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Abstract: A wireless sensor network (WSN) is an essential component of the Internet of Things
(IoTs) for information exchange and communication between ubiquitous smart objects. Clustering
techniques are widely applied to improve network performance during the routing phase for WSN.
However, existing clustering methods still have some drawbacks such as uneven distribution of cluster
heads (CH) and unbalanced energy consumption. Recently, much attention has been paid to intelligent
clustering methods based on machine learning to solve the above issues. In this paper, an affinity
propagation-based self-adaptive (APSA) clustering method is presented. The advantage of K-medoids,
which is a traditional machine learning algorithm, is combined with the affinity propagation (AP)
method to achieve more reasonable clustering performance. AP is firstly utilized to determine the
number of CHs and to search for the optimal initial cluster centers for K-medoids. Then the modified
K-medoids is utilized to form the topology of the network by iteration. The presented method
effectively avoids the weakness of the traditional K-medoids in aspects of the homogeneous clustering
and convergence rate. Simulation results show that the proposed algorithm outperforms some latest
work such as the unequal cluster-based routing scheme for multi-level heterogeneous WSN (UCR-H),
the low-energy adaptive clustering hierarchy using affinity propagation (LEACH-AP) algorithm, and
the energy degree distance unequal clustering (EDDUCA) algorithm.

Keywords: wireless sensor networks; clustering; affinity propagation; K-medoids; Internet of Things

1. Introduction

The development of embedded devices as well as the micro-electro mechanical system (MEMS)
wireless sensor network (WSN) as an indispensable part of the Internet of Things (IoT), has also
developed rapidly in recent years [1–5]. WSN commonly consists of a large number of tiny sensors,
which form the network in a self-organizing and multi-hop manner. WSN has its unique features such
as easy deployment, self-organization, low cost and fault tolerance, etc. Therefore, it has been widely
used in many applications such as environmental detection [6], industrial production monitoring [7]
and smart home [8].

One of the key research issues for WSN is energy efficiency [9–14], since the tiny sensors
are generally powered by limited battery supply, and the battery replacement for these sensors is
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impossible because of the enormous quantity and harsh environment. Therefore, it is necessary to
design energy-efficient routing protocols. In clustering-based protocols, all sensors are divided into
different clusters according to some specific rules. Usually, one cluster head (CH) is selected in each
cluster and the other nodes will communicate with the CH directly. By introducing clustering methods,
the following benefits can be achieved. First, the clustering technique makes the data transmission
between sensors easy and the network topology is easy to organize. CH can adopt the Time Division
Multiple Access (TDMA) schema to its cluster members for data uploading. In this way, package loss
rate will be reduced and much energy can be saved from data retransmission. Second, clustering can
help to alleviate the hot spots problem which is caused by centralized data transmission. The rotation of
CHs can largely balance the energy consumption of different sensors. Third, clustering can reduce the
total energy consumption of the network by reducing the average intra-cluster communication distance.

Although many benefits can be obtained by introducing clustering methods, some drawbacks still
exist in the practical applications. Many clustering protocols such as low-energy adaptive clustering
hierarchy (LEACH) [15] and power-efficient gathering in sensor information system (PEGASIS) [16]
prefer to select the CHs in a random way, which causes the uneven distribution of CHs. Sensors have to
adopt long distance communication with CHs in those areas which contain few CHs. One good solution
for this problem is to set the competition range of sensors during the selection procedure. Once a sensor
claims to be a final CH, other sensors in its competition range will give up the election to avoid the dense
distribution. Many schemas are less energy efficient and the total energy consumption of the network
is high, because they do not optimize the intra-cluster and inter-cluster communication distance.
Therefore, it is a good choice to introduce a heuristic algorithm such as ant colony optimization (ACO)
and particle swarm optimization (PSO) to decrease the average communication distance. Additionally,
premature death of sensors occurs in some protocols. Those protocols commonly not take the residual
energy into consideration when they select the CHs. Premature death of CH will result in blind spots
for monitoring and the performance of the network will sharply decrease. Therefore, it is important to
take energy balancing strategy in routing protocol designing.

