubernetes.

The remainder of the article is organized as follows. In the next Section, related work is discussed.
Then, in Section 3, the importance of proper resource provisioning in Fog Computing is highlighted.
Section 4 introduces the proposed Fog-based Kubernetes architecture for the resource provisioning
of container-based services in Smart City deployments and its scheduling features. In Section 5,
the proposed scheduling extensions in Kubernetes are discussed. Then, in Section 6, the evaluation
setup is described which is followed by the evaluation results in Section 7. Finally, conclusions are
presented in Section 8.

Sensors 2019, 19, 2238 3 of 25

2. Related Work

In recent years, several studies have been carried out to deal with resource provisioning issues
in Smart City deployments specifically tailored to IoT services. In [17], a reference Fog-based
architecture has been presented. Their approach focused on implementing a Software Defined Resource
Management layer at the Fog layer to locally serve IoT requests. Among different functionalities,
a resource provisioning module has been included which is responsible for making allocation decisions
based on metrics gathered by a monitoring module. In [18] both architectural and resource allocation
concepts have been tackled. The authors proposed a provisioning algorithm focused on service
elasticity and on the number of available resources by using virtualization technologies. Simulation
results have shown that the proposed algorithm efficiently schedules resources while minimizing
the response time and maximizing the throughput, without any consideration to the overall cost.
Furthermore, in [19], a resource scheduling approach based on demand predictions has been presented.
Their work focuses on allocating resources based on users” demand fluctuations by using cost functions,
different types of services and pricing models for new and existing customers. The model achieves a
fair performance by preallocating resources based on user behavior and future usage predictions.

Additionally, in [20], the IoT resource provisioning issue has been modeled as an optimization
problem. The model considered the maximization of Fog resources and the minimization of overall
network delay. Their work has been extended in [21], where application Quality of Service (QoS)
metrics and deadlines for the provisioning of each type of application have been taken into account.
In [22], a hybrid approach for service orchestration in Fog environments is introduced. The solution
encompasses two stages. On one hand, at the IoT and South-Bound Fog Levels, distributed
management is proposed, which applies choreography techniques to enable automated fast decision
making. On the other hand, centralized orchestration is suggested at the North-Bound Fog and Cloud
Levels. In [23], an algorithm for workload management in Fog infrastructures has been presented.
Their work focuses on task distribution at the Fog layer while minimizing response time based on
resources demanded by these tasks. However, specific QoS requirements have not been considered in
their approach. In [24], a service provisioning approach for combined fog-cloud architectures has been
formulated as an optimization problem. Their model focuses on the minimization of network latency
while guaranteeing proper service operation. Furthermore, in [25], an optimization formulation for
the service deployment of IoT applications in Fog scenarios has been proposed and implemented as a
prototype called FogTorch. Their work focused not only on hardware and software demands but also
on QoS requirements, such as network latency and bandwidth.

In summary, this work advances beyond existing and ongoing studies that individually address
some of the remaining challenges, but have not yet delivered an autonomous and complete solution
for proper resource provisioning in Fog Computing. In this article, a Fog-based Kubernetes
architecture is proposed to enable the deployment of Smart City container-based services, while
increasing the performance over existing network infrastructure to fully maximize the potential of new
business opportunities triggered by IoT and Smart City use cases. It combines Fog Computing
concepts alongside the flexible and powerful Kubernetes platform to improve the performance
of application-to-resource provisioning schemes. By combining powerful container orchestration
technologies as Kubernetes and Fog Computing concepts, the proposed approach paves the way
towards a proper resource provisioning in the Smart City ecosystem.

3. Open Challenge: Resource Provisioning in Fog Computing

This section highlights the importance of proper resource provisioning in Fog environments.

Relevance of Proper Resource Provisioning

Resource provisioning is related to the allocation of computing, network and storage resources
needed to instantiate and deploy applications and services requested by clients and devices over

Sensors 2019, 19, 2238 4 of 25

the Internet. Fog Computing has been introduced to address the inherent challenges of computing
resource allocation for IoT services in Smart City deployments. Services can be provisioned in a highly
congested location, or even further from sensors, which would result in a higher communication
latency since current sensors and gateways are lacking in terms of processing power, storage capacity
and memory [26]. Centralized solutions are not suitable for IoT since sending all the collected data to
the cloud is unfeasible due to the high bandwidth requests. Fog Computing provides data processing
and analytics operations locally, which drastically reduces the amount of data needed to transport
to the cloud [27]. Furthermore, appropriate responses to protect infrastructure components as well
as application level communication can be executed in a timely manner if malfunctions or abnormal
events are detected in the data.

Figure 1 presents a high-level view of the Fog Computing architecture. Opposed to a centralized
cloud solution, end devices, sensors and actuators mainly communicate through wireless gateways,
which are linked with a Fog layer through multiple Fog Nodes (FNs). The communication with the
Cloud layer is then performed through Cloud Nodes (CNs). Nevertheless, as previously mentioned,
concrete implementations of Fog Computing concepts are still in early stages and several issues still
remain unresolved in resource provisioning for Fog Computing architectures:

¢ Latency: IoT services are highly challenging in terms of latency demands, since delay-sensitive
applications, such as connected vehicles and health-care monitoring services, require low latencies
in the order of milliseconds. If the latency threshold is exceeded, the service can become
unstable, action commands may arrive too late and control over the service is potentially lost.
Fog Computing is essential to provide low latencies to these delay-sensitive services.

¢ Bandwidth: The available bandwidth between sensors and the cloud is a serious constraint in
Smart Cities. Datasets are so huge that the amount of bandwidth needed to transport all the data
to the cloud is unacceptable. For instance, considering a video surveillance use case, where a
video camera requires a connection of 10 Mb/s. Continuously sending the data from the video
camera to the cloud translates into approximately 3.24 TB/monthly for a single camera. It is
therefore essential to adopt Fog Computing concepts to perform data analysis operations locally,
thus, reducing the amount of data transferred to the cloud.

* Energy efficiency: IoT devices are usually resource-constrained regarding their battery capacity,
computational power, size and weight. For instance, considering a smart lightning use case,
where thousands of sensors are measuring and controlling the light intensity of street lampposts.
These sensors periodically wake up, measure values, send data samples to the network and then
enter a sleep mode. Then, FNs perform the required computational operations on behalf of the
sensors on the data collected to ensure an extension of the devices’ lifetime.

e Programmability: Fog Computing solutions are currently being designed as software driven
technologies [28]. A Fog service provider will own a set of distributed Fog and Cloud Nodes
where all hierarchical levels are simple to access and the whole software stack is easy to setup and
maintain. Thus, the economic value of 10T is in the application software and the infrastructure
running it. In fact, software modules are needed for life-cycle management and orchestration of
Smart City services, including resource provisioning mechanisms.

* Reliability: Emergency and fire rescue services have extremely demanding availability
requirements. In case of malfunctions or failures on a given FN, nearby FNs must be able
to allocate the necessary resources to keep the provisioned Smart City services running properly.
The hierarchical nature of Fog Computing architectures can improve the networks’ reliability by
allowing distributed and local decision making in terms of resource provisioning.

* Mobility: Several IoT use cases have demanding mobility requirements. For instance, consider
a connected waste management fleet, where trucks are continuously moving through the City.
Messages must be sent to trucks alerting for possible accidents or roadblocks that may occur on
their predefined route. However, due to interference, network overload or even dead coverage

Sensors 2019, 19, 2238 5of 25

spots the connectivity between the FN and the truck may be lost. Therefore, FNs must work
together to find the best solution for the allocation of each service instance being requested by a
moving device to ensure adequate service operation at all times. High mobility services require
the deployment of Fog Computing technologies since centralized management approaches cannot
fully satisfy the dynamic demands of these type of services. Thus, Fog Computing is essential to
rapidly modify the allocation of services according to highly variable demand patterns.

* Decentralized Management: The available computing resources must be distributed towards
the edge of the network closer to end devices and users [29]. The so-called FNs provide local
operations towards improving the response time in terms of resource allocation by efficiently
scheduling all the necessary operations in the provisioning workflow. FNs should be aware of
the network status and possible anomalies and malfunctions that may occur to react accordingly
and keep all the services operating properly. Fog Computing brings intelligence and processing
power close to end devices, which increases the networks’ robustness and reliability.

® Scalability: Fog Computing has to accommodate different IoT use cases and must possess
adequate capacity to deal with growing service demands. IoT services must run without
disruption and support millions of devices. Fog Computing architectures must be designed
with scalability constraints in mind. FNs require modular software platforms where updates and
modifications can be easily made without service interruptions. As network demands increase,
FNs can receive additional software modules providing functionalities to deal with the growing
service usage.

