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Abstract: In a cable-driven parallel robot (CDPR), force sensors are utilized at each winch motor
to measure the cable tension in order to obtain the force distribution at the robot end-effector.
However, because of the effects of friction in the pulleys and the unmodeled cable properties of
the robot, the measured cable tensions are often inaccurate, which causes force-control difficulties.
To overcome this issue, this paper presents an artificial neural network (ANN)-based indirect
end-effector force-estimation method, and its application to CDPR force control. The pulley friction
and other unmodeled effects are considered as black-box uncertainties, and the tension at the
end-effector is estimated by compensating for these uncertainties using an ANN that is developed
using the training datasets from CDPR experiments. The estimated cable tensions at the end-effector
are used to design a P-controller to track the desired force. The performance of the proposed
ANN model is verified through comparisons with the forces measured directly at the end-effector.
Furthermore, cable force control is implemented based on the compensated tensions to evaluate
the performance of the CDPR in wrench space. The experimental results show that the proposed
friction-compensation method is suitable for application in CDPRs to control the cable force.

Keywords: cable-driven parallel robot; pulley friction; artificial neural network; force control; cable
tension estimation; cable force sensor

1. Introduction

A cable-driven parallel robot (CDPR) is a special type of parallel robot, which is actuated by
elastic cables instead of rigid links. A CDPR consists of a fixed frame, robot end-effector, winch-motors,
and cable pulleys. The robot end-effector motion is controlled by the length and tension of each
cable, and each cable is driven by each respective winch system. The tension generated by the winch
motor is transmitted to the end-effector through connected elastic cables guided by pulleys. Generally,
the length and tension of each cable are measured using an encoder and load cell at the winch side.
This type of measurement does not cause cable and/or sensor interferences to the end-effector’s
movement. The lightweight elastic cable actuator provides the CDPR with the advantages of high
payload capability, large workspace, and fast dynamics. As a result, the CDPR has many possible
applications such as in large telescopes [1], 3D printing [2], and high-speed manipulation [3].

However, the CDPR has practical control problems induced by kinematic redundancy, nonlinear
elastic-cable behavior, and pulley friction. As the cables can only pull and not push the end-effector,
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the number of cables must be higher than the necessary number of end-effector’s degrees-of-freedom
(DOF). Based on the number of cables (m) and number of DOFs (n), CDPRs can be classified
into: Under-constrained type (m < n) and fully-constrained type (m ≥ n + 1) [4]. Amongst these,
the fully-constrained CDPR is essential for implementing full 6-DOF robotic motion. However, the
fully-constrained CDPR has infinite tension distribution for any given spatial posture of the end-effector,
and its kinematic structure matrix depends strongly on the pose of the end-effector in the parallel
robotic mechanism. This brings forth another important issue as to how all the actuating cables can be
maintained at the proper tension levels by considering the redundant kinematic constraints, to avoid
sagging of cables or overloading; that is, eventually, for the CDPR force control.

Several force-distribution algorithms [5–7] were previously utilized for CDPR motion control
and cable-tension control [8–10]. However, even with these force-distribution algorithms, the CDPR
force control was challenging, in practice. One main reason was the difficulty of measuring the direct
force distributions at the end-effectors, because of the friction between the cables and pulleys [11].
Friction modeling and compensation methods have been widely studied for robot systems, and
some methods were proposed for cable–pulley friction models in the CDPR. With the assumption of
no-slip at the cable and pulley interface, Choi et al. modeled the pulley bearing friction based on the
Dahl friction, to estimate cable tensions during slow motion [12]. Kraus et al. implemented pulley
friction compensation using the Coulomb and Dahl friction model. They also analyzed the influence
of friction on the wrench measurement and pointed out that pulley friction influenced the wrench
hysteresis significantly [11]. Peng et al. used a multibody dynamic approach to model the friction of
the cable–pulley system. The model considered the friction of the sliding joint, using the arbitrary
Lagrangian–Eulerian formulation [13]. In addition, for a diverse range of mechanical systems requiring
accurate positioning and force control, many research has addressed the pulley friction effect on the
cable–pulley structured mechanisms [14–17].