In order to solve the above problems, affinity propagation (AP) and the modified K-medoids [17]
are combined for better clustering in this paper. AP is commonly used to calculate the similarity of
nodes. It adopts the similarity matrix to represents the similarity between different nodes and the
value of the diagonal of the similarity matrix is used as a criterion to judge whether the node can
become a cluster center. One important function of AP is that it can figure out the optimal number
of clusters according to the distribution of nodes. K-medoids, which is a machine learning based
clustering method, is modified by taking the residual energy into consideration. By combining the
modified K-medoids with AP, clustering will not be limited to the number of clusters and the initial
cluster centers. In this paper, the AP algorithm is firstly introduced to calculate the optimal number of
clusters and the initial cluster centers. Then, K-medoids is adopted to form the final clustering results
by iteration based on the initial cluster centers. By adopting the elaborate selected initial cluster centers,
the proposed method select more reasonable CHs compared to the traditional K-medoids algorithm.

The rest of this paper is organized as follows. In Section 2, some classic routing protocols which
adopt clustering techniques are discussed. In Section 3, the system and energy models are given.
Section 4 illustrates the proposed algorithm in detail. Section 5 provides extensive simulation results
with analysis and comparison. Some discussions are presented in Section 6, and Section 7 concludes
this paper.

2. Related Work

Some classic or recent literature about the clustering techniques for WSN is listed in Table 1. Low
Energy Adaptive Clustering Hierarchy (LEACH) [15] is a hierarchical routing protocol with two layers,
CHs layer and member layer. In each round, every sensor generates a random number and once
the number exceeds the threshold value, it will be elected as a CH. One of the serious weakness of
LEACH is that the selected CHs are uncontrolled and they distribute unevenly among the sensor field.



Sensors 2019, 19, 2579 3 of 15

Additionally, it does not consider the residual energy of sensors which may lead to the premature
death of sensors.

LEACH-centralized (LEACH-C) [18] is an improved version of LEACH. In LEACH-C, before CHs
selection in each round, the information of sensors such as residual energy and position are reported to
the base station (BS). The BS calculates the average residual energy of the network and excludes the
weak sensors from the candidate CHs. The main drawback of LEACH-C is that the topology of the
network is not optimal and the total energy consume of the network is high in each round.

LEACH using the AP algorithm (LEACH-AP) [19] adopts iterations to select CHs. The proposed
scheme generates clusters by iteration to exchange information between sensors. However, the number
of clusters still needs to be set manually.

Power-Efficient Gathering in Sensor Information Systems (PEGASIS) [16] is a chain-based
clustering algorithm. The whole sensors in the network are connected into several chains and the chain
leaders are dynamically selected. Chains are constructed by greedy algorithm and each node in the
chain takes turn to be the leader. Each node on the chain only needs to communicate with its nearest
neighbor. Due to the chain construct of the network, once a sensor in the chain fails, the whole chain
will stop work. Additionally, chains in a larger-scale network will result in severe network latency.

Hybrid energy-efficient distributed Clustering (HEED) [20] is another hierarchical routing protocol.
The mainly contribution of HEED is that it firstly presents a novel method for CHs selection by
competition. The residual energy of sensors is taken into consideration for CHs selection. Each node
calculates its average minimum reachability power (AMRP) to determine which CHs should join.

The threshold-sensitive energy-efficient sensor network protocol (TEEN) [21] is an event-driven
and responsive algorithm. During the process of CHs selection, each candidate CH broadcasts two
parameters, soft threshold and hard threshold, to other sensors among the cluster. The hard threshold
records data eigenvalues, and the soft threshold records the maximal range of data change. One of
the shortcomings of TEEN is that it achieves the clustering result by iterating and the algorithm is
executed in the local sensors with low computing power. Therefore, it leads to great network latency.

The saving energy clustering algorithm (SECA) [22] is a centralized clustering algorithm. Candidate
CHs are firstly selected according to the average residual energy. Then, the modified K-means algorithm
which considers the location and residual energy is adopted to determine the final CHs. The algorithm
mainly contains two parts, set-up phase and steady-state phase. In the set-up phase, the center location
is calculated to set the initial means of points according to the location of the stationary nodes. Then
K-means algorithm is utilized to divided the network into several clusters according to the previous
initial means. The steady-state phase mainly conducts the data transmission. Member nodes send
data to their corresponding CHs using the allocated TDMA schema and the CHs forward the data to
the sink.