— TN
/C\‘?'j —y Cloud Nodes
SN She
L }/(2% &gj\ﬁ (9}
N &
P, . A o
c_ D 4D D)
‘/\ﬁ o 5 \7\,;\
4 .
S&@ Sk @ g\w &E% Fog Nodes
s s
\ /
Iy T I\ /N
—_ _]_% ______ [V . — e = . — =N - .-
/ / I\ J \ \
\ \ \ /
/ V4
| \ p | / \
¢ o o e B ® e o
= == = = =

/
. A = S Q s = = End Devices
L i § &L i $ W s)

Figure 1. High-level view of Fog Computing.

4. Fog-Based Kubernetes Architecture for Smart City Deployments

This section introduces a Fog Computing architecture based on the Kubernetes platform. First,
a system overview of the proposed architecture is detailed, followed by the presentation of its main
concepts. Then, the scheduling feature of Kubernetes is discussed.

4.1. Kubernetes: Empowering Self-Driving Orchestration of Smart City Container-Based Applications

The concept of Self-driving Orchestration has been introduced in [30] where it has been used
to describe networks capable to measure, analyze and control themselves in an automated manner
when reacting to changes in their environment. Kubernetes open source community is working
towards a complete self-driving platform, aiming to simplify management and orchestration of
scalable distributed systems across a wide range of environments and cloud providers for containerized

Sensors 2019, 19, 2238 6 of 25

applications. Kubernetes already provides orchestration features, which can be used to build reliable
distributed systems with a high degree of decentralization in terms of the service life-cycle management,
which is needed to fully leverage on Fog Computing architectures [31]. The proposed Fog-based
Kubernetes architecture is shown in Figure 2. Several IoT networks are connected through wireless
gateways to each of the represented locations. The architecture follows the master-slave model, where
at least one master node manages Docker [32] containers across multiple worker nodes (slaves).
End devices such as sensors are considered neither as master nor worker nodes. The proposed
architecture follows the FN approach, where each FN is considered as a small cloud entity. The detailed
architecture of the master and the slave nodes is shown in Figure 3. Nodes can be local physical
servers and VMs or even public and private clouds. The Master is responsible for exposing the
Application Program Interface (API) server, the scheduling of service deployments and managing
the overall cluster life-cycle. Users interact with Kubernetes by communicating with the API server,
which provides an entry point to control the entire cluster. Users can also send commands to the
API server through the built-in Kubernetes Command Line Interface (CLI), known as Kubectl or
even by accessing a web-based Kubernetes User Interface (UI). Another fundamental component
is Eted. Etcd is a lightweight key-value pair distributed data storage. Namespaces, scheduled jobs,
deployed micro-services are examples of data stored in Etcd allowing other components to synchronize
themselves based on the desired state of the cluster [33]. Furthermore, the main contact point for each
cluster node is a service called Kubelet. Kubelet is responsible for recognizing discrepancies between
the desired state and the actual state of the cluster. When this happens, Kubelet launches or terminates
the necessary containers to reach the desired state described by the API server. Then, the Controller
Manager is responsible for monitoring Etcd and the overall state of the cluster. If the state changes,
the desired modifications are communicated through the API server. The Controller Manager is also
responsible for the overall control of the runtime environment, including the creation and termination
of containers.

loT-net-Antwerp
loT-net-Ghent @ 2

= ® MM " 8
Z ‘ & ' g
= 2 =~ o & PN
\hﬁ”/ 2
Y ==
Worker 6 A ; Worker 10
Worker 5 < Gw-Ghent Gw-Antwerp Worker 11

<) Ll S « | Worker 12
Worker 4 N %\ /@é S K

Master
Worker 13 k. Worker 14

Location “Ghent” Location “Antwerp”

X X

Worker 3
Worker2

A \SA/ Worker 8-
X - Location “Brussels” >
I Worker 7 N
Worker1 J — 3

i bk

Worker 9

) GwW-Bruges Gw-Leuven .
Location “Bruges” . Location “Leuven”
pu \.’ T =
= ~ o = i) &
S & £
W2 o
loT-net-Bruges = loT-net-Leuven

Figure 2. High-level view of the proposed Fog Computing infrastructure based on the
Kubernetes platform.

Sensors 2019, 19, 2238 7 of 25

ie

Users

i) an

-

API Server

Manager Scheduler

1 I |
P l
. |
Lo))
' 1 Controller Kube F\:/ ‘I
Lo |
I I |
I I

b |

Master Node

! Service Layer Lo ! Service Layer !
_______________________________________ 1 ! L
il e S
Lor WM PhysiclMachine o o I WM PhysialMachine T w7)
i | € Private Cloud) PublicCloud 1 | :\: J Private Cloud) Public Cloud) |
Lo @ — T e ! L/ — " e
" TTT T TT T T T oo o oo // ——————————————————————————————————————— !
Master Node WOFkE[NOde

N S
—

<~

Figure 3. Detailed Architecture of the Master and the Worker Node in the Kubernetes Cluster [15].

Although Kubernetes makes use of containers as the underlying mechanism to deploy
micro-services, additional layers of abstraction exist over the container runtime environment to
enable scalable life-cycle orchestration features. In Kubernetes, micro-services are often tightly coupled
together forming a group of containers. This is the smallest working unit in Kubernetes, which is
called a pod [12]. A pod represents the collection of containers and storage (volumes) running in
the same execution environment. The containers inside a pod share the same IP Address, volumes
and port space (namespace), while containers in different pods are isolated from one another, since
they own different IP addresses, different hostnames, etc. The main limitation is that two services
listening on the same port cannot be deployed inside the same pod. Based on the available resources,
the component that actually assigns pods to specific nodes in the cluster is called Kube-Scheduler
(KS). The KS is the default scheduling feature in the Kubernetes platform, which is responsible for
monitoring the available resources in the infrastructure and deciding on which adequate nodes pods
should be placed. The selected node then pulls the required container images from the Image Registry
and coordinates the necessary operations to launch the pod. The KS mechanisms are further detailed
in the next section.

4.2. Resource Scheduling in Kubernetes: The Kube—Scheduler (KS)

The KS decision making process is illustrated in Figure 4. Every pod requiring allocation is added
to a waiting queue, which is continuously monitored by the KS. If a pod is added to the waiting queue,
the KS searches for an adequate node for the provisioning based on a two step procedure. The first
step is called node filtering, where the KS verifies which nodes are capable of running the pod by
applying a set of filters, also known as predicates. The purpose of filtering is to solely consider nodes
meeting all specific pod requirements further in the scheduling process. The second operation is

Sensors 2019, 19, 2238

8 of 25

named node priority calculation, where the KS ranks each remaining node to find the best fit for the
pod provisioning based on one or more scheduling algorithms, also called priorities. The KS supports

the following predicates [15,33]:

Pods to be scheduled: . ‘Pod‘ . . ‘Pod .

For each pod: .

Worker 1 Worker 3 Worker 6 Worker 8 Worker 9

Possible Nodes: j /‘ t J :/ t l t ‘
L Fittering |
Filter Step: | e Worker 1doesn't have enough resources i
i o Storage (Volume) conflicts in Worker 3; i

Worker 6 Worker 8 Worker 9

Remaining Nodes: [\: K J 4 }
oo

Priority

o Worker 6:p =2 i
o Worker 8:p=4 i
e Worker9:p=8 i

_____________________ [

Select max{node priority} = Worker 9

Priority Calculation:

Best candidate Node:
Figure 4. Sample of detailed scheduling operations of the Kube-Scheduler.

Check Node Memory Pressure: This predicate checks if a pod can be allocated on a node
reporting memory pressure condition. Currently, Best Effort pods should not be placed on nodes
under memory pressure, since they are automatically deassigned from the node.

Check Node Disk Pressure: This predicate evaluates if a pod can be scheduled on a node
reporting disk pressure condition. Pods can currently not be deployed on nodes under disk
pressure, since they are automatically deassigned.

Host Name: This predicate filters out all nodes, except the one specified in the Spec’s NodeName
field of the pod configuration file.

Match Node Selector (Affinity/Anti-Affinity): By using node selectors (labels), it is possible
to define that a given pod can only run on a particular set of nodes with an exact label value
(node-affinity), or even that a pod should avoid being allocated on a node that has already certain
pods deployed (pod-anti-affinity). These rules can be created by declaring Tolerations in the
pod configuration files to match specific node Taints. Essentially, affinity rules are properties of
pods that attract them to a set of nodes or pods, while taints allow nodes to repel a given set of
pods. Taints and tolerations ensure that pods are not deployed onto inappropriate nodes. Both
are important mechanisms to fine-tune the scheduling behavior of Kubernetes. Node selectors
provide a flexible set of rules, on which the KS bases its scheduling decision by filtering specific
nodes (node affinity /anti-affinity), by preferring to deploy certain pods close or even far away
from other pods (pod affinity /anti-affinity), or just on node labels favored by the pod (taints
and tolerations).

Sensors 2019, 19, 2238 9 of 25

* No Disk Conflict: This predicate evaluates if a pod can fit due to the storage (volume) it requests,
and those that are already mounted.