The CDPR friction between the cable and pulley is influenced by the pulley bearing friction,
sliding friction, and friction among other mechanical parts. In this context, it can be stated that most of
the traditional-model-based friction estimations, used in the previous research, represented only part
of the friction phenomena. Moreover, the previous methods experienced difficulties in identifying the
model parameters, especially for dynamic models because of the nonlinearity and long-term variations
of properties due to abrasion [18]. Moreover, in addition to pulley friction, the cable elongation and its
nonlinear properties also caused tension discrepancies for the cable connection from each winch to the
end-effector. Therefore, a more complicated model for accurate tension estimation is necessary.

In this paper, we propose an artificial neural network (ANN)-based indirect end-effector
force-estimation method, and design a proportional CDPR force-control algorithm that can compensate
for the inaccurate measurements of the CDPR end-effector force and achieve indirect force control
for CDPR. We consider the pulley friction and unmodeled cable effects as a black-box uncertainty.
The estimated cable tension of the end-effector compensates for this uncertainty by using an ANN
model that is derived from the training datasets of the CDPR experiments. In order to implement an
efficient ANN model, we obtain the parameters affecting the friction in a CDPR based on the traditional
friction model. Then, the ANN model is trained by spatial motion experiments conducted for the
given trajectories that cover the desired motion ranges of the end-effector. The MATLAB ANN toolbox
is used to design an ANN estimator, which is implemented in real-time using PLC structured-text
programming. The effectiveness of the proposed ANN model is evaluated based on the cable force
control achieved in the CDPR system.

It is well known that ANNs have the capability to approximate nonlinear functions through
learning processes [19–22], and they were previously applied for friction compensation, as follows.
Huang et al. used two neural network (NN) approximators to design an intelligent controller for
compensating the effect of nonlinear friction in a 1-DOF mechanical system [23]. Guo et al. proposed
an NN structure with additional jump approximation activation functions to model the complex
and discontinuous friction dynamics for a six-axis articulated robot tracking control [24]. Liu et al.
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used an NN-based friction compensation method for approximating the residual values during free
motion [25]. Several other friction compensation techniques using ANNs could be found in the previous
research [26–28]. Nevertheless, to the best of the authors’ knowledge, our study is the first ANN
application to use the cable force control of a CDPR by using an ANN-based CDPR end-effector’s cable
tension estimator for estimating the cable–pulley friction and compensating for cable uncertainties.

The outline of this paper is as follows. Section 2 introduces the laboratory-scale CDPR, which is
employed in this study, and explains the robot kinematics and dynamics. Section 3 describes the friction
effects in the cable–pulley compartments and provides an ANN-model-based friction-compensation
method. In Section 4, the force and position control algorithms based on ANN are explained. Section 5
shows the experimental results of the ANN-based cable force control in a Mini CDPR. Finally, we
conclude this paper in Section 6.

2. CDPR System

2.1. MINI CDPR

The lab-scale Mini CDPR employed in this work is shown in Figure 1. It is a type of fully-constrained
6-DOF CDPR, which is actuated by eight polyethylene Dyneema® cables (LIROS D-Pro 01505-0200,
2 mm). The robot uses industrial servo drives and controllers as hardware, and TwinCAT3 is used as
the real-time control software [29]. The size of the fixed frame is 1.10 m × 0.80 m × 0.95 m, and the
mass of the end-effector is 1.42 kg. Force sensors (Micro Load Cell - CZL635 up to 50 N) for cable force
measurements are integrated with each guiding pulley at the winch motors at the bottom of the CDPR
frame. This mechanism can prevent the interferences from additional sensors, to the end-effector
movement. However, the cable force measurements are always affected by the friction between the
winch and the end-effector.
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Figure 1. Photograph of the MINI cable robot and its cable connection components.

In this study, in order to obtain the gold-standard force distribution of the end-effector, eight
additional force sensors (UMM-K10 up to 100 N) are connected directly to the end-effector for reference
measurements. It should be pointed out that the additional force sensors are installed only for the
friction and uncertainty identification and ANN training.