Energy aware unequal clustering (EAUC) [23] is a fuzzy logic-based clustering algorithm. In EAUC
the sensor field is divided into several heterogeneous clusters. Those clusters close to the sink own
smaller scale. The fuzzy logic system is utilized for CHs selection in EAUC and it comprehensively
considers the features of sensors such as residual energy, position and the number of neighbors.
The output of the fuzzy logic system is the possibility for a sensor node to be select as a CH.

The energy-efficient unequal clustering (EEUC) [24] Mechanism is an unequal clustering algorithm.
In EEUC, the size of each cluster is calculated by the distance between its corresponding CH and the
sink. CHs are elected via competition and the competition range enlarges with distance increasing.
Using this method, clusters close to the sink generally own less members and the energy used for
intracluster communication is reduced.

Unequal cluster-based routing scheme for multi-level heterogeneous WSN (UCR-H) [25] is a
multiple CH-based clustering algorithm. The size of the cluster in UCR-H is contrary to EEUC. Clusters
close to the sink own more sensor nodes. Meanwhile, multiple CHs are selected in one cluster to ease
the burden of forwarding. The optimal number of clusters is calculated by linear programming.
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The energy degree distance unequal clustering algorithm (EDDUCA) [26] partitions the network
using Sierpinski Triangle. The triangle of the outer of the sensor field generally contains more
sensor nodes.

Table 1. Comparison of routing protocols based on clustering.

Algorithm
Name Year Structure CH Election

Features
Topology
Control Methods Used Demerit

LEACH 2002 Two-layer
structure Random selection Distributed Uneven CH

distribution

LEACH-C 2002 Two-layer
structure

Residual energy,
position Centralized High energy

consumption

LEACH-AP 2016 Two-layer
structure position Centralized AP algorithm Number of clusters

assigning

PEGASIS 2002 Chain-structure Position Distributed Greedy algorithm
Heavy network

latency, poor
robustness

HEED 2004 Two-layer
structure position Distributed Iteration Long iteration time

TEEN 2001 Two-layer
structure

Residual energy,
position Distributed Iteration Long iteration time

SECA 2012 Two-layer
structure Residual energy Centralized K-means algorithm Unreason CHs

selection

EAUC 2010 Two-layer
structure

Residual energy,
Position, number

of neighbors
Centralized Fuzzy logic system High energy

consumption

EEUC 2005 Two-layer
structure

Residual energy,
Position Distributed Iteration High energy

consumption

UCR-H 2017 Two-layer
structure

Residual energy,
Position Centralized Multiple CHs in

each cluster
High energy
consumption

EDDUCA 2016 Two-layer
structure Position Centralized Sierpinski triangle

dividing
High energy
consumption

3. System Model

3.1. Network Model

In this paper, the network is composed of numerous sensors as well as a BS, as shown in Figure 1.
Some physical information of the sensor field such as temperature and humidity are detected by
sensors and they transmit their monitored data to its corresponding CHs. There are two types of roles
for the sensors to play. Member nodes need to monitor the surroundings and send the monitored
data to corresponding CHs. CHs not only need to detect the information of the environment, but
also need to receive the data packages from their members and conduct data fusion. Finally, the
fused data is uploaded to the BS by the CHs. The following assumption are made to conduct the
simulation conveniently.

1. All the sensors are deployed in a rectangle area by planes or other vehicles and they keep
stationary after they are deployed.

2. Sensor nodes can be identified by their unique ID.
3. Each sensor owns the knowledge of its position by the equipment such as the Global Positioning

System (GPS), and they can get the information of other nodes by information exchange.
4. All the sensors own the same initial energy and their batteries cannot be changed. Once they

exhaust their energy, they will be useless.
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As the research [15,27–30] has discussed, the energy used for transmission accounts for the
majority of the total energy consumption. Therefore, energy consumption used for transmission is only
considered in this paper. The energy used for transmission is generally divided into two parts, sending
and receiving units, as shown in Figure 2. In the sending unit, the digital signal is transformed into an
analog signal by the transmit electronics and then the analog signal is strengthened by the amplifier.
The power of the amplifier is adjustable and it uses different power according to the communication
distance. A threshold value d0 is calculated to adjust the power of amplifier. If the communication
distance exceeds the threshold value d0, free space model is used, otherwise, a multi-path fading model
is used. In the receiving unit, the analog signal is transformed into digital signal again and the energy
used in this part only depends on the amount of data.
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The total energy ETx used for sending unit can be calculated using the Formula (1).

