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Abstract: Underwater sensor networks have wide application prospects, but the large-scale sensing
node deployment is severely hindered by problems like energy constraints, long delays, local
disconnections, and heavy energy consumption. These problems can be solved effectively by
optimizing sensing node deployment with a genetic algorithm. However, the genetic algorithm (GA)
needs many iterations in solving the best location of underwater sensor deployment, which results in
long running time delays and limited practical application when dealing with large-scale data. The
classical parallel framework Hadoop can improve the GA running efficiency to some extent while the
state-of-the-art parallel framework Spark can release much more parallel potential of GA by realizing
parallel crossover, mutation, and other operations on each computing node. Giving full allowance
for the working environment of the underwater sensor network and the characteristics of sensors,
this paper proposes a Spark-based parallel GA to calculate the extremum of the Shubert multi-peak
function, through which the optimal deployment of the underwater sensor network can be obtained.
Experimental results show that while faced with a large-scale underwater sensor network, compared
with single node and Hadoop framework, the Spark-based implementation not only significantly
reduces the running time but also effectively avoids the problem of premature convergence because
of its powerful randomness.

Keywords: genetic algorithm; multi-peak function; underwater sensor network; parallel computing;
large-scale data; Spark; Hadoop

1. Introduction

An underwater wireless sensor network (UWSN) refers to a network composed of sensors
deployed in the designated water. These sensors, featured with low energy consumption and limited
communication distance, constitute a network automatically by means of their self-organizing ability.
Then the ad hoc UWSN will collect, process and upload data of the designated water to servers [1]. Due
to its wide and crucial application in marine resource exploration, marine environmental monitoring,
and marine military field, UWSN has aroused wide concerns among industrial, academic, and military
fields [2]. A UWSN is different from conventional wireless sensor networks (WSN) mainly in that it is
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used to conduct three-dimensional detection of a water environment. The underwater environment
is complex and changeable, which makes fast-fading acoustic signals the only available means to
transmit data. However, this definitely pushes up the sensor cost and network energy consumption,
and makes many conventional WSN methods unsuitable for UWSN. Therefore, many scholars have
conducted studies on UWSNs, to be specific, on topology control protocols, location algorithm, node
deployment, coverage control, etc. [2–4].

Deploying UWSN nodes reasonably can save sensor resources, improve network efficiency,
balance network energy consumption, and prolong network lifetime. Accordingly, the strategy of
node deployment has always been a hot research topic of UWSNs [5]. Gupta [6] established a 2D-WSN
mathematical model for node deployment and conducted numerical simulation by genetic algorithm
(GA). However, the model was not built in a three-dimensional environment and, thus, could not
be applied to UWSNs directly. In addition, given that network holes often occur in the topological
structure of UWSNs due to water currents or node failures, the node locations need adjusting from
time to time, which, in turn, increases the difficulty of sensor network deployment. Some research [7,8]
shows that the node deployment of UWSNs is more complex than that of a 2D-WSN; meanwhile, the
computation of the former is much heavier than that of the latter. Therefore, in the case of the massive
deployment of a UWSN, the traditional GA is far from competent when handling these problems
due to its low capability, long running time, and poor solution quality. By contrast, a parallel genetic
algorithm shows a remarkable competitive edge. Parallel GAs [9–11] divide the evolution population
into many splits and assign them to different nodes of a computing cluster, respectively, thus achieving
a high degree of parallel computation and meeting the timeliness demand of the UWSN when deployed
in a real underwater environment.

Hadoop [12] is a distributed computing framework developed by Google to deal with large-scale
data service. Its kernel modules include MapReduce and the Hadoop Distributed File System (HDFS).
Essentially, MapReduce is a distributed programming model to handle big data on large-scale computer
clusters. Compared with conventional parallel programming models, such as massively parallel
processing (MPP), MapReduce achieves elegant abstraction in the bottom layer, which enables users to
develop distributed applications easily. As for the other kernel module, HDFS realizes the distributed
reliable storage and access of mass data by various strategies, including storing redundant copies, haul
storage, etc. Hadoop clusters can be employed to handle complex distributed programs, like GA, to
achieve high parallelization. Through the full display of its scale effect, high-speed computation and
storage can be conducted, which can sensibly improve the computational efficiency of GA. However,
when complicated iterative operations are conducted with MapReduce, continuous disk reads and
writes between operations consume a large amount of time, thus leaving much space for further
improvement on computational efficiency [13].