2.2. Force Sensor Calibration

Each force sensor must be calibrated, to avoid unnecessary issues arising from the manufacturing
variations and/or influence of the operating environment. In order to achieve the best possible accuracy,
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we perform two types of calibration approaches: Calibration without pulley and calibration with
pulley. In the former approach, the force sensor is calibrated directly by attaching known weights; in
the latter, the force sensor is combined with a cable pulley system and is calibrated by attaching known
weights. The performances of the calibrations are compared with the experimental results, as shown in
Figure 2. According to the wiring mechanism of the pulley in Figure 3b, the measured value from force
sensor 1 is half of the real cable tension. In the case of calibration with a pulley, hysteresis is observed
between the loading and unloading processes. Furthermore, the maximum error is approximately
1.5 N, which is 6% of the actual cable tension capacity. On the other hand, for the calibration without
pulley, very good accuracy is observed, as the system is not influenced by pulley friction. Hence, all
the force sensors are calibrated without using pulleys to obtain pure tension values.
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2.3. Kinematics and Dynamics

Figure 3a shows a schematic of the fully-constrained CDPR, where the index i denotes the
cable number. The geometric parameter Ai is a cable-attaching point on the base frame and Bi is a
cable-attaching point on the end-effector. ai and bi are two constant vectors of the base coordinate
{G} and end-effector coordinate {P}, respectively. The inverse kinematics are used to describe the joint
variables from the given end-effector posture [30]. Hence, based on the closure vector loop, the cable
length vector li can be described as

li = ai − xp −Rbi (1)

where xp and R describe the end-effector position and orientation, respectively.
In Figure 3a, fi denotes the cable force vector along the i-th cable, while the external force fp and

torque τp act on the end-effector. The force and torque equilibrium at the end-effector yields

m∑
i=1

fi + fp = 0 (2)

m∑
i=1

(Rbi × fi) + τp = 0 (3)

where fi = fiui with the obtained unit vector being ui = li/ ‖ li ‖. From Equations (2) and (3), the
equilibrium equation can be written in the matrix form as follows.

(
ui · · · um

Rbi × ui · · · Rbm × um

)
︸                                 ︷︷                                 ︸

AT


f1
...

fm

+
(

fp

τp

)
︸ ︷︷ ︸

w

= 0 (4)

which can be expressed in a more compact form as below:

AT
(
xp, R

)
f + w = 0 (5)

where w is an external wrench force applied at the end-effector. Here, the transpose of the Jacobian
matrix AT is called the structure matrix. The standard dynamic equation of the CDPR, assuming that
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all the cables are tensioned, can be obtained from Equation (5), in the global coordinate of the robot
system, as follows [31].

M(x)
..
x + C

(
x,

.
x
) .
x + G + Ff

(
x,

.
x
)
= −ATf (6)

where M(x) is the inertia matrix of the robot, C
(
x,

.
x
)

is the vector of Coriolis and centripetal terms, G is

the vector of gravity terms, and Ff
(
x,

.
x
)

is the friction term in the system.

3. ANN-Based Cable Tension Estimation

An ANN is a generalized model of the biological nervous system, which is based on the brain
function, to obtain the knowledge. It has the ability to learn effectively from data, and compute
nonlinear problems. The main advantage of the ANN model is that it can be implemented easily
without complicated mathematical modeling and parameter identification. As the traditional methods
often experience difficulty in modeling complicated nonlinear behavior, intelligent ANN-based friction
compensation is designed in this study.

3.1. Friction Model Revisited

In CDPR, accurate measurement of the force distribution of the end-effector is essential to achieve
CDPR force control. However, the measured tensions are influenced by the friction between the force
sensor and end-effector and cable effects along the wiring. In the Mini CDPR, five pulleys are used to
guide cables to the end-effector and the force sensor is equipped at pulley3, as illustrated in Figure 3b.
The friction between the force sensor 1 and end-effector can be divided into two parts, pulley bearing
friction and sliding friction. In Figure 1, F f 3 is the sliding friction between the cable and wheel. F f 1 and
F f 2 describe two different pulley bearing frictions. F f 1 is caused by the rotation of the pulley and F f 2 is
due to the rotation of the wheel.

The basic model to describe the above friction is a combination of the Coulomb friction and linear
viscous friction models. It is mathematically given by:

F f (v) = µFnsign(v) + σvv (7)

where Fn is the normal force. µ and σv are the Coulomb friction coefficient and viscous friction
coefficient, respectively. This model exhibits easy implementation, but leads to poor performance,
especially in the case of friction at low velocities.