ETx(L, d) = Eelec·L + εamp·L (1)

where d represents the communication distance between the source node and the target node. L denotes
the length of data package. Eelec represents the energy consumed by transmitting one-bit data between
two sensors. εamp is the energy consumption for the amplifier and it can be calculated by Formula (2).
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εamp =

{
ε f s·d2, when d ≤ d0

εmp·d4, when d > d0
(2)

where ε f s represents the energy consumption for free space model and εmp represents the energy
consumption for multi-path fading model. Additionally, d0 is the threshold value for amplifier to
adjust its power. d0 can be calculated by Formula (3).

d0 =

√
ε f s

εmp
(3)

The total energy ERx used for receiving unit can be calculated using the Formula (4).

ERx(L) = Eelec·L (4)

4. The Proposed Affinity Propagation-Based Self-Adaptive (APSA) Algorithm

In this section, a detailed illustration of the affinity propagation-based self-adaptive (APSA)
algorithm will be given. Initial phase, set-up phase and communication phase are contained in
APSA. During the initial phase, sensors obtains the necessary information from their neighbors for
network forming. After all the preparations are finished, set-up phase will start. In set-up phase, the
network topology is determined by AP and the modified K-medoids. Then the network enters into the
communication phase and data transmission is conducted in this phase.

4.1. Initial Phase

After all the sensors are deployed, the system begins to enter the initial phase. In the initial phase,
the network has not been organized and sensors can only get their own location by GPS and record
the information of residual energy. Then sensors begin to exchange their own information with their
neighbors until the sink obtains the information of all the sensors. When the information exchange is
finished, the system enters set-up phase.

4.2. Set-Up Phase

The main goal of the set-up process is to find the CHs and divide all the sensor nodes into
appropriate clusters. During this phase, the AP algorithm is firstly introduced to find out the optimal
cluster number and the position of initial cluster centers. Then K-medoids algorithm is used to
achieve the final clustering result. In the traditional K-medoids algorithm, the initial cluster centers are
randomly selected which means that the algorithm needs to iterate more time to converge. Additionally,
the traditional K-medoids runs easily into local optimal solutions. With the purpose of solving the
mentioned problems, AP is adopted to figure out the initial cluster centers to enhance the performance
of K-medoids.

Firstly, the similarity between sensors can be calculated using the following formula:

s(m, n) = −‖Xm −Xn‖
2m, n ∈ {1, . . . , N}, m , n (5)

where X represents the location of sensors and s(m, n) denotes the similarity between node m and
node n which is calculated by the square of their Euclidean distance. The similarity indicates whether
the node n is suitable to be the CH for node m. For each node n, a real number s(n, n) represents the
preference that it will be chosen as a cluster head node. s(n, n) is calculated by Formula (6).

s(n, n) = p (6)

where p represents the negative cost of adding a cluster. By numerous simulations, when p is set as
–6000, the AP algorithm can achieve a good result.
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r represents the responsibility and a represents the availability. a is firstly set as zero, and then r
and a can be updated using Formulas (7) and (8).

r(m, n) = s(m, n) −max
n′,n

{
s(m, n′) + a(m, n′)

}
(7)

a(m, n) =


∑

m′,m
max

{
0, r(m′, n)

}
i f n = m

min
0, r(n, n) +

∑
m′<{m,n}

max
{
0, r(m′, n)

} i f n , m′
(8)

where r(m, n) is defined as the value of the degree of node n if node n is selected as the CH of node m.
a(m, n) represents the appropriate degree of node m to select n as its CH. Finally, Formula (9) is used to
calculate the initial cluster centers.

T = argmax
n

{
a(m, n) + r(m, n)

}
(9)

where T represents the set of the initial cluster centers. The pseudocode of AP is described as
Algorithm 1.