Based on memory computing, the state-of-art distributed computing framework Spark [14]
supports complex query, stream computing, and classified data mining of large-scale datasets, which
turns lightweight quick processing into a reality. Memory computing has also been used in many areas
of edge computing [15–19], and we have carried out a series of studies on memory power [20–22].
Owing to the unique computation mechanism of resilient distributed datasets (RDD) of Spark, the
intermediate results of every iteration can be stored in the internal memory for the next iteration,
which, in turn, remarkably improves the multiple iteration efficiency of GA.

The major contribution of this paper is summarized as follows:

(1) The Shubert multi-peak function (SMPF) is used to simulate deployment of underwater sensor
network. By calculating the extremums of the Shubert multi-peak function (ESMPF), the
simulating optimal deployment sites can be obtained.

(2) Based on RDD computation model of the Spark framework, a parallel GA for optimizing the
deployment of a UWSN (DUWSN) is designed and implemented.

(3) By the comparison with the GAs based on single-node and Hadoop, it is verified that the proposed
GA runs more efficiently while showing a higher accuracy.
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The rest of this article is arranged as follows: Section 2 gives the system application model.
Section 3 introduces the application of single-node genetic algorithm in optimizing DUWSN. Section 4
describes the Hadoop-based parallel GA for optimizing DUWSN. Section 5 presents the proposed
Spark-based parallel method. Section 6 offers the experiment description. Part 7 delivers the conclusion.

2. System Application Model

The process framework of location update of UWSN is shown as Figure 1. At certain regular
intervals (e.g., 30 min), the working nodes transmit information of their location and residual energy to
the cluster head node. Judging by the two criteria (1. Residual energy is sufficient; 2. heartbeat signal
is normal (no disconnection or noticeable delay)), the cluster head selects the qualified working nodes
and sends their location to the parallel computing cluster on the ground, through the communication
link of a repeater, a base-station, and a satellite. Then, the parallel optimization computation is
immediately conducted by the computing cluster, and the result (i.e., the optimal deployment locations)
is transmitted back to the cluster head by the same way of a satellite, a base station, and a repeater.
Finally, the cluster head distributes the new deployment locations to every working node and the latter
adjusts its location to the optimal deployment accordingly.
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Figure 1. The process framework of location updates of an UWSN.

It should be noted that the cluster head node, as the forwarding and controlling node of the whole
cluster, undertakes a heavy workload in the topological structure of UWSN as shown in Figure 1. To
ensure the sufficient energy of the cluster head, a cluster head reselection mechanism is introduced
which can balance the energy consumption of the whole network and guarantee the normal function
of the cluster head, thus prolonging the overall lifetime of the network.

As is presented in Section 1, in view of the complex underwater environment, the traditional
genetic algorithm has been abandoned gradually due to its poor computation efficiency and accuracy.
The new-generation parallel optimization has become a popular research direction for the fast and
accurate deployment of UWSNs. Therefore, a Spark-based parallel genetic algorithm is proposed
in this paper, aiming at optimizing UWSN deployment efficiently and accurately. To be specific,
the Shubert function is used to simulate the UWSN deployment that is mapped into corresponding
coordinate figures in the function. Then a Spark-based parallel genetic algorithm is employed to obtain
the optimal results. A specific description is shown in the following sections.
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3. Single-Node GA for Solving ESMPF

Generally, the mathematical model of single-node GA can be expressed according to Equation (1),
where C denotes the encoding scheme of chromosomes, P stands for initial population, F denotes the
Shubert fitness function, N stands for the size of population, Θ stands for the selection operator, Γ
denotes the crossover operator, Ψ denotes the mutation operator, and T stands for the termination
condition for the algorithm. As is well known, GA is a somewhat globally heuristic optimization
algorithm based on the evaluation of chromosome fitness, which actually means the use of existing
data to guide the optimization search direction can significantly improve the algorithm quality finally:

SGA = (C, P, F, N, Θ, Γ, Ψ, T) (1)