* No Volume Zone Conflict: This predicate checks if the volumes a pod requests are available
through a given node due to possible zone restrictions.

* Pod Fits Host Ports: For instance, if the pod requires to bind to the host port 80, but another pod
is already using that port on the node, this node will not be a possible candidate to run the pod
and, therefore, it will be disqualified.

¢ Pod Fits Resources: If the free amount of resources (CPU and memory) on a given node is smaller
than the one required by the pod, the node must not be further considered in the scheduling
process. Therefore, the node is disqualified.

The KS knows in advance which nodes are not suitable for the pod deployment by applying
these predicates. Inadequate nodes are removed from the list of possible candidates. On one hand,
after completion of the filtering process, finding no capable nodes for the pod deployment is always a
possibility. In that case, the pod remains unscheduled and the KS triggers an event stating the reason
for the failed deployment. On the other hand, if several candidates are retrieved after completion of
the filtering operation, the KS triggers the node priority calculation. The node priority calculation
is based on a set of priorities, where each remaining node is given a score between 0 and 10, 10
representing “perfect fit” and 0 meaning “worst fit”. Then, each priority is weighted by a positive
number, depending on the importance of each algorithm, and the final score of each node is calculated
by adding up all the weighted scores [33]. The highest scoring node is selected to run the pod. If more
than one node is classified as the highest scoring node, then one of them is randomly chosen. The KS
supports the following priorities [15]:

e Balanced Resource Allocation: This priority function ranks nodes based on the cluster CPU and
Memory usage rate. The purpose is to balance the resource allocation after the pod provisioning.

* Calculate AntiAffinity Priority: This priority function scores nodes based on anti-affinity rules.
For instance, spreading pods in the cluster by reducing the same number of pods belonging to
the same service on nodes with a particular label.

¢ Inter Pod Affinity Priority: This priority algorithm ranks nodes based on pod affinity rules.
For example, nodes with certain pods already allocated are scored higher, since it is preferred
to deploy the given pod close to these pods.

¢ Image Locality Priority: Remaining nodes are ranked according to the location of the requested
pod container images. Nodes already having the requested containers installed are scored higher.

e Least Requested Priority: The node is ranked according to the fraction of CPU and memory
(free/allocated). The node with the highest free fraction is the most preferred for the deployment.
This priority function spreads the pods across the cluster based on resource consumption.

* Most Requested Priority: This priority algorithm is the opposite of the one above. The node with
the highest allocated fraction of CPU and memory is the most preferred for the deployment.

* Node Affinity Priority: In this case, nodes are scored according to node-affinity rules. For instance,
nodes with a certain label are ranked higher than others.

* Selector Spread Priority: This priority algorithm tries to minimize the number of deployed pods
belonging to the same service on the same node or on the same zone/rack.

e Taint Toleration Priority: This priority function scores nodes based on their taints and the
correspondent tolerations declared in the pod configuration file. Remaining nodes are preferred
according to the number of intolerable taints on them for the given pod. An intolerable taint is
specified by the “Prefer No Schedule” key.

Predicates are evaluated to dismiss nodes that are incapable of running the given pod while
priorities are designed to score all the remaining nodes that can deploy the pod. For example, a given
node would be scored lower for the Selector Spread Priority if an instance of the requested pod is

Sensors 2019, 19, 2238 10 of 25

already allocated on that node. However, if a pod affinity rule is specified in the pod configuration file
for the service, the node would be scored higher for the Inter Pod Affinity Priority since it is preferred
to deploy the given pods close to each other. Furthermore, if a given pod requires a core CPU (1.0),
the Pod Fits Resources predicate returns “False” for a node that only has 800 millicpu free. Additionally,
for the same pod, the Most Requested Priority ranks a node that has only 200 millicpu free higher
than one with 3.5 cores CPU left, even though both nodes can accommodate the pod (assuming they
have the same CPU capacity). It should be noted that the KS searches for a suitable node for each pod,
one at a time. The KS does not take the remaining pods waiting for deployment into account in the
scheduling process. When the allocation decision is made, the KS informs the API server indicating
where the pod must be scheduled. This operation is called Binding.

Another aspect worth mentioning of the Kubernetes provisioning life-cycle is called resource
requests and limits. Developers can specify resource requests and limits on the pod configuration
files. A resource request is the minimum amount of resources (CPU and/or memory) required by all
containers in the pod while a resource limit is the maximum amount of resources that can be allocated
for the containers in a pod. Pods can be categorized in three QoS classes depending on resource
requests and limits:

* Best Effort (lowest priority): A Best Effort pod has neither resource requests or limits on its
configuration files for each of its containers. These pods are the first ones to be terminated in case
the system runs out of memory.

e Burstable: A Burstable pod has all containers with resource requests lower than their resource
limits. If a container needs more resources than the ones requested, the container can use them as
long as they are free.

* Guaranteed (highest priority): A guaranteed pod has resource requests for all its containers equal
to the maximum resource needs that the system will allow the container to use (resource limit).

If resource requests are specified, the KS can provide better allocation decisions. Similarly;,
if resource limits are described, resource contention can be handled properly [34]. When several
containers are running on the same node, they compete for the available resources. Since container
abstraction provides less isolation than VMs, sharing physical resources might lead to a performance
degradation called resource contention. Resource requests and limits enable Kubernetes to properly
manage the allocation of resources. Nevertheless, developers still need to accurately set up these
requests and limitations, because containers often do not use the entire amount of resources requested
which could lead to wasted resources. For example, two pods have been deployed and each one is
requesting 4 Gb of RAM in a node with 8GB RAM capacity, but each pod is only using 1 GB of RAM.
The KS could allocate more pods onto that node, however, due to the incorrect specification in terms of
resource requests, the KS will never schedule additional pods onto that node.

5. Resource Scheduling Extension in Kubernetes

This section introduces the proposed extensions to the default scheduling mechanism available
in Kubernetes. First, a network-aware scheduling approach is detailed. Then, the ILP formulation
implemented as a container-based application is discussed.

5.1. Network-Aware Scheduler (NAS) Implementation in Kubernetes

Although the KS provides flexible and powerful features, the metrics applied in the decision
making process are rather limited. Only CPU and RAM usage rates are considered in the service
scheduling while latency or bandwidth usage rates are not considered at all. A suitable scheduling
approach for Fog Computing environments must consider multiple factors, such as the applications’
specific requirements (CPU, memory, minimum bandwidth), the state of the infrastructure (hardware
and software), the network status (link bandwidth and latency), among others. Therefore, this article
presents a Network-Aware Scheduler (NAS) extension to Kubernetes, which enables Kubernetes to

Sensors 2019, 19, 2238 11 of 25

make scheduling decisions based on up-to-date information about the current status of the network
infrastructure. Kubernetes describes three ways of extending the KS:

¢ Adding new predicates and/or priorities to the KS and recompiling it.
¢ Implementing a specific scheduler process that can run instead of or alongside the KS.

¢ Implementing a “scheduler extender” process that the default KS calls out as a final step when
making scheduling decisions.

The third approach is particularly suitable for use cases where scheduling decisions need to be
made on resources not directly managed by the standard KS. The proposed NAS has been implemented
based on this third approach, since information on the current status of the network infrastructure is
not available throughout the scheduling process of the KS. The proposed NAS has been implemented
in Go and deployed in the Kubernetes cluster as a pod. The pod architecture of the NAS is illustrated
in Figure 5. Additionally, the pod configuration file for the NAS is shown in Figure 6a, while the
scheduling policy configuration file for the NAS is presented in Figure 6b. As shown, the pod is
composed of two containers: the extender and the NAS. The extender is responsible for performing
the proposed scheduling operation, while the NAS is in fact the actual KS. A specific scheduler policy
configuration file has to be defined to instruct the KS how to reach the extender and which predicates
should be used to filter the nodes as a first step in the scheduling process. Essentially, when the KS tries
to schedule a pod, the extender call allows an external process to filter the remaining nodes (second
step). The arguments passed on to the “Filter Verb” endpoint consists of the set of nodes filtered
through the KS predicates and the given pod. This second step is used to further refine the list of
possible nodes.

P PRy “cheduler Extender Call
1 00 “NEtwork-aware-scheduter Endpoint: FilterVerb

Input: Remaining Nodes;
Node Given Pod;
N ~\ RN

Container “extender” ™ StEDj 2m Steﬁ
Port: 8100 & _J

Reply Extender Call
Output: Best Candidate Node

77\
(i N

///o

Figure 5. The detailed Pod architecture of the Network-Aware Scheduler (NAS).