The Dahl model is a simple model to simulate ball-bearing friction. This model is a function of
the displacement x, which makes it possible to estimate the hysteresis behavior of the friction [11]:

dF f (x)

dx
= σ0

∣∣∣∣∣∣1− F f

Fc
sign

( .
x
)∣∣∣∣∣∣nsign

(
1−

F f

Fc
sign

( .
x
))

(8)

where σ0 is the stiffness parameter at an equilibrium point, Fc. is the Coulomb friction, and n is a
material-dependent parameter. The Dahl model can produce a smooth transition around zero velocity,
but fails to describe the stiction and Stribeck effect.

Despite these traditional models, many complex models have been proposed to describe the
nonlinear behavior of friction, such as the Karnopp model, Leuven model, and seven parameters
model [32]. However, these models present complexities during mathematical modeling and
identification of parameters. Instead, we utilized the traditional models, which is revisited in
this section, to obtain the key parameters while designing the ANN models used in this study.

3.2. Designing and Training the ANN

By considering a characteristic of the CDPR that has the capability in large translational motion
but limited rotational motion, we only consider the translational motion in this paper. In order to
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design and train the proposed neural network, a number of inputs and known outputs are necessary.
The input values should be eight measured tensions near the pulleys (PUL-tension) and the output
values are eight measured reference tensions near the end-effector (EE-tension). However, one type
of input value is not sufficient to output the desired tension because of the hysteresis and nonlinear
behavior of friction during dynamic motion. From Equation (7) and (8) of the traditional pulley friction
models, we can see that F f 1, F f 2, and F f 3 are related to the cable length, cable velocity, and pulley
wrapping angle, respectively. Therefore, these variables are included in the ANN model. The bearing
friction F f 1 is dependent on the position and velocity of the end-effector. The cable length, cable
velocity, and pulley wrapping angle are also dependent on the position and velocity of the end-effector.
Hence, we add the position and velocity of the end-effector as additional inputs. The design of the
ANN structure is described in Figure 4. In total, 14 inputs and 8 outputs are incorporated in the
ANN to compensate for the cable tension discrepancy between the measurements at the winch side
and end-effector; the inputs are [ξ1, · · · , ξ14] =

[
xdx, xdy, xdz,

.
xdx,

.
xdy,

.
xdz, fPUL1, · · · , fPUL8

]
and the

outputs are [η1, · · · , η8] = [ fNN1, · · · , fNN8]. The output of the designed ANN is computed as follows:

ηk =
L∑

j=1

wo
kj σ(neth

j ) + bo
k (9)

where the sigmoid activation functions are σ(neth
j ) = 1/{1 + e−σ(neth

j )} and neth
j =

N∑
i=1

wh
ji ξi + bh

j .
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To obtain an acceptable range of training data, we operate the robot with a predefined trajectory.
The training trajectory is a translation motion in space, which includes four straight paths along a
diagonal line of cubic space and three circular paths (xy plane, xz plane, and yz plane), as shown in
Figure 5.

We use the MATLAB Toolbox (MathWorks, USA) to create an ANN. In the present study, the
Bayesian regularization method is used for friction compensation because this algorithm can produce
good generalization for difficult, small, or noisy datasets. It is a two-layer feed-forward network, which
consists of sigmoid hidden neurons and linear output neurons to fit the input and output.
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3.3. Performance Evaluation of ANN