3.1. Shubert Multi-Peak Function

Given that the UWSN environment is complex and changeable, to facilitate the study of DUWSN,
the target area is assumed to be a cuboid in this article. By the simulation of the Shubert function
model [23], the extremums of the Shubert multi-peak function (ESMPF) can be obtained, which can
be then used to locate the optimal deployment sites of the UWSN. This can be justified by the fact
that the Shubert objective function has multi-dimensional parameters that can simulate the complex
underwater environment effectively, and its optimized objective can reflect vividly the deployment
objective of the UWSN. In addition, as can be seen from Figure 2, the distribution of ESMPF itself
constitutes a 3D space that shares a natural similarity with the distribution of underwater sensing
nodes. Therefore, the calculation of ESMPF is used to simulate the optimal deployment strategy of
underwater sensing nodes in this paper. Shubert function [24], which is set as the fitness function in
this paper, is a typical multi-peak function (function with multiple peak values). According to our
visualization analysis, the Shubert function has 760 local extremums and 18 global extremums within
the interval between −10 and 10, as shown in Figure 2. The Shubert function formula is as follows:

f (x, y) =
5∑

i=1
i cos[(i + 1)x + i] ×

5∑
i=1

i cos[(i + 1)y + i]

−10 < x < 10,−10 < y < 10
(2)
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search space of the algorithm, which is called “individual encoding”. Then the GA is to be applied to 
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Figure 2. (a) Shubert function simulation view 1 (along X-axis and Y-axis); and (b) Shubert function
simulation view 2 (along Z-axis).

In actual applications, it is more often that the global extremums and alternative local extremums
are needed for the function with multiple peak values. However, the traditional algorithm for solving
extremums is generally denounced for its low efficiency and poor accuracy. Meanwhile, it often easily
falls into the dilemma of local optimal values.
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3.2. The GA Dataset Encoding for SMPF

The design of individual encoding scheme, as the first step of genetic algorithm, is of vital
importance. When GA is used to solve the Shubert function, the decision parameters are not to be
operated on directly. Instead, the feasible solution set of the objective function is mapped into the
search space of the algorithm, which is called “individual encoding”. Then the GA is to be applied to
the encoded individuals.

Being quite easy, practicable for GA operations, and consistent with the principle of minimum
symbol set encoding, binary coding is adopted as the encoding scheme of the Shubert function.
According to the methodology of binary coding, the feasible solutions of the function are converted
into chromosome strings that are composed of 0 and 1. The total number of binary coding strings is
related with the accuracy of function solutions ϕ. Xmax and Xmin denote the maximum value and
minimum value of horizontal ordinate in the space. The formula of accuracy ϕ is as follows:

ϕ =
Xmax −Xmin

2l
(3)

To achieve higher and higher accuracy of function parameters, the corresponding binary strings
have to be longer and longer. However, this inevitably leads to the sharp expansion of search space
and the increase of calculation, which in turn reduces the search efficiency of the GA. After considering
the efficiency of the frameworks involved and weighing the relation between accuracy and calculation
amount, this paper uses nine-digit binary coding to denote the two decision parameters “x” and “y”.
The nine-digit binary coding string can represent 512 figures between 0 and 511, thus discretizing the
definition domain of “x” and “y” into 511 equal intervals with 512 discrete points (two endpoints
included). Suppose that the discrete points from −10 to 10 represent the binary codes between
000000000(0) and 111111111(511) correspondingly, then the mapping relation is expressed as follows:

000000000 = 0 → Xmin

000000001 = 1 → Xmin + ϕ
000000010 = 2 → Xmin + 2ϕ

...
...

...
111111111 = 29

− 1→ Xmax

(4)

Then two nine-digit binary coding strings are used to represent “x” and “y”. When the two strings
are combined together to form an eighteen-digit binary coding string, it is the chromosome encoding
for the Shubert function. By means of this encoding scheme, 262,144 pairs of chromosome samples can
be produced in the whole solution space, which constitutes the sample database of the Shubert function.
Meanwhile, there exists the corresponding one-one mapping relation between he coordinate solution
space and the GA search space. According to the accuracy ϕ, this scheme can guarantee that a large
amount of homogenous discrete points is produced and uniformly distributed in the solution space.
This, to some degree, can ensure both the solutions accuracy and the search capability of genetic space.