Algorithm 1: The method for obtaining initial cluster centers

Input: the coordinate set of N sensor nodes {X1, X2, X3, · · · , XN};
fori = 1, 2, 3, . . . , Ndo

for j = 1, 2, 3, . . . , N do
if i == j then

set preference Si,i = −6000
else

calculate similarity Si, j = −‖Xi −X j‖
2

end if
end for

end for
Repeat

for i = 1, 2, 3, . . . , N
for j = 1, 2, 3, . . . , N

calculate responsibility Ri, j = Si, j −max
j′, j

{
Si, j′ + Ai, j′

}
if i == j then

Ai, j =
∑
i′,i

max
{
0, Ri′, j

}
else

Ai, j = min

0, R j, j +
∑

i′∈{i, j}
max

{
0, Ri′, j

}
end if

calculate T = argmax
j

{
Ai, j + Ri, j

}
End for

End for
Until T does not change

The initial cluster centers obtained through the AP algorithm are not optimal, and there may be
outliers. Due to the disadvantages above, the K-medoids algorithm is adopted to further optimize
the clustering results. K-medoids adopts real points as the cluster centers instead of virtual points,
and therefore the absolute errors can be effectively reduced. By combining the advantages of AP and
K-medoids algorithm, the distance between the member node and its corresponding CH is minimized.
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Formula (10) describes the problem that the algorithm needs to solve. We want to study how to
minimize the criterion of the absolute error σ.

σ =
k∑

i=1

∑
s∈Ti

dist(s, Ti) (10)

where s is the common node in Ti and Ti represents the set of nodes of cluster i. In order to minimize
the criterion of the absolute error σ, greedy method is adopted to achieve this object.

A set of nodes of a cluster is represented as T =
{
τ1, τ2, . . . , τ j, . . . , τk−1, τk

}
. Then a node τrandom

is randomly selected in the network to replace the node in set T, meanwhile, the residual energy of
τrandom which is randomly selected must be richer than other nodes in set T. Formula (11) describes the
replacement method.

T(t+1) =

{
T∗ , σ∗ − σ(t) < 0
T(t) , otherwise

(11)

where T∗ = {τ1, τ2, . . . , τrandom, . . . , τk−1, τk}. Then, the network is temporarily reclassified into k clusters.
The new absolute error criterion σ∗ can be calculated by Formula (10). Compared with original σ(t) in
the t-th time iteration, if σ(t) is greater than σ∗, T(t+1) will be replaced by T∗.

In the process of iteration, we focus on the remaining energy of each CH. In each iteration, once
the average residual energy of all sensor nodes is greater than that of a CH, the CH must give up the
election and become a member node. By repeating Formula (11), the final clustering results can be
obtained. The pseudocode of the modified K-medoids is described as Algorithm 2.

Algorithm 2: The method for clustering

let T as the set of initial cluster centers;
calculate the number of initial cluster centers k = ‖T‖
Repeat

assign each remaining common node to the cluster with the nearest medoid;
randomly select a common sensor node τrandom;
calculate the cost function S(S = σ∗ − σ) of swapping node τ j with τrandom;
if S<0 then

swap τ j with τrandom to form the new set of k clusters;
Until no change
Output: a set of k clusters.

4.3. Communication Phase

The clustering algorithm is executed in the remote server and the result of the clustering is sent
to each sensor by broadcasting. When sensor nodes receive the clustering message, the real network
architecture is established. In each round, the member nodes communicate with their corresponding
CHs to upload the monitored data and their own residual energy. Each CH gather the monitored data
of their members and then data fusion is conducted to filter the redundant data. Next, the compressed
data is transmitted to the BS. At the end of each round, the BS uploads all the data of this round to
the remote server. Finally, the remote server will quickly calculate the topology of next round of the
network and return it to the BS. The BS determines whether it is necessary to send the reconstructed
message by comparing whether the topology information of the previous round and current round are
consistent. The next round starts with a message from BS and the network repeats the process from the
set-up phase.
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5. Performance Evaluation

5.1. Simulation Parameters

Matlab as a powerful project software has been widely used in automatic control, machine design
and mathematical statistics. Researchers can solve the complicated engineering problem efficiently
using the integrated toolbox in Matlab. Additionally, Matlab can dynamically simulate operation of
the system and conveniently visualize the data. Matlab is run with version of R2016a in a personal
computer equipped with an Intel Core I5 central processing unit (CPU) to test the performance of the
proposed APSA. The simulator randomly generates the sensors in a specific area with the same initial
energy. A round is used as the period of the network and in each round, a sensor needs to upload a
data package to the base station via single or multi-hop communication. According to [19], considering
the discriminability and run time of the simulation results, the initial energy Einit of each node is set
as 2J and the data aggregative energy EDA is 5nJ/bit/signal . All the relevant parameters used in the
simulation are listed in Table 2.