Once the ANN has been trained for satisfactory performance, it is tested for performance
validation in compensating for the friction in real-time. For the validation, we connect additional force
sensors to each cable at the end-effector side, which measure the actual end-effector cable tension
(EE-tension), as shown in Figure 1. To evaluate the proposed ANN model, the tension measured by the
pulley-integrated force sensor (PUL-tension) at the winch side and the end-effector tension estimated
via the ANN (NN-tension) are compared with the tension measured at the end-effector (EE-tension)
while operating the robot along two kinds of test trajectories, which are different from the training
trajectory. The first trajectory is composed of a three-dimensional circular path and one straight line
in the y-direction, as shown in Figure 5a. This trajectory is used to evaluate the whole performance
of ANN in this paper. The second trajectory is line paths, which connect 20 arbitrary points in the
training workspace, as shown in Figure 5b, which for the evaluation of the general case. The root mean
square errors (RMSE) between the measured PUL-tension and measured EE-tension and between the
compensated NN-tension and measured EE-tension, for the eight cable tensions, are listed in Tables 1
and 2. In Figure 6, the PUL-tension, NN-tension, and EE-tension for a single cable (cable #2, test
trajectory 1), and their errors, are plotted. It is observed that the PUL-tension and EE-tension are
mismatched because of the uncertainty and pulley friction. In cable #2, the maximum error between the
measured tension, PUL-tension, and realistic distributed tension, EE-tension, is approximately ±4 N.
Furthermore, in the eight cables, the RMSE in test trajectory 1 is approximately 2 N and the RMSE in
test trajectory 2 is approximately 1.5 N. On the other hand, the tension values, which are compensated
by the neural network (NN-tension), are very close to the actual end-effector cable tension, EE-tension.
The mean value of the RMSE between NN-tension and EE-tension is approximately 0.5 N. Hence, we
can confirm that the trained ANN force-discrepancy-compensation model can estimate the cable force
distribution of the end-effector successfully.
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Table 1. Root mean square error (RMSE) between measured EE-tension (end-effector tension
measurements), measured PUL-tension (winch-motor-side tension measurements), and estimated
NN-tension (end-effector tension estimated by ANN) in test trajectory 1.

[N] f1 f2 f3 f4 f5 f6 f7 f8 Mean

EE-tension vs.
PUL-tension 1.81 2.11 2.02 2.77 1.89 1.69 1.81 1.82 1.99

EE-tension vs.
NN-tension 0.82 0.46 0.42 0.65 0.34 0.44 0.64 0.30 0.51

Table 2. Root mean square error (RMSE) between measured EE-tension (end-effector tension
measurements), measured PUL-tension (winch-motor-side tension measurements), and estimated
NN-tension (end-effector tension estimated by ANN) in test trajectory 2.

[N] f1 f2 f3 f4 f5 f6 f7 f8 Mean

EE-tension vs.
PUL-tension 1.34 1.54 1.30 1.41 1.63 1.57 1.31 1.50 1.45

EE-tension vs.
NN-tension 0.52 0.51 0.65 0.48 0.38 0.67 0.36 0.73 0.54Sensors 2019, 19, x FOR PEER REVIEW 9 of 16 
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4. End-Effector Force Control

The CDPR force controller based on the ANN end-effector cable-tension estimation is designed
for end-effector force tracking, with respect to the predefined cable tensions, as the end-effector moves
along the planned trajectory. A block diagram of the proposed force-control algorithm utilizing the
ANN cable tension estimation is shown in Figure 7. The position of the CDPR is determined by an
open-loop position control mechanism and the force of the end-effector is determined by a closed-loop
cable tension control mechanism. The open-loop position control is derived by using the inverse
kinematics of the CDPR to obtain the desired cable length ld for the given desired position xd, as
expressed in Equation (1).
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In the fully-constrained CDPR, infinite force-distribution solutions exist because of the non-square
structure matrix. Hence, it is necessary to find a suitable range of force distributions, to improve
the performance of the CDPR, e.g., to prevent sagging or minimize tension efforts. In this work,
we utilized a closed-form solution to calculate the required cable forces [8], to find continuous force
distributions quickly, in real time. This algorithm uses the Moore–Penrose matrix inverse A+T to obtain
the least-square optimal solution. For the given wrench, wd, the desired cable force can be generated as

fd = fre f −A+T
(
wd + ATfre f

)
(10)

where fre f is the reference cable force. It helps the cable force distribution to be bound in the specified
range. However, this formula has a limitation on finding whole feasible solutions. It might fail to
provide feasible solutions when close to the border of the wrench-feasible workspace. In this case, an
improved force distribution algorithm can be applied to find feasible solutions [33]. In this study, the
operating workspace is initially designed by a calculation from the feasible closed form solution, then
the feasible solutions are guaranteed at any posture inside the workspace.