When the genetic evolution is finished, the last generation of population set needs to be decoded
to obtain the results. The decoding function for the binary coding string X = blbl−1 · · · b2b1 can be
expressed as follows:

x, y = Xmin +

 l∑
1

bi·2i−1

·Xmax −Xmin

2l − 1
, l = 9 (5)

3.3. Single-Node Implementation

GA is a kind of searching strategy for global optimization based on genetic evolution. Compared
with other kinds of algorithms, GA is more suitable for DUWSN. The process of single-node GA for
solving ESMPF (GAESMPF) is shown in Figure 3.
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1. Population Initialization: To input 262,144 pairs of binary coding string into the sample database
of Shubert function and set them as the initial population.

2. Fitness Evaluation: Given that the individual fitness should be non-negative, a linear non-negative
conversion should be done to the Shubert function and the fitness corresponding to each individual
should be calculated.

3. Selection Operator: According to the individual fitness and selection probability, the next
generation can be selected out by means of roulette.

4. Crossover Operator: All the individuals of the population should be coupled in a random
and pairwise way, and single-point crossover should be conducted according to the
crossover probability.

5. Mutation Operator: To traverse through each gene locus of every individual and reverse the loci
which satisfy the mutation probability.

6. Decoding and Calculation: When the termination conditions are met, the individuals of the last
generation are decoded with functions to obtain the corresponding function-value set and then
the values are sorted to locate the extremums.

Careful study of Figure 3 can reveal the deficiency of single-node GAESMPF. Since it is a kind of
serial operation, all the crossover, mutation and selection operators are conducted within the single
population. Thus, the individuals located around the local extremums possess high probability to
be selected. Consequently, the sample individuals would be more inclined to center around the
first-solved local extremum after several times of iteration, which, actually, severely limits the further
search space. In addition, in view of the changing underwater environment, the computation time of
single-node GA is too long, which means that it is more likely that the optimal deployment location
obtained may have become useless and unsuitable for the real-time underwater environment [25].
Contrarily, if the whole population is divided into many splits, each of which can conduct parallel
searching under the guidance of different compute nodes. This can greatly reduce the optimization
time. Meanwhile, samples can be taken from the individuals near every local extremum in each split,
thus greatly enlarging the space for further searches. In other words, parallel searches by divided
splits can retain the samples near different local extremums to avoid premature convergence to some
degree. Thus far, although numerous improvement methods for single-node GA have emerged, the
parallel GAs still boast of incomparable advantage in terms of efficiency and accuracy in UWSN
deployment [26].

4. Hadoop-Based Parallel GAESMPF

In order to set a benchmark for the proposed Spark-based parallel GAESMPF, Hadoop-based
parallel GAESMPF is designed and implemented here, whose core concept is to convert the single-node
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serial iterations into the corresponding MapReduce parallel operations [27]. The actual process is
shown in Figure 4.
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4.1. Process of Parallel Genetic Iteration

To begin with, we input Shubert sample code set into HDFS. Then we read the pre-stored code set
from HDFS as the individuals of the initial population and divide them into a certain number of splits.
Next, we calculate the Shubert function values of individuals in every split and set the values as the
individual fitness. Then we take the key-value pair <individuals, fitness> as the input and establish
independent MapReduce tasks in every split. Finally, we conduct selection, crossover, and mutation,
and store the evolved individual key-value pair <individuals, fitness> into HDFS [28]. The pseudo
code of genetic process is as Algorithm 1.

Algorithm 1. Parallel genetic iteration.

Input: N: Shubert sample code set
T: maximum times of iteration

Output: the individual encoding key-value pair of the last generation

1. To read N from HDFS
2. To initialize the population
3. To assign the initial population to different nodes
4. For every individual i ∈ Initial population do
5. To calculate the fitness of every individual
6. To map them into key-value pair <individuals, fitness>
7. End for
8. Sort the individuals by fitness
9. t = 0
10. while (t < T)
14. {
12. For population/2 times do
13. To select the parent individuals randomly from the

population F1, F2
14. crossover (F1, F2)
15. {determining crossover-factor f1, f2}

16. crossover individuals:
17. {
18. F1’ = F1&f1|F2&f2
19. F2’ = F1&~f1|F2&~f2
20. }
21. mutation (F1’, F2’)
22. {determining mutation-factor f0
23. mutation individuals F” = F’ˆf0
24. }
25. To select excellent individuals
26. End for
27. t = t + 1
28. }
29. Output the individual set of the last

generation (best Individuals)
30. End
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4.2. Process of Searching Extremums

During the process of searching extremums, the main task is to judge the termination conditions
and search the extremums of the population. When the termination conditions are met, the population
is decoded to obtain Shubert function values with a sorted list. Then the global extremums of the
Shubert function and its corresponding variables are output. The pseudo-code of optimizing process is
as Algorithm 2.