Sensors 2019, 19, 2238 12 of 25

apiVersion: apps/vlbetal
kind: Deployment
netadata:
labels:
component: scheduler
tier: control-plane
name: nstwork-awars-schedulsr
namespace: kube-system
spec:
selector:
matchlLabels:
component: scheduler
tier: control-plane
replicas:
template:
metadata:
labels:
component: scheduler . .
tier: control-plane kind: ConfigHap
wversion: second apiVersion: vl
spec: metadata:
tolerations: name: network-aware-scheduler-config

- key: "function"
operator: "Equal"™ namespace: kube-system

value: "master" data:
effect: "NoSchedule" policy.cfg: |
servicehAecountName: network-aware-scheduler
containers:
— name: extender
image: jpedrol?®S2/network-aware-scheduler:1.0.0
ports:
- containerPort:
- name: network-scheduler
image: mirrorgooglecontainers/kube-scheduler:vl.12.3-beta.0
command:
- fusr/local/bin/kube-scheduler

"network-aw

eduler-config"
"namespace" "kub

- —-address=0.0.0.0
- —-leader-slect=false
- --scheduler-name=network-aware-scheduler
- --policy-configmap=network-aware-scheduler-config
- --policy-configmap-namespace=kube-system
livenessProbe:
httpGet:
path: /healthz
port:
initialDelaySeconds:
readinessProbe:
httpGet:
path: /healthz
port:
resources:
requests:
cpu: '0.1'
securityContext:
privileged: false
volumeMounts: []
hostNetwork: false

(a) The pod deployment configuration file. (b) The scheduling policy configuration file.

Figure 6. The configuration files required for the NAS.

A complete labeling of the Fog Computing infrastructure previously shown has been conducted
based on Affinity/Anti-Affinity rules and node labels mentioned in Section 4.2. As illustrated,
the infrastructure is composed of a Kubernetes cluster with 15 nodes (1 master node and 14 worker
nodes). Nodes have been classified with labels “Min, Med, High” for keywords “CPU, RAM”,
depending on their resource capacity. Additionally, nodes have been classified in terms of device type,
by classifying them with taints “Cloud, Fog” for the keyword “Device Type” and according to their
geographic distribution. Round Trip Time (RTT) values have been assigned to each node as a label so
that delay constraints can be considered in the scheduling process. The labels of each node are listed
in Table 1. These labels enable the placement of services in specific zones or certain nodes based on
the location delay. All these rules are important to fine-tune the scheduling behavior of Kubernetes,
in particular, to help the scheduler make more informed decisions at the filtering step by removing
inappropriate nodes.

Sensors 2019, 19, 2238 13 of 25

Table 1. The implemented node labels in the Kubernetes cluster.

Device . RIT RTT RTT RTIT RTIT

Node Type CPU RAM Bandwidth Ghent Antwerp Bruges Leuven Brussels

Master Cloud High High 10.0Mbit/s 32.0ms 32.0ms 320ms 320ms 4.0ms
Worker 1 Fog Min Min 10.0 Mbit/s 640ms 640ms 40ms 140ms 32.0ms
Worker 2 Fog Med Med 10.0Mbit/s 640ms 640ms 40ms 140ms 32.0ms
Worker 3 Fog Min Min 10.0 Mbit/s 640ms 640ms 40ms 140ms 32.0ms
Worker 4 Fog Min Min 10.0 Mbit/s 4.0ms 140ms 64.0ms 64.0ms 32.0ms
Worker 5 Fog Med Med 10.0Mbit/s 40ms 140ms 640ms 640ms 32.0ms
Worker 6 Fog Med Med 10.0Mbit/s 40ms 140ms 640ms 640ms 32.0ms
Worker 7 Fog Min Min 10.0 Mbit/s 64.0ms 64.0ms 14.0ms 4.0 ms 32.0 ms
Worker 8 Fog Med Med 10.0Mbit/s 640ms 640ms 140ms 40ms 32.0ms
Worker 9 Fog Min Min 10.0 Mbit/s 640ms 640ms 140ms 40ms 32.0ms
Worker 10 Fog Med Med 10.0Mbit/s 140ms 40ms 640ms 640ms 32.0ms
Worker 11 Fog Med Med 10.0Mbit/s 140ms 40ms 640ms 64.0ms 32.0ms
Worker 12 Fog Min Min 10.0 Mbit/s 140ms 40ms 640ms 640ms 32.0ms
Worker 13 Cloud Min Min 10.0 Mbit/s 320ms 320ms 32.0ms 320ms 4.0ms
Worker 14 Cloud Med Med 10.0Mbit/s 320ms 320ms 320ms 320ms 4.0ms

The proposed NAS makes use of these strategically placed RTT labels to decide where it is suitable
to deploy a specific service based on the target location specified in the pod configuration file. In fact,
the node selection is based on the minimization of the RTT depending on the target location for the
service after the completion of the filtering step. Additionally, in terms of bandwidth, NAS checks if the
best candidate node has enough bandwidth to support the given service based on the pod bandwidth
requirement. If the bandwidth request is not specified in the pod configuration file, a default value of
250 Kbit/s is considered during the scheduling phase. After completion of the scheduling request,
the available bandwidth is updated on the corresponding node label. The NAS Algorithm is shown in
Algorithm 1.

In summary, the proposed NAS approach filters the infrastructure nodes based on KS predicates
and then makes use of the implemented RTT location labels to choose the best candidate node from
the filtered ones to the desired service location.

Sensors 2019, 19, 2238 14 of 25

Algorithm 1 NAS Algorithm

Input: Remaining Nodes after Filtering Process in
Output: Node for the service placement out

1: //Handle a provisioning request
2: handler(http.Request){

3. receivedNodes = decode(http.Request);

4. receivedPod = decodePod(http.Request);

5. node = selectNode(receivedNodes, receivedPod);
6: return node

7: }

8:

9: //Return the best candidate Node (recursive)

10: selectNode(receivedNodes, receivedPod){

11: targetLocation = getLocation(receivedPod);
122 minBandwidth = getBandwidth(received Pod);
13: min = math.MaxFloat64;

14: copyReceivedNodes = receivedNodes;

16: // find min RTT
17 for node in range received Nodes{

18: rtt = getRTT (node, targetLocation);
19: min = math.Min(min, rtt);

20}

21:

22 // find best Node based on RTT and minBandwidth
23: for node in range received Nodes{

24: if min == getRTT (node, targetLocation){

25: if minBandwidth < get AvBandwidth(node){

26: return node;

27 }

28: else

29: copyReceivedNodes = removeNode(copyReceivedNodes, node);
30:

31: }

32:

33: // Available min RTT Nodes are full in terms of Network Bandwidth!
34: // Repeat the Process (Recursive)!

35 // First: Check if copy is not empty

36: if copyReceivedNodes == null

37: return null, Error("No suitable nodes found!");

38 else

39: return selectNode(copyReceivedNodes, receivedPod);
40: }

5.2. From Theory to Practice: ILP Model Implementation in Kubernetes as a Container-Based Application

Lastly, an ILP model for the IoT service placement problem has been designed as a container-based
application. The ILP model has been implemented in Java using the IBM ILOG CPLEX ILP solver
[35] and the Spring Framework [36]. The class diagram of our implementation is shown in Figure 7.
The class diagram has been generated with Intelli] IDEA, a Java Integrated Development Environment
(IDE) developed by Jetbrains [37]. The proposed ILP container application has been designed as a
Representational State Transfer (REST) API Simulation entities can be created or deleted through the
Simulation Controller. ILP solutions can be obtained by issuing a GET Request for all Simulation
entities available or by just sending a GET request for a specific Simulation entity. The ILP formulation
incorporates multiple optimization objectives. Users can specify the desired optimization objectives
and the amount of requests for each specific application when creating Simulation entities through a
PUT request. In fact, the model is executed iteratively so that in each iteration a different optimization
objective can be considered. To retain the solutions obtained in previous iterations, additional

Sensors 2019, 19, 2238 15 of 25

constraints are added to the model. Thus, the solution space continuously decreases since iterations
must satisfy the previous optimal solutions. Every iteration refines the previously obtained solution
by improving the model with an additional optimization objective.

The main advantage of ILP is the flexibility to analyze complex problems such as the resource
provisioning in Fog Computing presented in this paper. However, theoretical studies lack practical
implementations, which limit their applicability to real deployments. Therefore, the proposed ILP REST
API has been deployed and validated on the Kubernetes platform showing the full applicability of
theoretical approaches in practical service deployments. In Figure 8, the proposed service architecture is
shown. Two YAML Ain’t Markup Language (YAML) files are used to deploy the ILP REST API. Firstly,
the ilp-rest-api.yaml is responsible for creating the deployment of the ILP REST API. The deployment
is composed of three replicated ilp-rest-api Pods, indicated by the replicas field. This is the desired
number of replicas. Additionally, for each pod, a core CPU (1.0) and 2 Gb of RAM are requested
(resource requests), which can be increased to four cores and 8 Gb, respectively (resource limits).
The service is listening on port 8080. Secondly, the svc-ilp-rest-api.yaml creates a Kubernetes Service
called svc-ilp-rest-api. A Kubernetes Service is a flexible abstraction that provides a reliable manner to
access a logical set of pods. The set of pods exposed are determined by a label selector, which in this
case, corresponds to “app: ilp-rest-api”. Services make pods consistently accessible. Pods can be created,
updated or even terminated so that the service will know exactly how many replicas are running,
where pods are located and which IP addresses are being used. Essentially, services enable automatic
load-balancing across several pods. The ClusterIP service type (default) has been used to provide
internal access to the ilp-rest-api by exposing it on an internal IP in the cluster. Thus, the ilp-rest-api
service is only reachable from within the cluster.

