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Abstract: Epidermal electronic sensors (EESs) possess great advantages in the real-time and enduring
monitoring of human vital information compared to the traditional medical device for intimately
making contact with human skin. Skin strain is a significant and effective routine to monitor motion,
heart rate, wrist pulse, and skin growth in wound healing. In this paper, a novel skin sensor combined
with a ternary conductive nanocomposite (Carbon black (CB)/Decamethylcyclopentasiloxane
(D5)/Silbione) and a two-stage serpentine connector is designed and fabricated to monitor skin
strain. The ultrasoft (~2 kPa) and adhesive properties of the ternary conductive nanocomposite
ensure the capacity of the EES to intimately couple with human skin in order to improve accuracy
with a relative error of 3.39% at strain 50% as well as a large strain range (0~50%) and gauge factor
(GF ~2.5). The millimeter scale EES (~5 mm × 1 mm × 100 µm), based on the micro-nano fabrication
technique, consisted of a two-stage serpentine connector and screen print of the ternary conductive
nanocomposite. EESs with high comprehensive performance (electrical and mechanical properties)
are fabricated to confirm the analytical results and monitor the motion of a human hand. The good
agreement between experimental and analytical results paves the way for bettering monitoring of
skin growth during wound healing in order to avoid necrosis and scarring. This EES in monitoring
the motion of a human exhibit presents a promising application for assisting prosthetic movement.

Keywords: epidermal electronic sensors; skin strain; high accuracy; millimeter scale

1. Introduction

Epidermal electronic sensors (EESs) have many practical applications [1–6] in the real-time and
continuous monitoring of human vital information, which demonstrates their huge advantages, such
as being ultrasoft, stretchable and ultrathin, over traditional medical sensors. In the past decade,
many EESs were developed to monitor human health information, such as blood information (oxygen,
glucose, etc.) [7–11], body temperature [12,13], electrocardiogram (ECG) [1], electroencephalogram
(EEG) [1], etc. EESs for monitoring skin strains [14,15], including motion [16,17], heart and breath
rate [18–20], facial expression [21] and wrist pulse [22] are developed to replace wearable sensing
devices, for which the features relevant to the comfort of long-term wear are difficult to take into
account [23]. The ultrathin (~3 µm) and micro-size (~1 mm) features [24] empower EESs to improve
the compactness with skin and the comfort of long-term wear, which encouraged us to develop a novel
EESs for the real-time and enduring monitoring of skin strain.
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Based on a series of recent breakthroughs in material and technical science, various innovative
sensors for skin strain measurement have appeared [25–28]. Hyper-stretchable and flexible sensors are
fabricated to measure large deformation [29–32]. For example, Wang et al. [29] prepared a commendable
skin strain sensor with high fracture elongation up to 2000%. The sensor is composed of multifunctional
conductive hydrogels possessing the reversible physical interaction, which imparts the sensor with
rapid self-healing ability without any stimuli. Huang et al. [32] used a helix electrohydrodynamic
printing technique (HE-Printing) in combination with in-surface self-organized buckling to fabricate a
hyper-stretchable self-powered sensor with high stretchability (>300%). However, these sensors not
only are perishable and unstable, but also have a low accuracy due to their large size (~5 cm) [29].
Research [33–36] on conductive nanocomposites composed of conductive fillers, such as carbon black
(CB) [35], carbon nanotubes (CNTs) [37–39], graphene [20], etc., and flexible polymers demonstrated
that sensors fabricated by conductive nanocomposites possess a remarkable durability and stretchability
of the polymer and the stable resistance-strain characteristic of the filler. For example, Kong et al. [35]
presented a kind of conductive polydimethylsiloxane (PDMS) nanocomposite filled with CB for
fabricating sensors with highly linear, good cyclic electrical performance, and mechanical robustness,
which can be compared to conventional metal foil gauges. Yin et al. [39] introduced a highly
durable ternary conductive nanocomposite, including PDMS, CB and multi-walled carbon nanotubes
(MWCNTs), to develop a stretchable strain sensor with remarkable durability (over 105 cycles at
25% strain) and high sensitivity (GF ~12.15). The excellent sensitivity, remarkable durability and large
stretchability enable these sensors to detect small vibrations [39] or to map the deformation imaging
throughout the large surface for advanced, wearable human-machine interfaces [23,33,35].