Algorithm 2. Searching extremums.

Input: N: Shubert sample code set of the last generation
Output: the extremums of Shubert function

1. To read N from HDFS
2. To assign the last generation population to

different nodes
3. For every individual i ∈ the individuals of the

last generation do
4. To decode the individuals
5. To calculate the extremum of Shubert

6. To map the function value and corresponding
variable into key-value pair <value, (x, y)>

7. End for
8. Sort the function values by key
9. To output the extremums of Shubert function

and corresponding variable
10. End

In the process of Hadoop-based parallel genetic iteration, the default operation of the Reduce
function will sort the evolved population and override the storage with the default text name. This
operation disrupts the previous order of the population, thus sharply increasing the randomness
and expanding the search space during the next iteration. Compared with single-node GAESMPF,
the advantage of the Hadoop-based scheme lies in the fact that it can avoid local optimization and
improve the accuracy of solutions to some degree. Unfortunately, in terms of operation efficiency of
the deployment of a UWSN, the Hadoop-based scheme still falls short.

5. Spark-Based Parallel GAESMPF

As is well known, Hadoop MapReduce is not equipped with a memory operation mechanism [29].
Therefore, the population data needs to be read from disk every time an iteration is conducted, thus
greatly increasing the running time and failing to utilize fully the parallel potential of the GA. Different
from the Hadoop-based implementation, the parallel design of the Spark-based GAESMPF sets its
ground upon RDD (resilient distributed dataset) which is unique to Spark. Briefly speaking, RDD
is a resilient distributed storage system with high fault-tolerance. It stores large-scale data in the
local memory of different computing nodes and conducts memory-based parallel computation in
distributed clusters [30]. Generally, the operations of RDD fall into two categories: (1) Transformation,
and (2) action. In short, the former is to create a new RDD based on an existing RDD, and the latter is
to conduct actual parallel computation on RDD and then send back a displayable or storable result to
the master control program. It is noteworthy that the transformations of RDD belong to lazy execution,
which means that the transformations accumulated are not triggered in turn until the next action comes
up (as shown in Figure 5).

In order to compare with single-node GAESMPF and Hadoop-based parallel GAESMPF, the
Shubert code set is read from HDFS to conduct the genetic operation. To obtain the optimal solution,
iterations need to be done continually. Whenever iterations are done, GA updates the code information
according to the split results. The updated splits serve as the key factor for the ergodic selection during
the next iteration. Therefore, when the current iteration is finished, the Spark-based GAESMPF, by the
mechanism of utilizing the memory buffer of RDD, stores the updated split information in the memory
of each node as intermediate data for the next iteration [31,32].
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During the iterations of GA, the evolutionary process of splits in each node is completely
independent. Accordingly, the Spark-based GAESMPF divides itself into partitions in line with the
number of nodes. The partitions are then assigned to each node to create RDDs parallel to each other.
For every RDD (which stands for the split in each node), the operation mode is parallel. After the
operations of selection, crossover, and mutation are conducted by the RDD mechanism on Spark, the
parallel execution of the whole population evolution is completed.

According to the above analysis, the Spark programming model is used to realize the parallel
implementation of GA for multi-peak function extremums. The actual process of Spark-based
GAESMPF is shown as Figure 6.
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5.1. Phase of Parallel Genetic Operation

The genetic operation phase consists of four operations (fitness calculation, selection, crossover,
and mutation) which can be conducted with RDD model on Spark framework. The high compatibility
between Spark and HDFS makes it possible to deal with the text data stored in HDFS line-by-line.
Therefore, the initial population can be stored as individual samples in HDFS line-by-line.