The proposed ILP REST API has been evaluated on the Kubernetes platform to compare the
performance of the theoretical formulation with the implemented NAS approach and the standard
scheduling feature available in Kubernetes. The evaluation use case is presented next.

c Optimization c Constraint
e — T
I M

< simulationUR| €

< SimulationController

]

% = Application

Figure 7. The class diagram of the ILP REST API generated with Intelli] IDEA.

Sensors 2019, 19, 2238

| want:
Container: ilp-rest-api
Replication factor: 3

&

Kubernetes Cluster

Admin

ilp-rest-api.yaml

apiVersion: apps/v1

svc-ilp-rest-api.yaml

kind: Service

kind: Deployment apiVersion: vI

metadata metadata

name: ilp-rest-api name: svc-lp-rest-api

spec spec

selector selector
matchLabels: app: llp-rest-api
app: ilp-rest-api type: ClusterlP

replicas: 3 ports:

template: - port: 80
metadata: targetPort: 8080
labels:

app: ilp-rest-api
spec
containers:
- image: jpedrol992/ilp-rest-api0.01
name: ilp-rest-api
resources:
requests
memory: "2048Mi"
U0

limits:
memory: "8192MI"

API Server

© ilp-rest-api| localhost:8080
sve-ilp-rest-api:80

’svc-ilp-rest-api

© ilp-rest-api | localhost:8080

©ilp-rest-api | localhost:8080

U0

ports:

- containerPort 8080
name: http

protocol: TCP

Figure 8. The detailed service scheme of the ILP REST API in the Kubernetes platform.

6. Evaluation Use Case

In this section, the evaluation setup is detailed. Then, the evaluation scenario is described.

6.1. Evaluation Setup

16 of 25

The Kubernetes cluster has been set up on the imec Virtual Wall infrastructure [38] at IDLab,
Belgium. The Fog Computing infrastructure illustrated in Figure 9 has been implemented with
Kubeadm [39]. The cluster node hardware configurations are shown in Table 2. Furthermore,
the software versions used to implement the Kubernetes cluster are listed in Table 3.

Location “Ghent”

Worker 5

Location “Antwerp”

Worker 6 Worker 10 Worker 11

& 10Mbit/s s J & 10Mbit/s K J

s S Y &
Worker 12 DeviceType:Fog

delay =1ms delay = 5ms ke J CPU: medium
10Mbit/s /) [\/ RAM: medium
delay =15ms Master
10Mbit/s

Worker 13 k. J Worker 14

e CPU: max
RAM: max

N Location .

.

DeviceType:Cloud

delay =15ms
Worker 9
(32

“Brussels”
Worker 1
Z/ delay = 5ms
10Mbit/s

Worker 3

10Mbit/s ‘\»J

Location “Bruges”

g)
delay = 1ms &

Worker 7 Worker 8
K J 10Mbit/s J
P~ N

Location “Leuven”

Figure 9. A Fog Computing infrastructure based on the Kubernetes platform.

Sensors 2019, 19, 2238 17 of 25

Table 2. The Hardware Configuration of each Cluster Node.

Node CPU RAM
Worker 1 2x Quad core Intel E5520 (2.2 GHz) 12 Gb
Worker 2 1x 4 core E3-1220v3 (3.1 GHz) 16 Gb
Worker 3 2x Quad core Intel E5520 (2.2 GHz) 12 Gb
Worker 4 2x Quad core Intel E5520 (2.2 GHz) 12 Gb
Worker 5 2x Hexacore Intel E5620 (2.4 GHz) 24 Gb
Worker 6 2x Hexacore Intel E5620 (2.4 GHz) 24 Gb
Worker 7 2x Dual core AMD opteron 2212 (2.0 GHz) 8 Gb
Worker 8 2x Hexacore Intel E5620 (2.4 GHz) 24 Gb
Worker 9 2x Dual core AMD opteron 2212 (2.0 GHz) 8Gb

Worker 10 2x Hexacore Intel E5620 (2.4 GHz) 24 Gb
Worker 11 2x Hexacore Intel E5620 (2.4 GHz) 24 Gb
Worker 12 2x Quad core Intel E5520 (2.2 GHz) 12 Gb
Worker 13 2x Dual core AMD opteron 2212 (2.0 GHz) 8Gb
Worker 14 2x Hexacore Intel E5620 (2.4 GHz) 24 Gb
Master 2x 8core Intel E5-2650v2 (2.6 GHz) 48 Gb

Table 3. Software Versions of the Evaluation Setup.

Software Version
Kubeadm v1.13.0
Kubectl v1.13.0
Go gol.11.2
Docker docker://17.3.2
Linux Kernel 4.4.0-34-generic

Operating System Ubuntu 16.04.1 LTS

6.2. Scenario Description: Air Monitoring Service

The evaluation use case is based on an Air Monitoring Service performing unsupervised anomaly
detection. This scenario has been previously presented in [40], where a novel anomaly detection
solution has been proposed for Smart City applications in Smart Cities based on the advantages
of Fog Computing architectures. The purpose of this use case is to collect air quality data in the
City of Antwerp to detect high amounts of organic compounds in the atmosphere based on outlier
detection and clustering algorithms. Clustering allows the detection of patterns in unlabeled data
while outlier detection is related to the identification of unusual data samples when compared to
the rest of the dataset. In this article, the anomaly detection algorithms have been implemented as
container APIs and then deployed as pods in the Kubernetes cluster. Regarding clustering, the Birch
and the Kmeans algorithms have been evaluated while for outlier detection, the Robust Covariance
and the Isolation Forrest have been assessed. The deployment properties of each service are shown
in Table 4. In Figure 10, the pod configuration files for the deployment of the Birch service are
presented. As shown, the service chain of the Birch service is composed of two pods, the API and
the corresponding database. The desired location for the allocation of the service is expressed by the
“targetLocation" label. Furthermore, the minimum required bandwidth per service is expressed by
the “minBandwidth" label. As illustrated previously, the available bandwidth per node is 10.0 Mbit/s.
Additionally, pod anti-affinity rules have been added to each service so that pods belonging to the
same service chain are not deployed together, meaning that a node can only allocate one instance
of a certain pod for a particular service. For instance, for the Birch service, the birch-api and the
birch-cassandra pods cannot be deployed together. All pods have also been categorized as Burstable,
since their containers have resource requests lower than their resource limits. The deployment of these

Sensors 2019, 19, 2238

18 of 25

services has been performed to compare the performance of our implemented approaches with the

default KS.
Table 4. Deployment properties of each service.
Service CPU RAM Min. Re Target
Name Pod Name Req/Lim Req/Lim Bandwidth Facfo.r Locagtion Dependencies
(m) (Mi) (Mbit/s)
. birch-api 100/500 128/256 2.5 birch-cassandra
Birch i rchecassandra 500/1000 1024/2048 5 4 Ghent birch-api
robust-api 200/500 256/512 2 robust-cassandra
Robust hust-cassandra 500/1000 1024/2048 5 4 Antwerp T bust-api
Kmeans kmeans-api 100/500 128/256 2.5 2 Bruces kmeans-cassandra
kmeans-cassandra 500/1000 1024/2048 5 & kmeans-api
Isolation isolation-api 200/500 256/512 1 5 Leuven isolation-cassandra
isolation-cassandra 500/1000 1024/2048 5 isolation-api

apiVersion: apps/vlbecal
kind: StatefulSet

metadata:
name: birch-cassandra
labels:
app: bkirch-cassandra
spec:
serviceName: birch-cassandra
apiVersion: apps/vl replicas:
kind: Deployment updateStrategy:
metadata: type: CnDelete
name: birch-api selector:
spec: matchlabels:
selector: app: birch-cassandra
matchlabels:) template:
app: birch-api
replicas: metadata:
template: labels:
metadata: app: birch-cassandra
labels: targetLocation: RTT-Ghent

app: birch-api
targetLocation: RTT-Ghent

minBandwidth: SMi

spec:
minBandwidth: 2.5Mi .
spec: “ schednlerName: network-aware-scheduler
schedulerName: network-aware-scheduler affinity:
affinity: podAntiAffinity:
podAntiAffinity: regquiredDuringSchedulingIgnoredDuringExecntion:
requiredDuringSchedulinglgnoredDuringExecution: - labelSelector:
- labelSelector: matchExpressions:
matchExpressions: _ key: app
- key: app tor: In
operator: In operator: Ir
valnes: values:

- birch-api
topologyRey: "kubernetes.io/hostname"
containers:
- image: jpedrolssz/birch:2.0
name: birch-api
resources:

— birch-cassandra
topologyRey: "kubernetes.io/hostname™
terminationGracePeriodSeconds:
containers:
— name: birch-cassandra
image: cassandra:latest

regquests:
memory: "128Mi" Tesources:
cpu: "0.1" regquests:
limits: memory: "1024Mi"™
memory: "25EMi" cpu: '0.5°
ot limits:
2 containerport: memory: "2042Mi”
cpm: '1.0"

name: http
protocol: TCP

(a) birch-api service.