However, the higher accuracy of real skin strain and the more precise location of the above-
threshold region are required to fit other applications, especially to monitor skin strain to avoid necrosis
and scarring at the above-threshold region [40]. In order to meet these requirements, the novel sensor
should have ultrasoft and ultrathin properties to measure real skin strain and a tiny size to locate the
above-threshold region accurately. This important for three reasons. Firstly, the Young’s modulus
of pre-existing sensors [35,37–39] is comparable to that of human skin. For example, the modulus
(>1.8 MPa) [41] of conductive PDMS nanocomposite is larger than the modulus of human skin
(0.42–0.85 MPa) [42]. The output strain of these sensors may be less than actual skin strain due to the
strengthened effect of these sensors. Secondly, research on mechanical invisibility by Ma et al. [43] and
Cai et al. [44] proves that the measurement position located at the upper surface of soft thick polymers,
far away from skin, can generate strain isolation. Finally, the average strain of the measuring region is
considered as the measurement result of one sensor, which might miss excessive strain due to the effect
of strain concentration. A smaller sized sensor can locate the above-threshold region more accurately.
The difficulties of connecting external power and preparation process result in large size (~2 cm) of
pre-existing sensors [23,35].

In this paper, an ultrasoft biocompatible ternary conductive nanocomposite consisted of CB,
Decamethylcyclopentasiloxane (D5) and Silibione is introduced to sense skin strain, and a two-stage
serpentine connector is designed to accomplish millimeter scale EESs. The ternary conductive
nanocomposite is fabricated as thin-film by screen print and the two-stage serpentine structure ensures
the stretchability of the EES. The paper is outlined as follows. The design methods and fabrication
process of the EES are described in Section 2. The experiment setup is presented in Section 3. The results
and discussion are listed in Section 4. The main conclusions are given in Section 5.

2. Design and Fabrication of the EES for Skin Strain Measurement

2.1. Design

The proposed skin sensor consists of two primary components, conductive nanocomposite and a
serpentine metallic connector, as shown in Figure 1. Both ends of the serpentine connector, primarily
placed on human skin, as shown in Figure 1a, are uncovered in order to intimately make contact with
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the nanocomposite. The electrical resistance of the connector and other components (~100 Ω), which is
far below it of the conductive nanocomposite (>150 kΩ), can be neglected. According to Ohm’s law,
the electrical resistance R can be written as:

R =
ρl
S

(1)

where ρ is the electrical resistivity of the nanocomposite, l and S are the length and cross-section area,
respectively. The volume V remains unchanged during deformation, which gives:

R =
ρl2

V
(2)

The specific between electrical resistance RE for final deformation and R0 for initial deformation
can be given as:

RE

R0
=

l2E
l20

(3)

The strain ε = (lE − l0)/l0 is substituted into Equation (3), which gives:

ε =

√
RE

R0
− 1 (4)

The relation between strain and resistance can be approximately considered as linear by expanding
as a Taylor series truncated at the first degree needed under the small deformation [39] but is nonlinear
under a large deformation according to Equation (4). Thus, the resistance-strain characteristic of the
sensor in this paper is given from Equation (4) to accurately measure skin strain.
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Figure 1. Illustration of the epidermis electronic sensor (EES): (a) Schematic illustration of the connector.
(b) Enlarged image of the EES, the scar bar is 250 µm. (c) Image of the two-stage serpentine connector
located in human skin. (d) Image of the EES.
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2.2. Material

The Silbione silicone (SILBIONE® RT GEL 4717 A&B, Bluestar Silicones Hong Kong Trading
Co. Ltd, Hongkong, China) is a soft skin adhesive gel characterized by good adhesion and proven
biocompatibility, which is usually used as an adhesive wound dressing and adhesive sheets for scar
treatment. The modulus of Silbione (~2 kPa) measured by a dynamic mechanical analyzer (DMA Q800,
TA Instruments Inc., New Castle, DE, USA) is far below than that of PDMS (>1.8 MPa) [41], which
provides a functional support for neglecting the effects of the modulus to increase measurement
accuracy. D5 (Aladdin Industrial Corporation, Shanghai, China) has chemical stability and is widely
used in cosmetics and body care products, which determines us to adopt it as a diluter in this ternary
conductive nanocomposite. Carbon black (CB) (VXC-72R, Cabot Corporation, Alpharetta, GA, USA)
with an average diameter of 30 nm is chosen as the conductive fillers due to its good biocompatibility
and stable chemistry.

The two-stage serpentine connector consists of polyimide (PI) and gold (Au). PI (ZKPI-305IIE,
Beijing Pome Technology Co., Ltd, Beijing, China) is a universal substrate material with good
comprehensive performance, such as heat-resistant 400 ◦C high electric insulation, low solubility and
so on. The chosen conductive material of the connector was gold (Au) since it has excellent chemical
(stability) and mechanical properties (ductility), and is biologically harmless, making it desirable
among researchers.