Fitness calculation: Firstly, read the code set of Shubert feasible solutions (total data employed in
this paper are 262,114 pieces) from HDFS as the initial population of the GA. Then distribute the initial
population to each node evenly and calculate the individual fitness with Shubert function on each
node. Next map the key-value pair of individual code and fitness and store it in the new RDD in the
form of <individuals, fitness>. In this paper, x and y denote the location information of working nodes.
The fitness formula is the Schubert function that goes as follows:

f (x, y) =
5∑

i=1

i cos[(i + 1)x + i] ×
5∑

i=1

i cos[(i + 1)y + i] (6)

Selection: Natural selection refers to a category of selection strategies for future generations.
Common strategies include roulette, tournaments, and elite retention. Roulette is to extract progeny
with a certain probability, repeated n times, and the probability of each individual being drawn is
as follows:

pi =
f (xi, yi)

n∑
j=1

f
(
x j, y j

) (7)

Conduct natural selection upon every individual in RDD on each node, then traverse the
characteristics of all the key-value pairs in combination with Map. In every selection process, employ
a fitness value as the criterion to select out the individuals that meet the requirements for the next
generation. Finally, create the RDD of the new population based on “the survival of the fittest” and
store it in the memory. To avoid local optimization and increase the individual randomness, the
individual data on each node is re-sorted for the next operation.

Crossover: Firstly, sample all the individuals of RDD on each node by means of the take function
and store them evenly in two lists. Then create two RDDs out of the two lists by means of the parallelize
function and form key-value pairs to realize the random match of two individuals of the parent
generation. Next use the Map function to conduct single-point crossover operation upon the key-value
pairs (<individual, individual>) line-by-line. Then generate the corresponding crossover-factor f1(x)
and f2(x), retrieve the key-value pair after crossover operation and create the population RDD by
means of the Map function according to Equations (9) and (10). Finally, the newly created RDD is
stored in the memory. The crossover process is illustrated in Figure 7.

f1(x) = 1111111|00000000000 0, f2(x) = 0000000|1111111111 1 (8)

f ′a (x) = f (x)& f1(x)
∣∣∣ f (x)& f2(x) (9)

f ′b (x) = f (x)& ∼ f1(x)
∣∣∣ f (x)& ∼ f2(x) (10)

Mutation: after crossover, use Map to read every individual in the RDD line-by-line and traverse
all the gene loci of every individual code. The random number generated can be used as the criterion
to assess if the individual code has met the mutation condition, then generate the corresponding
mutation-factor f0(x). For the loci that meet the mutation condition, a negation operation is conducted,
thus creating a new individual as shown in the Equation (12); otherwise, the individual code should be
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output directly. After mutation, the population RDD created is stored in the memory. The mutation
process is illustrated in Figure 8.

f0(x) = 000010000000000000 (11)

f ”(x) = f ′(x)∧ f0(x) (12)Sensors 2019, 19, x FOR PEER REVIEW 11 of 19 
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5.2. Phase of Searching Extremums

Figure 9 displays the process of searching optimal extremums of the last-generation population. If
the iteration times meet the preset termination condition, the RDD created in the end will be handled
with the Map function. During the Map operation, the variable-decoding step is conducted to obtain
Shubert function values. The extremums obtained and their corresponding variables are stored in
the form of key-value pairs which, to be specific, is denoted as <Value, (X, Y)>. The key-value pairs
are ranked by sortByKey and stored in HDFS. The result stored in HDFS is actually the collection of
all node locations ranked by merits. In other words, the result includes not only the information of
optimal node locations but also that of other node locations. This “whole result” can better meet the
actual demand of optimization deployment of UWSN. The last step is to output the extremums of
Shubert function and its corresponding variables. Thus, the corresponding variables (Xi, Yi) are the
best locations for deployment of a UWSN.
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6. Experiment and Analysis

The goal of the experiment is to verify the advantages of the proposed method, GAESMPF,
especially for large-scale data, from the following two aspects:

1. High efficiency: Through the comparison of running time, speedup ratio, and average time
consumed for iterations on single-node, Hadoop, and Spark, respectively, the high efficiency of
the Spark-based GAESMPF is verified.

2. Accuracy and stability: Through comparison of the Shubert function extremums obtained with
different times of iterations, the accuracy and stability of parallel GAESMPF based on Spark
is verified.

6.1. Experiment Configuration

The computing cluster consists of 20 nodes (one master and 19 slaves). The same sample dataset is
used on all the frameworks. The actual configuration and operation parameters are shown in Table 1.

Table 1. Configuration of the experiments.