[

(b) birch-cassandra service.

Figure 10. The pod configuration files for the Birch Service

6.3. ILP Model Configurations

In Table 5, the evaluated ILP model configurations are shown. First, for all model configurations,
the number of accepted service requests is maximized in the first iteration. Then, on one hand,
the ILP-A configuration corresponds to the minimization of service latency based on the service target
location. On the other hand, the ILP-B configuration is related to the infrastructure’s energy efficiency,
since the final goal of this configuration is to minimize the number of nodes used during the service

Sensors 2019, 19, 2238 19 of 25

provisioning. Finally, the ILP-C configuration corresponds to a joint optimization of latency and energy,
where minimization of latency and the minimization of nodes correspond to the second and third
iteration, respectively.

Table 5. The evaluated ILP model configurations.

ILP Configurations
Iteration ILP-A (Latency) ILP-B (Energy) ILP-C (Latency and Energy)
1st MAX Requests ~ MAX Requests MAX Requests
2nd MIN Latency MIN Nodes MIN Latency
3rd - - MIN NODES

7. Evaluation Results

In this section, the evaluation results are detailed. First, the execution time of the different
scheduling approaches is presented, followed by the correspondent scheduler resource consumption.
Then, the allocation schemes for each of the schedulers is detailed. Finally, the average RTT per service
and the expected service bandwidth per node for the different scheduling approaches are shown.

7.1. Scheduler Execution Time

In Table 6, the execution time of the different scheduler approaches is presented. Each evaluation
run considered 24 pods as shown in Table 4 previously. The execution time has been evaluated 10 times.
The scheduling decision of the default KS is made after on average 4.20 ms per pod, while the NAS
requires on average 5.42 ms, due to the extender call procedure. The total execution time of the KS
and the NAS is 126.08 ms and 162.74 ms, respectively. Additionally, the three ILP configurations
previously presented have been requested to the ILP REST API. Firstly, the execution time of the ILP-A
configuration is 1.82 s (first iteration: 0.86 s, second iteration: 0.96 s). Secondly, the execution time of
the ILP-B configuration is 6.30 s (first iteration: 0.79 s, second iteration: 5.51 s). Thirdly, three objectives
are considered in the ILP-C configuration. The ILP-C is a refined solution of the ILP-A configuration,
since the minimization of the number of allocated nodes is considered as a third optimization objective,
resulting in a higher execution time of 4.20 s (first iteration: 0.87 s, second iteration: 0.95 s, third
iteration: 2.38 s). The higher execution time of the ILP-B configuration is due to the high potential
solution space for minimizing energy in this scenario. Regarding the pod startup time, the KS and
the NAS require on average 2 seconds to allocate and initialize the required containers while the ILP
configurations need between 4 and 8 seconds due to the higher decision time. By comparing both the
KS and the NAS with the three ILP formulations, it can be seen that heuristics can significantly reduce
the execution time of ILP models.

Table 6. The execution time of the different schedulers.

Scheduler Avg. Scheduling Decision (Per Pod) Total Execution Time Pod Startup Time

KS 4.20 ms 126.08 ms 2.04s
NAS 5.42 ms 162.74 ms 2.13s
ILP-A - 1.82s 3.97s
ILP-B - 6.30s 8.45s
ILP-C - 420s 6.35s

7.2. Scheduler Resource Consumption

In Table 7, the resource consumption (CPU and RAM) of the different scheduler approaches
is shown. As expected, the ILP REST API requires more resources than the other two scheduling

Sensors 2019, 19, 2238 20 of 25

mechanisms. Traditionally, ILP solvers need a high amount of resources and require high execution
times to find optimal solutions to the given problem. Nevertheless, ILP techniques could improve the
quality of the decision-making process by linearizing the problem and by only considering concrete
objectives. The KS and the NAS have a similar resource consumption, since both schedulers are based
on the default scheduling mechanism available in Kubernetes.

Table 7. The resource consumption of the different schedulers.

Scheduler Used CPU (m) Used RAM (Mi)

KS 102 41.93
NAS 102 56.67
ILP-A 233 452.36
ILP-B 639 630.06
ILP-C 438 636.71

7.3. Allocation Scheme

In Figure 11, the different allocation schemes for each of the schedulers are illustrated. As expected,
the KS deployment scheme is not optimized for the service’s desired location, since no considerations
are made about network latency in its scheduling algorithm. For instance, the KS allocation scheme
of the Isolation service is fairly poor since both pods, isolation-api and isolation-cassandra, are not
deployed in the desired location (Leuven). Furthermore, the ILP-B configuration is also not optimized
for service latency, since the objective of the ILP is to minimize the energy consumption by just
considering bandwidth constraints between services allocated on different nodes.

Scheduler
ks [NAS ILP-A 1LP- ILP-C

Legend:

Worker 1 Pod Birch-api - Ghent

kg |Bed Pod Pod [Pod B Pod Birch-cassandra - Gent
Worker 2 . Robust-api - Antwerp
Bruges 5 | 5 | vod [I P B8 Robust-cassandra - Antwerp
W?vkevs SEEE | . i I m B8 Kmeans-api - Bruges
™ | . Kmeans-cassandra - Bruges
Worker 4 B8 1sotation-api - Leuven
k, WEEE o il Fod I Bl 1sotation-cassandra - Lewven
Worker 5
Ghent & | |pod Pod [d pod [pod B Pod [P P54 rod B
Worker 6
~ | pod [BGd pod [pod [Pad BB pod B
Wari(er7
- B EEE W
wor;ers
Leuven S . . . Pod
WUV;(EYg
EE |E oo ot
wnrk‘er 10
s 1 [Pod [Fod B pod Gl | pod [
Wurl;er n
Antwerp & 1 |Ppod [E pod o Pod ol pod [BEY
Worker 12
K pod [Pod o pod BB pod BB

Worker 13|

k pod [P [pod [

Worker 14|

Brussels & Pod . Pod . Pod .

Master

s 1 [Pod B pod [pod [

Figure 11. The service provisioning schemes of the different schedulers.

Sensors 2019, 19, 2238 21 of 25

7.4. Network Latency and Bandwidth

The differences in the average RTT per scheduler are detailed in Figure 12. As shown, the proposed
NAS achieves significantly lower RTTs for each of the deployed services when compared with the
default KS. Both NAS and ILP-A configuration achieve similar results in terms of the overall RTT.
However, clear differences exist in the Birch and Robust service. RTT values of 6.5 ms and 23.0
ms are achieved with the NAS, while values of 16.0 ms and 13.5 ms are obtained with ILP-A. This
difference occurs because the ILP takes all remaining pods waiting for deployment into account in the
service provisioning, while the NAS searches for a suitable node for each pod, one at a time, similar
to the KS. Therefore, the NAS optimizes first the birch-api and the robust-api services and just after
their deployment, the correspondent birch-cassandra and robust-cassandra services are scheduled.
The service provisioning in terms of network latency is highly improved with the NAS and the ILP-A
configuration since KS and ILP-B do not consider bandwidth requests in the scheduling process. In this
particular allocation scheme, the NAS improves the performance of the default KS by reducing the
network latency by 70% while increasing the scheduling decision time by 1.22 ms per pod.

300

T

[Ibirch-api
[_Ibirch-cassandra
[robust-api
I robust-cassandra |
I kmeans-api

I kmeans-cassandra
Il isolation-api

Il isolation-cassandra

250 -

200 -

Average RTT (ms)
5
T

—_

o

o
T

50

0 ! 1 ! ! !
KS NAS ILP-A ILP-B ILP-C

Figure 12. Comparison of the average RTT per scheduler for different pod-deployment scheduling
strategies in a Smart City air quality monitoring scenario.