2.3. Fabrication Process

The electrical and mechanical properties are characterized by the ternary conductive
nanocomposite and the electrical signals are captured by the two-stage serpentine connector.
The fabrication processes of the ternary conductive nanocomposite and the serpentine connector are
illustrated systematically in Figure 2. The CB is homogenously dispersed into Silbione to synthesize the
ternary conductive nanocomposite, as schematically shown in Figure 2a. First, certain weight fractions
of CB are fully dissolved in D5 by sonication with water. Then, the A and B components of Silbione
are added into the above mixture in turn according to a certain proportion 1:1:2 of A component,
B component of Silbione and D5. Finally, the degassing process is applied in a drying oven with
optimized temperature 45 ◦C for 30 min to get uniform and ropy mixture, which is the precursor
solution of the ternary conductive nanocomposite. The flexible serpentine connector is fabricated
by micro-nano processing, including photolithography, sputtering, lift-off, dry etching and chemical
etching, as illustrated systemically in Figure 2b. The films of PI (~5 µm) and photoresist (~1.6 µm)
(AZ5214E, Clariant GmbH, Wiesbaden, Germany) are evenly coated by spin-coating with 4000 rpm/min
and 3000 rpm/min. The metallic films of Au (~500 nm) and aluminum (Al) (~500 nm) are sputtered by
magnetron sputtering. The lift-off process is applied to formulate patterned metallic films, which act as
functional components and protective masks for dry etching. Finally, the flexible serpentine connector
is peeled off from the glass substrate and cleaned to remove harmful material repeatedly. Figure 2c
shows assembling process: The serpentine connector is stuck on human skin. Then, the precursor
solution of the ternary conductive nanocomposite (~100 µm) is screen printed over the connector and
solidified with 40 ◦C for 1 h, which is safe for human skin [45]. As shown in Figure 1c, the EES is
successfully fabricated with the size of 5 mm × 1 mm × 100 µm for the functional part.
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Figure 2. Schematic diagram of the fabrication process of the EES: (a) Synthesis process of the ternary
conductive nanocomposite. (b) Fabrication process of the connector: (c) Assembling process of the EES.

3. Experimental Setup

The mechanical behavior of the serpentine connector is critical for the accuracy and repeatability of
the EESs due to the fatigue creak. The deformation of the connector can be observed in metallographic
microscope (13XF, Beijing Shang Guang Instrument Co. Ltd., Beijing, China) and simulated by finite
element analysis (FEA) of ABAQUS. The electrical resistivity of the ternary conductive nanocomposite
was measured by four-probe method using a system (RTS-9, 4-Probes Tech., Guangzhou, China) on
the basis of the weight fractions of CB. The microstructure images of the nanocomposite containing
different CB content were obtained by a scanning electron microscope (EVO/MA15, Carl Zeiss AG.,
Oberkochen, England) to the different resistivity. The viscosity of the precursor solution of the
nanocomposite as a function of the CB content was measured by a digital viscometer (NDJ-9s, Shanghai
pingxuan scientific instrument co., LTD, Shanghai, China). The specimens (~100 µm) were prepared by
screen printing the precursor solution of the ternary conductive nanocomposite over a glass substrate.
The strain-resistance characteristic was given by a measurement system, including a stress equipment
(FLR-303, Tianjin Flora Automatic Technology Co. Ltd., Tianjin, China) for quantitative tensile and
a digital multimeter (DMM USB-4605, National Instruments, Austin, TX, USA) for measuring electrical
resistance. The specimens were located upon a soft substrate made of Ecoflex (Ecoflex-50, Smooth-On,
Inc., Macungie, PA, USA), which could maintain at the large deformation (>300%) [41]. Human skin
strain was monitored by a system, including personal computer (PC), DMM, printed circuit board
(PCB), wires for connecting the DMM to the PC and the PCB, flat cable (FC) for connecting the sensor
to the PCB, as shown in Figure 3.
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Figure 3. Image of the sensor measurement system.