Node Maximum
Population

Crossover
Rate

Mutation
Rate

CPU
(Core) Memory Network JDK

Version
Hadoop
Version

Spark
Version

Master 262,144 0.9 0.05 4 6 GB 1 GB/s 1.7.0 1.2.1 1.6.0
Slave
(1~19) 262,144 0.9 0.05 4 6 GB 1 GB/s 1.7.0 1.2.1 1.6.0

6.2. General Running Efficiency

The experiments use 262,144 pairs of chromosomes provided by the code database of Shubert
function feasible solutions that has been established in previous sections. The iteration times are set at
30, 50, 70, 90, 110, 130, and 150, respectively. The experiment results are shown in Table 2. For every
result of a row in Table 2, we take the average value of ten repeats of GAESMPF computation.
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Table 2. The optimal result of GAESMPF based on single-node, Hadoop, and Spark.

Iterations
Single-Node Hadoop Spark

Time/s Extremum Time/s Extremum Time/s Extremum

30 1152.645 175.27 94.810 205.32 9.169 206.67
50 2231.642 182.45 156.104 206.89 11.008 207.73
70 3081.259 196.65 217.609 206.12 14.507 208.83
90 3953.328 206.15 278.967 207.73 18.997 209.52

110 4881.409 208.14 340.735 209.12 23.050 209.32
130 5560.156 208.16 401.761 210.22 27.633 210.32
150 6515.616 209.67 463.883 210.42 32.771 210.43

As can be seen from Table 2, compared with GAESMPF based on Hadoop or Spark, the single-node
GAESMPF needs many more iteration times to reach the optimal extremum and, thus, needs a much
longer running time. Compared with the single-node GAESMPF, the Hadoop-based GAESMPF
boasts a much higher efficiency. Meanwhile, as is shown in Figure 10, the X-Y variations of iteration
times and running time on the three frameworks are generally distributed linearly. As for the two
parallel algorithms, Spark-based GAESMPF virtually saves ten times the running time compared
with Hadoop-based GAESMPF. Moreover, the tendency of running time curves indicates that, as the
iteration times increase, the running efficiency of Spark-based GAESMPF rises more sharply and
the gap between the two distributed GAESMPFs becomes wider and wider. When the iteration
times reach 150, Spark-based GAESMPF can save up 92.93% of the running time. Therefore, when
the computing capacity is sufficient, the Spark-based GAESMPF can fully utilize its advantage of
memory computing to reduce the running time significantly and, thus, greatly improve the timeliness
of UWSN deployment.
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The implementation of GAESMPF based on Hadoop provides a feasible operation process for
the storage and transmission of evolved populations on each computing node. In this process, one
iteration needs a map phase and a reduce phase. The two phases inevitably involve massive data
transmission that is quite time-consuming. By contrast, for Spark-based GAESMPF, the process of
population evolution is conducted completely on RDD in the memory. The population of RDDs
is distributed evenly on each node in the Spark cluster. In the process of iteration, the population
searches the optimal solution through a series of RDD conversion. These techniques can release the
great potential of memory computing of the Spark framework. Moreover, it can be easily seen from
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Figure 10 that as the iteration times increase, Spark-based GAESMPF saves more and more time than
Hadoop-based GAESMPF.

6.3. Solution Accuracy with Evolution Times

In order to ensure the accuracy of extremums and minimize the influence of outliers, the average
value of ten running results is taken as the analysis object. As can be seen clearly from Figure 11, as
the times of iteration increase, the extremums of single-node GAESMPF keeps changing significantly.
Moreover, compared with the results of two distributed versions, the error rate is relatively high and
local extremums appear many times. Until the iteration times reach a certain degree (90 times), the
accuracy of single-node GAESMPF tends to be stable. On the contrary, the accuracies of distributed
versions fluctuate quite mildly and show no obvious correlation with the times of iteration. As is
shown, the two distributed versions boast of relatively high accuracies even when the iteration times
are quite small. In addition, as the iteration times increase, the results tend to approach the final
exact extremums of the Shubert multi-model function. Therefore, the accuracy and stability of the
distributed versions are remarkably higher than those of the single-node version.
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It is noteworthy that Figure 11 demonstrates a vital characteristic of GAESMPF, that is, the high
randomness brought forward by parallel computation. This characteristic makes it feasible to dig out
the “genetic” potential to fully and effectively avoid local optimal solutions (LOS), which, in turn,
remarkably improves the accuracy and stability of GAESMPF. Why do GAs easily fall into LOS? The
main reason lies in the fact that in a single population the individuals near the LOS are more likely
to be selected, which means the data samples in the genetic space will readily cluster around the
LOS after several times of iteration. This will greatly limit the space for further searches. Thus, the
purpose of dividing the initial population into multi-node splits is to ensure that samples are to be
evenly distributed near every LOS. By doing so, the space for further searches will be expanded greatly
and effectively. Therefore, based on the distributed computing framework, the GAESMPF conducts
crossover and mutation within the splits on each node at first, and then integrates and stores the results.
This will retain the samples around different LOS and, thus, significantly improve the search efficiency
and accuracy.
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6.4. Run Time of a Single Iteration