In Table 8, the expected service bandwidth per node for the different scheduling approaches
is presented. Both KS and the ILP-B configuration allocate pods on nodes already compromised in
terms of network bandwidth. For instance, KS overloads worker 4 and 12 by allocating to them at
least 3 pods leading to service bandwidths of 17.0 Mbit/s and 12.5 Mbit/s for the workers 4 and 12,
respectively, which surpasses the available bandwidth of 10.0 Mbit/s. This allocation scheme may lead
to service disruptions due to bandwidth fluctuations. Furthermore, the ILP-B configuration overloads
5 worker nodes to reduce the number of active nodes to solely 8, meaning that the remaining 7 are
not used in the service provisioning. This occurs due to the selected optimization objective (MIN
Nodes). Additionally, it should be highlighted that, although ILP-A and ILP-C achieve the exact
same values of RTT for each of the deployed services, their allocation scheme is quite different. ILP-C
refines the solution obtained by ILP-A by trying to further optimize the solution space by considering
the minimization of nodes as a third optimization objective while maintaining the same RTT values.
As shown for this configuration, several nodes can be considered full in terms of network bandwidth
since service bandwidths of 10 Mbit/s are expected, which is the limit in our network. Therefore,
the ILP-C solution provides us a more efficient usage of the infrastructure by reducing the fraction of
free resources per node.

Sensors 2019, 19, 2238 22 of 25

In summary, the proposed NAS optimizes the resource provisioning in Kubernetes according to
network latency and bandwidth, which is currently not supported by the default KS. An ILP REST
API has been also validated as a container-based application to evaluate the performance of theoretical
formulations in real service deployments. As shown, the execution time of ILP models is higher than
heuristic mechanisms (KS and NAS). Nevertheless, ILP models obtain the optimal solution for the
given problem based on a set of objectives. The evaluated ILP formulations improve the resource
provisioning performance of the default KS in terms of latency or energy efficiency and even can
refine the allocation scheme of the proposed NAS, while increasing the pod startup time on average
by 4 seconds. It should be noted that a dynamic mechanism suitable for dealing with bandwidth
fluctuations and delay changes is required, however, it is out of the scope of this article.

Table 8. The expected service bandwidth per node for the different scheduling strategies.

Schedulers
Node KS NAS ILP-A ILP-B ILP-C
Worker 1 6.0 Mbit/s 7.5 Mbit/s 2.5 Mbit/s - 2.5 Mbit/s

Worker 2 - 2.5 Mbit/s 5.0 Mbit/s 12.5Mbit/s 10.0 Mbit/s
Worker 3 10.5 Mbit/s 5.0 Mbit/s 7.5 Mbit/s 7.5 Mbit/s 2.5 Mbit/s
Worker4 17.0 Mbit/s 7.5 Mbit/s 10.0 Mbit/s - 4.5 Mbit/s
Worker 5 7.0 Mbit/s 75 Mbit/s 10.0 Mbit/s 9.5 Mbit/s 10.0 Mbit/s
Worker 6 5.0 Mbit/s 4.5 Mbit/s 4.5 Mbit/s 12.0 Mbit/s 10.0 Mbit/s

Worker 7 - 5.0 Mbit/s 5.0 Mbit/s 10.5 Mbit/s 1.0 Mbit/s
Worker 8 - 1.0 Mbit/s 6.0 Mbit/s 11.0 Mbit/s 10.0 Mbit/s
Worker 9 - 6.0 Mbit/s 1.0 Mbit/s 7.0 Mbit/s 1.0 Mbit/s
Worker 10 9.5 Mbit/s 4.5 Mbit/s 7.5 Mbit/s - 10.0 Mbit/s
Worker 11 7.5 Mbit/s 7.0 Mbit/s 7.0 Mbit/s - 4.5 Mbit/s
Worker 12 12.5 Mbit/s 7.0 Mbit/s 4.5 Mbit/s - 4.5 Mbit/s
Worker 13 - - - 14.5 Mbit/s 10.0 Mbit/s
Worker 14 10.0 Mbit/s 7.0 Mbit/s - 4.5 Mbit/s

Master 10.0 Mbit/s 10.0 Mbit/s 7.5 Mbit/s - -

8. Conclusions

In this article, a Fog Computing architecture is proposed for the proper resource provisioning of
Smart City container-based applications. Fog Computing has been introduced to manage the growing
amount of connected devices in the upcoming years, by placing computational resources on the edges
of the network. This trend has encouraged the development of scalable orchestration mechanisms
to guarantee the smooth performance of IoT services. Fog Computing provides effective ways to
overcome the high demanding requirements introduced by IoT use cases, such as low latency, high
energy efficiency and high mobility. The popular open-source project Kubernetes has been used to
validate the proposed solution. The scalable design of Kubernetes provides flexible abstractions
between the micro-services and the underlying infrastructure. In this article, a network-aware
scheduling approach is proposed, which enables allocation decisions based on the current status
of the network infrastructure. Additionally, an ILP formulation for the IoT service placement problem
has been designed as a container-based application and then validated on the Kubernetes platform
showing the full applicability of theoretical approaches in real service deployments. Evaluations
have been performed to compare the proposed scheduling mechanisms. Results show that the
proposed NAS can significantly improve the service provisioning of the default KS by achieving a
reduction of 70% in network latency, while increasing the scheduling decision time by only 1.22 ms
per pod. Theoretical approaches can demonstrate their full applicability when applied to real service
deployments as shown by the validated ILP REST APIL

Sensors 2019, 19, 2238 23 of 25

Author Contributions: Conceptualization, J.S. and T.W.; Formal analysis,].S.; Investigation,].S.; Methodology,
].S.; Software, J.S.; Supervision, TW., B.V. and ED.T.; Writing—original draft,].S.; Writing—review & editing, T.W.,
B.V.and ED.T.

Funding: This research was funded partially within the projects “Service-oriented management of a virtualised
future internet” and “Intelligent DEnse And Longe range IoT networks (IDEAL-IoT)” under Grant Agreement
#5004017N, both from the fund for Scientific Research-Flanders “Fonds Wetenschappelijk Onderzoek” (FWO-V).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

API
CLI
CN
FN

IDE
ILP
IoT
KS

Application Program Interface
Command Line Interface

Cloud Node

Fog Node

Integrated Development Environment
Integer Linear Programming
Internet-of-Things

Kube-Scheduler

LPWAN Low Power Wide Area Network
M2M Machine-to-Machine

NAS Network-Aware Scheduler
QoS Quality of Service

REST Representational State Transfer
RTT Round Trip Time

Ul User Interface

VM Virtual Machine

YAML YAML Ain’t Markup Language

References

1. Zanella, A.; Bui, N.; Castellani, A; Vangelista, L.; Zorzi, M. Internet of things for smart cities. IEEE Internet
Things 2014, 1, 22-32. [CrossRef]

2. Arasteh, H.; Hosseinnezhad, V.; Loia, V.; Tommasetti, A.; Troisi, O.; Shafie-Khah, M.; Siano, P. Iot-based smart
cities: A survey. In Proceedings of the IEEE 16th International Conference on Environment and Electrical
Engineering (EEEIC), Florence, Italy, 7-10 June 2016; pp. 1-6.

3. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 20162021 White Paper,
2017. Available online: https://www.cisco.com/c/en/us/solutions/ collateral /service-provider/visual-
networking-index-vni/white-paper-c11-738429.html (accessed on 2 February 2019).

4. Chiang, M.; Zhang, T. Fog and IoT: An overview of research opportunities. IEEE Internet Things 2016, 3,
854-864. [CrossRef]

5. Dastjerdi, Amir V.; Buyya, R. Fog computing: Helping the Internet-of-Things realize its potential. Computer
2016, 49, 112-116. [CrossRef]

6. Sarkar, S.; Chatterjee, S.; Misra, S. Assessment of the Suitability of Fog Computing in the Context of
Internet-of-Things. IEEE Trans. Cloud Comput. 2018, 6, 46-59. [CrossRef]

7. Perera, C,; Qin, Y,; Estrella, Julio C.; Reiff-Marganiec, S.; Vasilakos, Athanasios V. Fog computing for
sustainable smart cities: A survey. ACM Comput. Surv. 2017, 50, 32. [CrossRef]

8. Mouradian, C.; Naboulsi, D.; Yangui, S.; Glitho, Roch H.; Morrow, Monique J.; Polakos, Paul A.
A comprehensive survey on fog computing: State-of-the-art and research challenges. IEEE Commun.
Surv. Tutor. 2018, 20, 416-464. [CrossRef]

9. Dragoni, N,; Giallorenzo, S.; Lafuente, A. L.; Mazzara, M.; Montesi, F.; Mustafin, R.; Safina, L. Microservices:

Yesterday, today, and tomorrow. In Present and Ulterior Software Engineering, Springer: Cham, Switzerland,
2017; pp. 195-216.

http://dx.doi.org/10.1109/JIOT.2014.2306328
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-738429.html
http://dx.doi.org/10.1109/JIOT.2016.2584538
http://dx.doi.org/10.1109/MC.2016.245
http://dx.doi.org/10.1109/TCC.2015.2485206
http://dx.doi.org/10.1145/3057266
http://dx.doi.org/10.1109/COMST.2017.2771153

Sensors 2019, 19, 2238 24 of 25

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Newman, S. Building Microservices: Designing Fine-Grained Systems; O'Reilly Media, Inc.: Sebastopol, CA,
USA, 2015.