Table 2. Simulation parameters.

Parameter Definition Value

N Number of nodes 50
coorBs Coordinate of the base station (BS) (40,160)

PS Packet Size for one communication 2000 bits
Einit Initial energy of each node 2J
Eelec Energy consumption per bit 50nJ/bit
εfs Transmitter amplifier (Free space model) 10pJ/bit/m2

εmp Transmitter amplifier (Multi-path model) 0.0013pJ/bit/m4

EDA Data aggregation energy 5nJ/bit/signal
p Affinity propagation (AP) preference −6000

An assumption is made that the sensors can communicate with the other nodes in their transmission
range. In each round, each node generates a data package which contains the monitored information
of surroundings and the target of the network is to gather all the packages of sensors. In the simulation,
50 sensor nodes are firstly deployed in a 100× 100 m2 sensor field in a random way. Then a BS is set at
the center of the monitoring area. The AP algorithm is executed to search the optimal initial cluster
centers and adopt the modified K-medoids to form clusters. After the clusters are formed, the BS
collects data at regular intervals. Generally, the normal node transmits the monitored data directly to
CH if the CH is in its one-hop transmission range. Otherwise, it will choose a relay node to forward
its data package to CH by greedy algorithm. In a greedy algorithm, node chooses a neighbor which
is closer to the sink compared to itself as the relay node. After the data is received by CH, the CH
compresses the data and forwards it to the BS.

5.2. Clustering Results of Different Number of Sensors

Figure 3 shows the ultimate clustering result of APSA. As clearly shown in Figure 3, the proposed
algorithm divides all the sensors into five clusters. The small dots denote the sensors, and the blue
lines represent the virtual link between sensors and CHs.



Sensors 2019, 19, 2579 10 of 15

Sensors 10 

Common node CH Common 
node to CH

 
Figure 3. Cluster result of affinity propagation-based self-adaptive (APSA) algorithm (50 sensors). 

Another 50 sensors are added to the network to test the presented algorithm and the simulation 
result is illustrated in Figure 4. APSA changes the number of CHs adaptively and it divides all sensors 
into six clusters.  

Common node CH Common 
node to CH

 
Figure 4. Cluster result of APSA (100 sensors). 

5.3 Analysis of Energy Consumption 

The presented APSA is compared with LEACH-AP, UCR-H and EDDUCA which are all 
centralized routing protocols. For each protocol, 50 different samples of the network model are 
generated to execute the protocol and the result is based on the average value of repeated simulations.  
In Figure 5, the x-axis represents the number of rounds the network runs and the y-axis represents 
the total energy consumption of the network. It obviously shows that with rounds going, the total 
energy consumption of the presented APSA increases more slowly compared to the other three 
algorithms. In about the 1000th round, APSA achieves about 33.33%, 52.5% and 54.21% performance 
gain compared to UCR-H, LEACH-AP and EDDUCA respectively.  

Figure 3. Cluster result of affinity propagation-based self-adaptive (APSA) algorithm (50 sensors).

Another 50 sensors are added to the network to test the presented algorithm and the simulation
result is illustrated in Figure 4. APSA changes the number of CHs adaptively and it divides all sensors
into six clusters.

Sensors 10 

Common node CH Common 
node to CH

 
Figure 3. Cluster result of affinity propagation-based self-adaptive (APSA) algorithm (50 sensors). 

Another 50 sensors are added to the network to test the presented algorithm and the simulation 
result is illustrated in Figure 4. APSA changes the number of CHs adaptively and it divides all sensors 
into six clusters.  

Common node CH Common 
node to CH

 
Figure 4. Cluster result of APSA (100 sensors). 

5.3 Analysis of Energy Consumption 

The presented APSA is compared with LEACH-AP, UCR-H and EDDUCA which are all 
centralized routing protocols. For each protocol, 50 different samples of the network model are 
generated to execute the protocol and the result is based on the average value of repeated simulations.  
In Figure 5, the x-axis represents the number of rounds the network runs and the y-axis represents 
the total energy consumption of the network. It obviously shows that with rounds going, the total 
energy consumption of the presented APSA increases more slowly compared to the other three 
algorithms. In about the 1000th round, APSA achieves about 33.33%, 52.5% and 54.21% performance 
gain compared to UCR-H, LEACH-AP and EDDUCA respectively.  