While moving, the cable tensions are measured by the force sensors equipped at each winch
pulley. However, as the measured PUL-tension, fPUL, is different from the actual end-effector force
because of uncertainty and cable–pulley friction, we utilize the estimated NN-tension, fNN, from the
designed ANN as a force-feedback signal. A simple P-controller is implemented to control the tension
error between the desired tension and NN-tension. In Figure 7, fu is each cable’s tension control input,
which is defined as fu = kp

(
fd − fNN

)
. As stated earlier, fNN is obtained to compensate for the tension

discrepancy between the measured tension (PUL-tension) and actual distributed tension (EE-tension)
at the end-effector. If we assume that fNN can estimate the actual end-effector tension, then the wrench
input can be expressed as follows

−ATf � −AT
(
fpos + kp

(
fd − fNN

))
+ C

(
x,

.
x
) .
x + Ff

(
x,

.
x
)

(11)

where fpos is a position-control input to the CDPR. By utilizing Equation (11), the CDPR force-control
model can be simplified as follows

M(x)
..
x = −AT

(
fpos + kp

(
fd − fNN

))
−G (12)

where fpos is a servo portion of the controller in CDPR, and we consider it in the Cartesian space

as −ATfpos = ksv
.
e + kspe. Then, the servo portion is obtained by fpos = kmv

.
em + kmpem, so we can

derive the relationship between Cartesian space and Joint space as ksv
.
e+ kspe = −AT

(
kmv

.
em + kmpem

)
,
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where kmp and kmv are proportional and derivative (PD) parameters in joint space, respectively. Thus,
we can obtain the following error dynamics for the CDPR system:

M(x)
..
e + ksv

.
e + kspe

= ATkp
(
fre f −A+T

(
wd + ATfre f

)
− fNN

)
+ M(x)

..
xd + G

= 0
(13)

where ATA+T = I and wd = M(x)
..
xd + G.

Let us define a Lyapunov candidate as V = 1/2
(
e2 +

.
e2), which is positive definite. The derivative

of the Lyapunov function can be negative definite, according to the LaSalle’s invariance principle
as follows. .

V = e
.
e +

.
e

..
e

= e
.
e +

.
e
{
M−1

(
−ksv

.
e− kspe

)}
= −

.
eM−1ksv

.
e ≤ 0.

(14)

Hence, the asymptotic stability of the designed controller can be verified.
Finally, the input tension to the CDPR is conveyed to the cable length input through the winch

motor. We use the linear stiffness model to transfer the cable force to the cable length, as follows

∆l f =
l

AE
fu (15)

where E is the elastic modulus, A is the actual cross-sectional area, and l is the cable length between
each winch and the attaching point of the end-effector.

5. Experimental Results

The CDPR force control is performed using the proposed control scheme, as shown in Figure 7,
in the test trajectory 1. We use original factory setting values of the control gain kmp = diag[0.015]
and kmv = diag[0.125] (drive model: EL7201-BECKHOFF). In the case of cable force control, the P
gain (kp = diag[0.70]) is tuned manually and selected by the sensitivity analysis as listed in Table 3.
In order to evaluate the performance of cable tension control in the wrench space, in addition to the
additional force sensors along the cable at the end-effector side, an inertia measuring unit (IMU) sensor
(MTI-300, Netherlands) is assembled at the end-effector, which can measure the actual end-effector
force during the experiments. In Figure 8, the force and torque applied to the end-effector are expressed
in four ways, where the desired force and torque are calculated with the given accelerations, based
on Equation (6). Simultaneously, the measured-force and torque are obtained from the IMU sensor
measurements. In the results, PUL-force and PUL-torque are the calculated force and torque from the
measured PUL-tension, and NN-force and NN-torque are obtained from the estimated NN-tension
via ANN. Furthermore, the RMSEs between Desired-wrench and Measured-wrench, Desired-wrench
and NN-wrench, and Desired-wrench and PUL-wrench are listed in Table 4.

Table 3. Force error sensitivity analysis (all cables have the same gain) with respect to the gain variation.

kp 0.55 0.60 0.65 0.70 0.75 0.85 0.90

RMSE [N] 0.489 0.466 0.465 0.437 0.451 0.479 0.527
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Table 4. Root mean square error (RMSE) between Desired-wrench, Measured-wrench, NN-wrench, and
PUL-wrench.