Burns, B.; Grant, B.; Oppenheimer, D.; Brewer, E.; Wilkes,]. Borg, omega, and kubernetes. Commun. ACM,
2016, 59, 50-57. [CrossRef]

Hightower, K.; Burns, B.; Beda, J. Kubernetes: Up and Running: Dive Into the Future of Infrastructure; O'Reilly
Media, Inc.: Sebastopol, CA, USA, 2017.

Santos, J.; Vanhove, T.; Sebrechts, M.; Dupont, T.; Kerckhove, W.; Braem, B.; Van Seghbroeck, G.; Wauters, T.;
Leroux, P; Latre, S.; et al. City of Things: Enabling Resource Provisioning in Smart Cities. IEEE Commun.
Mag. 2018, 57, 177-183. [CrossRef]

Yannuzzi, M.; van Lingen, F; Jain, A.; Parellada, Oriol L.; Flores, Manel M.; Carrera, D. Pérez, Juan L.;
Montero, D.; Chacin, P; et al. A new era for cities with fog computing. IEEE Internet Comput. 2017, 21, 54-67.
[CrossRef]

Santos, J.; Wauters, T.; Volckaert, B.; De Turck, F. Towards Network-Aware Resource Provisioning
in Kubernetes for Fog Computing applications. In Proceedings of the IEEE Conference on Network
Softwarization (NETSOFT), Paris, France, 24-28 June 2019.

Santos, J.; Wauters, T.; Volckaert, B.; De Turck, F. Resource provisioning for IoT application services in smart
cities. In Proceedings of the 13th International Conference on Network and Service Management (CNSM),
Tokyo, Japan, 26-30 November 2017; pp. 1-9.

Dastjerdi, Amir V.; Gupta, H.; Calheiros, R.N.; Ghosh, S.K.; Buyya, R. Fog computing: Principles,
architectures, and applications. In Internet of Things; Elsevier Inc.: Amsterdam, The Netherlands, 2016;
pp- 61-75.

Agarwal, S.; Yadav, S.; Yadav, A.K. An efficient architecture and algorithm for resource provisioning in fog
computing. Int. J. Inf. Eng. Electron. Bus. 2016, 1, 48-61. [CrossRef]

Aazam, M.; Huh, E. Dynamic resource provisioning through Fog micro datacenter. In Proceedings of the
IEEE international conference on pervasive computing and communication workshops (PerCom workshops),
St. Louis, MO, USA, 23-27 March 2015; pp. 105-110.

Skarlat, O.; Schulte, S.; Borkowski, M.; Leitner, P. Resource provisioning for IoT services in the fog.
In Proceedings of the IEEE 9th International Conference on Service-Oriented Computing And Applications
(SOCA), Macau, China, 4-6 November 2016, pp. 32-39.

Skarlat, O.; Nardelli, M.; Schulte, S.; Dustdar, S. Towards qos-aware fog service placement. In Proceedings
of the 1st International Conference on Fog and Edge Computing (ICFEC), Madrid, Spain, 14-15 May 2017,
pp- 89-96.

Velasquez, K.; Abreu, David P.; Gongalves, D.; Bittencourt, L.; Curado, M.; Monteiro, E.; Madeira, E. Service
orchestration in fog environments. In Proceedings of the IEEE 5th International Conference on Future
Internet-of-Things and Cloud (FiCloud), Prague, Czech Republic, 21-23 August 2017; pp. 329-336.

Zeng, D.; Gu, L.; Guo, S.; Cheng, Z.; Yu, S. Joint optimization of task scheduling and image placement in
fog computing supported software-defined embedded system. IEEE Trans. Comput. 2016, 65, 3702-3712.
[CrossRef]

Souza, Vitor Barbosa C.; Ramirez, W.; Masip-Bruin, X.; Marin-Tordera, E.; Ren, G.; Tashakor, G. Handling
service allocation in combined fog-cloud scenarios. In Proceedings of the IEEE International Conference on
Communications (Icc), Kuala Lumpur, Malaysia, 22-27 May 2016; pp. 1-5.

Brogi, A.; Forti, S. QoS-aware deployment of IoT applications through the fog. IEEE Internet Things 2017, 4,
1185-1192. [CrossRef]

Kobo, Hlabishi I.; Abu-Mahfouz, Adnan M.; Hancke, G.P. A survey on software-defined wireless sensor
networks: Challenges and design requirements. IEEE Access 2017, 5,1872-1899. [CrossRef]

Samie, F.; Tsoutsouras, V.; Bauer, L.; Xydis, S.; Soudris, D.; Henkel, J. Computation offloading and resource
allocation for low-power IoT edge devices. In Proceedings of the IEEE 3rd World Forum on Internet-of-Things
(WEF-IoT), Reston, VA, USA, 12-14 December 2016; pp. 7-12.

Byers, C.C. Architectural imperatives for fog computing: Use cases, requirements, and architectural
techniques for FOG-enabled IoT networks. IEEE Commun. Mag. 2017, 55, 14-20. [CrossRef]

Hong, C.; Varghese, B. Resource Management in Fog/Edge Computing: A Survey. arXiv 2018,
arXiv:1810.00305.

http://dx.doi.org/10.1145/2890784
http://dx.doi.org/10.1109/MCOM.2018.1701322
http://dx.doi.org/10.1109/MIC.2017.25
http://dx.doi.org/10.5815/ijieeb.2016.01.06
http://dx.doi.org/10.1109/TC.2016.2536019
http://dx.doi.org/10.1109/JIOT.2017.2701408
http://dx.doi.org/10.1109/ACCESS.2017.2666200
http://dx.doi.org/10.1109/MCOM.2017.1600885

Sensors 2019, 19, 2238 25 of 25

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

Kalmbach, P,; Zerwas, J.; Babarczi, P.; Blenk, A. Kellerer, W.; Schmid, S. Empowering Self-Driving Networks.
In Proceedings of the Afternoon Workshop on Self-Driving Networks, Budapest, Hungary, 20-25 August
2018; pp. 8-14.

Tato, G.; Bertier, M.; Tedeschi, C. Designing Overlay Networks for Decentralized Clouds In Proceedings of
the IEEE International Conference on Cloud Computing Technology and Science (CloudCom), Hong Kong,
China, 11-14 December 2017, pp. 391-396.

Anderson, C. Docker [software engineering]. IEEE Softw. 2015, 32, 102—c3. [CrossRef]

Kubernetes, Automated Container Deployment, Scaling, and Management, 2019. Available online: https:
/ /kubernetes.io/ (accessed on 2 February 2019).

Medel, V.; Tolosana-Calasanz, R.; Badares, J. A.; Arronategui, U.; Rana, O.F. Characterising resource
management performance in Kubernetes. Comput. Electr. Eng. 2018, 68, 286-297. [CrossRef]

IBM ILOG CPLEX Optimization Studio, 2019. Available online: https://www.ibm.com/products/ilog-
cplex-optimization-studio (accessed on 2 February 2019).

Spring: The source for modern Java, 2019. Available online: https://spring.io/ (accessed on 2 February 2019).
Intelli] IDEA, Capable and Ergonomic IDE for JVM, 2019. Available online: https:/ /www.jetbrains.com/
idea/ (accessed on 2 February 2019).

The Virtual Wall Emulation Environment, 2019. Available online: https://doc.ilabt.imec.be/ilabt-
documentation/index.html (accessed on 2 February 2019).

Overview of Kubeadm, 2019. Available online: https://kubernetes.io/docs/reference/setup-tools/
kubeadm /kubeadm/ (accessed on 2 February 2019).

Santos, J.; Leroux, P.; Wauters, T.; Volckaert, B.; De Turck, F. Anomaly detection for smart city applications
over 5g low power wide area networks. In Proceedings of the IEEE/IFIP Network Operations and
Management Symposium (NOMS), Taipei, Taiwan, 23-27 April 2018; pp. 1-9.

@ © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MS.2015.62
https://kubernetes.io/
https://kubernetes.io/
http://dx.doi.org/10.1016/j.compeleceng.2018.03.041
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://spring.io/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://doc.ilabt.imec.be/ilabt-documentation/index.html
https://doc.ilabt.imec.be/ilabt-documentation/index.html
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/
https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Open Challenge: Resource Provisioning in Fog Computing
	Fog-Based Kubernetes Architecture for Smart City Deployments
	Kubernetes: Empowering Self-Driving Orchestration of Smart City Container-Based Applications
	Resource Scheduling in Kubernetes: The Kube–Scheduler (KS)

	Resource Scheduling Extension in Kubernetes
	Network-Aware Scheduler (NAS) Implementation in Kubernetes
	From Theory to Practice: ILP Model Implementation in Kubernetes as a Container-Based Application

	Evaluation Use Case
	Evaluation Setup
	Scenario Description: Air Monitoring Service
	ILP Model Configurations

	Evaluation Results
	Scheduler Execution Time
	Scheduler Resource Consumption
	Allocation Scheme
	Network Latency and Bandwidth

	Conclusions
	References