Figure 4. Cluster result of APSA (100 sensors).

5.3. Analysis of Energy Consumption

The presented APSA is compared with LEACH-AP, UCR-H and EDDUCA which are all centralized
routing protocols. For each protocol, 50 different samples of the network model are generated to
execute the protocol and the result is based on the average value of repeated simulations. In Figure 5,
the x-axis represents the number of rounds the network runs and the y-axis represents the total energy
consumption of the network. It obviously shows that with rounds going, the total energy consumption
of the presented APSA increases more slowly compared to the other three algorithms. In about the
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1000th round, APSA achieves about 33.33%, 52.5% and 54.21% performance gain compared to UCR-H,
LEACH-AP and EDDUCA respectively.
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5.4. Analysis of Network Lifetime

The network lifetime is defined as the time when about half of the sensors in the network have
dead. At this time, the network is divided into several isolated portions which leads to a serious
decline in the performance of the network. In order to have a fair evaluation on different protocols, the
same network model is used to execute the APSA, UCR-H, LEACH-AP and EDDUCA algorithms,
respectively. The simulation result is demonstrated in Figure 6. As Figure 6 shows, the lifetime of
APSA is 1511 rounds and it achieves about 16.23%, 31.39%, 51.1% performance gain compared to
UCR-H, LEACH-AP and EDDUCA, respectively.
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5.5. Analysis of Clustering Result

The reasonable CHs are expected to be selected during the selection procedure and one of the
significant standards to evaluate the reasonability is the average communication distance between the
CH and its members. The same simulation parameters are used and the number of sensors is set as
100. The presented algorithm is compared with LEACH-AP [19] and the simulation result is shown as
Figure 7. From Figure 7, it can be seen that the presented APSA can greatly reduce the intracluster
communication distance and improves about 30.5% performance compared to LEACH-AP.
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5.6. Study of Affinity Propagation (AP) Preference

The parameter p has a great impact on the performance of APSA in terms of convergence time and
number of clusters. Different values of p are tested under the same network model (100 sensors) and
the simulation result is shown as Table 3. As shown in Table 3, when p is set as –6000, the algorithm
convergences faster and achieves a more reasonable number of clusters.

Table 3. Results of different values of p.

Value of p −4500 −5000 −5500 −6000 −6500 −7000 −7500

Converge time (s) 2.12 1.54 1.22 0.99 1.13 1.27 2.46

Cluster number 8 9 8 6 6 8 9

6. Discussion

The initial cluster centers are obtained by iteration using the AP algorithm. With the scale of the
network increasing, the time used for calculation of initial cluster centers will also increase rapidly.
Therefore, one drawback of the presented clustering method is that it is not suitable for WSNs on a
large scale. Additionally, the presented APSA can be improved by adjusting the value of AP preference.
The value of the AP preference is obtained by experience and it has a significant influence on the
performance of the AP; –6000 is just a suitable value for AP preference and we cannot ensure it is the
optimal value. Therefore, our future work will focus on optimizing the parameter P.

The simulator used in this paper is MATLAB and it can only simulate the real world. However, in
real applications, many other problems need to be solved. For example, in the simulation environment, it
is assumed that the transmissions between sensors are always successful; while in the real environment,
transmission may fail due to the harsh environment or the busy communication channel. Therefore,
the presented algorithm still needs to be improved to adapt to the real environment.

Our future work will mainly focus on the improvement of expandability of the method. We will
also combine popular mobile sink technology as well as data fusion technology with our clustering
method to further improve performance.

7. Conclusions

The design of an energy-efficient routing algorithm has always been an important research issue
for WSNs. In this paper, an adaptive clustering method based on an AP algorithm is presented, which
can reduce the average data transmission distance of the network and provide load balanced routing
effect. It firstly introduces the AP algorithm to calculate the initial cluster centers. Then a modified
K-medoids algorithm is adopted to partition the whole network into clusters according to the previous
initial cluster centers calculated by AP. Simulation results show that about 33.33%, 52.5% and 54.21%
performance gain can be achieved in terms of energy consumption, and about 16.23%, 31.39%, 51.1%
performance gain can be achieved in terms of network lifetime compared to the UCR-H, LEACH-AP
and EDDUCA algorithms respectively.
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