The performance of GAESMPF can be further analyzed through the comparison of average run
times for a single iteration. Figure 12 displays the run time distribution of single iteration at different
evolution times on the two distributed frameworks. As the evolution times increase and exceed 80
times, the run time for a single iteration tends to be quite stable. The average run time for a single
iteration on Hadoop is 3.09 s, while that on Spark is 0.22 s. In other words, the Spark-based version is
2.87 s faster than the Hadoop-based version when dealing with a single evolution. That is also to say
that the working efficiency of the Spark-based version is improved by 13 times than the Hadoop-based
version, thus ensuring the timeliness of UWSN deployment.
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6.5. Speedup Ratio Analysis

Experiments were conducted to evaluate the speedup ratio of GAESMPF based on Spark and
Hadoop. The speedup ratio is a key indicator for the system performance under the same workload.
For distributed versions, compared with the single-node version, the larger the speedup ratio is, the
greater the working efficiency is. The formula of the speedup ratio is shown as follows:

Sp = T1/Tp (13)

where Sp denotes the speedup ratio, T1 stands for the run time of GAESMPF based on a single node,
and Tp stands for the run time of GAESMPF based on distributed frameworks.

6.5.1. Speedup Ratio with Different Evolution Times

MapReduce is a batch-processing engine whose normal operation is to read data from the disc,
deal with the data, and write the results back to the disc. Since Hadoop-based iterative evolution needs
to read the disc constantly, it is quite time-consuming. On the Spark framework, intermediate data are
stored in the memory rather than disc and similar operations are all conducted in memory, thus greatly
improving the running efficiency. Figure 13 displays the speedup ratio distribution of Hadoop-based
GAESMPF and Spark-based GAESMPF with different evolution times. As can be seen straightly, the
average speedup ratio of the Spark-based GAESMPF is approximately 194.4 while that of the Hadoop
version is about 13.9. This indicates that the Spark-based version possesses remarkable advantages
over the Hadoop-based version in terms of the speedup ratio.
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6.5.2. Speedup Ratio with Different Node Numbers

As is designed in the experiment, when iterations reach 150 times, the speedup ratio is analyzed
with different node numbers. From Figure 14 it can be seen that, as the node number increases, the gap
of speedup ratio between the Spark version and Hadoop version becomes wider and wider. When the
node number reaches the maximum 19, the speedup ratio of Spark version and Hadoop version is
198.822 and 14.046, respectively, the former 14 times greater the latter. This can be explained by the
fact that, for time-consuming GAESMPF operations, as the number of working nodes increases, the
Spark-based version occupies more and more obvious advantages over the Hadoop-based version in
the process of the optimal deployment of the UWSN.
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7. Conclusions

In this paper, a Spark-based parallel GA is proposed to simulate the optimal deployment of an
underwater sensing network. Compared with single-node-based GA and Hadoop-based GA, the
Spark-based parallel GA can significantly shorten the computation time of iterative evolution when
dealing with large-scale underwater sensing nodes. As can be seen from the experiment results
in Figure 10, the computation efficiency of the proposed method is improved by over 200 times
compared with the single-node-based GA, and 15 times compared with the Hadoop-based GA. Thus, a
remarkable improvement in the timeliness of solving the optimal deployment of a UWSN is achieved.
Encouragingly, the innate natural randomness and distribution of the Spark-based parallel GA entitles
it to avoid local optimization effectively, which further improves the accuracy of the proposed method
and finally results in optimal deployment of the UWSN. Therefore, the proposed method of Spark-based
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parallel GA is rather promising in solving the optimized deployment strategy of a large-scale UWSN. In
the future, the author will further investigate the deployment strategy and topology control protocols
of a large-scale UWSN by means of the fusion of parallel GA and parallel machine learning algorithms.
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