4. Results and Discussion

In terms of mechanical and electrical properties of the EES, the ternary conductive nanocomposite
and the serpentine connector were systematically investigated. In order to improve measurement
accuracy and range, the ternary conductive nanocomposite with comprehensive performance had to
be prepared. The weight percentage of the CB was a key strategy as the D5 was just acted as a diluent
emitted during solidifying process. In Figure 4, the effect of the CB content on the electrical resistivity
of the ternary conductive nanocomposite showed that increasing the weight percentage of the CB
could increase the contact area. The CB was embraced by the Silbione to form a smooth surface at low
CB content, as shown in Figure 4a. When increasing the CB content, particles of the CB could encircle
the molecule of Silbione to conglomerate, as shown in Figure 4b,c. Micelles density increased with
increasing the CB content to reduce the electrical resistivity. Figure 4d shows the log of conductivity as
a function of CB content. The black scattered points and red curve represented the experimental and
fitting results, which was obtained by a scaling law according to the classical percolation theory [46].
It could be found that the electrical conductivity exponentially increased as the increase of CB content.
Besides, the percolation threshold (Pth) of the ternary nanocomposite was 0.47% obtained from the
fitting results. The lower electrical resistivity was required to neglect the effect of skin with electrical
resistivity (5 − 60 × 104 Ω·cm) [47], but the increase the viscosity of the precursor solution of the ternary
conductive nanocomposite, following the increase of the CB content shown in Figure 5, hampered the
fabrication of thin film. Thus, 2.5 wt.% of CB content was chosen to fabricate the EESs.
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Figure 5. The viscosity of the precursor solution of the ternary conductive nanocomposite as a function
of the CB content.

The modulus of Silbione (~2 kPa) was far below the effective modulus of the connector, which
contained PI with 3.17 GPa and Au with 74 GPa [48]. The hyperelasticity and adhesion empowered
Sibione to maintain without crack under large deformation. The key factor affecting the application
of EES was the deformation of the serpentine connector. Here, finite element analysis (FEA) was
performed by using 200804 C3D8R elements for PI and 30000 S4R elements for Au with ABAQUS
software to predict the deformation and strains of the connecter. The Poisson’s ratios of the gold and
PI were 0.42 and 0.36 [48], respectively. Figure 6 illustrates the deformation of the EES under stretching
strains 0%, 25% and 50%, compared with results obtained by FEA. The deformation of FEA could agree
well with experimental results and strains in the sensors could be found through the finite element
model. When externally stretching strain increases to 50%, the strain of Au can only be 4.05%, which
was much lower than destructive strain of gold [49]. These results proved that the sensors can be used
to measure a large deformation, which can expand the applications of the EES.
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Considering the above situations, an EES with good comprehensive performance was designed
and fabricated. The DMM applied 5 µA to measure the electrical resistance in the measuring process,
so the current-voltage (I-V) test [50,51] was carried out by an electrochemical workstation (CHI800D
CH Instruments Ins, America). The experimental results showed that the EES exhibited a good
linear I-V characteristic, as Figure 7a illustrates. The strain-resistance characteristic was confirmed
by experimental results and the GF was obtained from the analytical model, as shown in Figure 7b.
The good agreement between analytical results and experimental results exhibited the high accuracy
of measurement. For example, the relative error only was 3.39% when the strain of the substrate
reached 50%. The high accuracy under large strain of the EES was very important to protect human
skin from ischemic necrosis and scar formation during wound-healing monitoring [40]. Figure 8 shows
the stability and reproducibility of the EES. Cyclic loading tests were carried out by using a pulse
waveform with duty ratio of 50% and frequency of 10Hz. The EES kept good reproducibility and
durability over 50000 cycles with the applied strain of 10% and 30%, as shown in Figure 8a,b. However,
when increasing the strain up to 50%, the fracture of the serpentine connector of the EES specimen
caused a sharp increase in electrical resistance.
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Figure 8. (a) The resistance change ratio of the EES under cyclic loading with the strain of 10%.
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Figure 9 showed an application of EESs in motion monitoring of human hand. The EES was
placed in a certain part of wrist to monitor the motion of hand. The position of the sensor is shown in
Figure 1c where the sensor was parallel to the bone, which is apparent when holding the hand in place.
The black line and red line were the actual measurement results and filtering curve, indicating skin
strain change with the movement of the hand in Figure 9a. Figure 9b shows skin strain calculated by
Equation (4). In this figure, when opening hand, the skin in a certain part of wrist was stretched with
a strain of 1.13%. When holding hand, the skin strain was −0.95%.
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Figure 9. (a) The resistance change ratio of the EES under the movement of human hand. (b) The human
skin strain of a certain part of the wrist measured by the EESs.

5. Conclusions

In summary, an ultrasoft, adhesive and millimeter-scale skin sensor is developed and fabricated
to the real-time and enduring monitoring of human skin strain on the basis of a ternary conductive
nanocomposite (CB/D5/Silbione) and a two-stage serpentine connector. The electrical and mechanical
properties of the ternary conductive nanocomposite and the two-stage serpentine connector are studied
to obtain the EES with a high accuracy, large range and good repeatability. Experimental results
show not only the confirmation of analytical results, but also a high accuracy of measurement with
a relative error of 3.39% at strain 50%. The high accuracy paves the path for skin-growth monitoring
and the strain measurement of a soft structure. In addition, an application of the EES is exhibited in
order to monitor the motion of a hand, which presents another potential application for prosthesis
movement feedback.
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