Fx[N] Fy[N] Fz[N] Tx[Nm] Ty[Nm] Tz[Nm]

Desired-wrench vs.
Measured-wrench 0.42 0.61 0.37 0.01 0.01 0.01

Desired-wrench vs.
NN-wrench 0.44 0.56 0.80 0.03 0.02 0.02

Desired -wrench vs.
PUL-wrench 1.36 1.90 1.87 0.09 0.05 0.03

The experimental results show that the actual end-effector force obtained by both the IMU
sensor and ANN algorithm follow the desired force references within acceptable ranges. However,
the PUL-force shows poor performance in the wrench space, compared to both the IMU sensor
measurements and desired force. This is because of the tension discrepancy between the realistic
distributed tension (EE-tension) and measured PUL-tension from the winch side. This result
emphasizes the fact that the use of uncompensated tension measurements to control the robot
can lead to undesirable performances. If the test trajectory involves only translation motion, the
desired orientation motion and torque value will be zero. In the case of applications such as pick and
place, which only require translation motion and force, unwanted orientation motion and torque may
influence the performance of the robot. Hence, the orientation and torque accuracy are analyzed as
well, from these experiment results. We also verify the performance of the proposed ANN algorithm;
the torque measurements from the IMU sensor and the NN-torque from the estimated NN-tension are
very close, with RMSE less than 0.03 Nm, which can be considered as sensor noise.

To evaluate the position trajectory tracking performance, a precise 6-DOF displacement
measurement sensor, OTS (optical track sensor, Model: Polaris Spectra from NDI® with RMS
of 0.3 mm at 60 Hz) is utilized. In Figure 9, the position and orientation accuracy are compared for the
cases of without cable force control, with NN-tension-based force control, and with PUL-tension-based
force control. In the case of without force control and with NN-tension-based force control, the
position errors are less than 1 mm and orientation errors are less than 0.6◦. However, the position
and orientation errors of PUL-tension-based force control are quite large. These results show that
inaccurate cable tension distribution can be affecting the balance of the end-effector, which lead to the
inaccurate performance of the robot.

Figure 10 shows the CDPR cable tension comparison during force-control experiments: NN-tension
without force control and NN-tension with force control. When cable force control is not applied, the
cable tension changes over a wide range. The cable tension in cable #4 is greater than 25 N, which is out
of the accurate range of the force sensor measurement. However, when we apply the proposed cable
tension control, the actual cable tension follows the desired tension. This is a strong proof that the
proposed ANN-based end-effector cable-tension estimation and force-control scheme can control the
individual cable tensions within certain bounds of desired tension ranges, which can prevent sagging
or overloading during movement.
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Figure 9. Comparison of position and orientation accuracy, with and without cable force control:
(a) Positions and position errors; (b) orientations and orientation errors. Measured-wo/c: Measured
position and orientation without force control, measured-w/C-NN: Measured position and orientation
with force control based on the estimated NN-tension, measured-w/C-PUL: Measured position and
orientation with force control based on the measured PUL-tension.
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motion; NN-tension-w/C: Compensated neural network tension with force control during the motion.

6. Conclusions

In this paper, we presented an ANN-based end-effector force estimation method to compensate
for the uncertainties including cable–pulley friction and nonlinear cable behavior that created tension
discrepancies between the tensions measured at the winch side and end-effector. The proposed
ANN model designed by position and velocity measurements could estimate the force distribution
of the end-effector, accurately, from the available tension measurements at the winch pulley side.
The performance of the designed ANN model was verified by the experimental results for ANN model
validation and CDPR end-effector force control. The results showed that the estimated end-effector
force from the designed ANN model could overcome the cable tension discrepancies caused by
uncertainties in the force transmission to the end-effector from the winch motor. Moreover, the
measured force distributions in the time domain were very close to the actual values and could be
applied to the CDPR force controller as cable tension feedback. Finally, the proposed method could
control the cable tensions within the desired range, which could prevent sagging and minimize the
required tension energy. In the future, the developed method can be implemented in grand CDPR
systems designed for handling heavy loads. An advanced control algorithm for a force and position
hybrid controller will be developed to enhance the application of CDPR in the industry.
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