
sensors

Article

Spark-Based Parallel Genetic Algorithm for
Simulating a Solution of Optimal Deployment
of an Underwater Sensor Network

Peng Liu 1,2, Shuai Ye 3, Can Wang 4 and Zongwei Zhu 5,*
1 National and Local Joint Engineering Laboratory of Internet Application Technology of Mines,

Xuzhou 221008, China; liupeng@cumt.edu.cn
2 Internet of Things Perception Mine Research Center, China University of Mining and Technology,

Xuzhou 221008, China
3 School of Information and Control Engineering, China University of Mining and Technology,

Xuzhou 221116, China; TS16060253P3@cumt.edu.cn
4 Aerospace Products Division, East China Institute of Computing Technology, Shanghai 201808, China;

wangcan003457@ecict.com.cn
5 Suzhou Institute of University of Science and Technology of China, Suzhou 215123, China
* Correspondence: zzw1988@ustc.edu.cn

Received: 28 April 2019; Accepted: 13 June 2019; Published: 17 June 2019
����������
�������

Abstract: Underwater sensor networks have wide application prospects, but the large-scale sensing
node deployment is severely hindered by problems like energy constraints, long delays, local
disconnections, and heavy energy consumption. These problems can be solved effectively by
optimizing sensing node deployment with a genetic algorithm. However, the genetic algorithm (GA)
needs many iterations in solving the best location of underwater sensor deployment, which results in
long running time delays and limited practical application when dealing with large-scale data. The
classical parallel framework Hadoop can improve the GA running efficiency to some extent while the
state-of-the-art parallel framework Spark can release much more parallel potential of GA by realizing
parallel crossover, mutation, and other operations on each computing node. Giving full allowance
for the working environment of the underwater sensor network and the characteristics of sensors,
this paper proposes a Spark-based parallel GA to calculate the extremum of the Shubert multi-peak
function, through which the optimal deployment of the underwater sensor network can be obtained.
Experimental results show that while faced with a large-scale underwater sensor network, compared
with single node and Hadoop framework, the Spark-based implementation not only significantly
reduces the running time but also effectively avoids the problem of premature convergence because
of its powerful randomness.

Keywords: genetic algorithm; multi-peak function; underwater sensor network; parallel computing;
large-scale data; Spark; Hadoop

1. Introduction

An underwater wireless sensor network (UWSN) refers to a network composed of sensors
deployed in the designated water. These sensors, featured with low energy consumption and limited
communication distance, constitute a network automatically by means of their self-organizing ability.
Then the ad hoc UWSN will collect, process and upload data of the designated water to servers [1]. Due
to its wide and crucial application in marine resource exploration, marine environmental monitoring,
and marine military field, UWSN has aroused wide concerns among industrial, academic, and military
fields [2]. A UWSN is different from conventional wireless sensor networks (WSN) mainly in that it is

Sensors 2019, 19, 2717; doi:10.3390/s19122717 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-3607-2631
http://www.mdpi.com/1424-8220/19/12/2717?type=check_update&version=1
http://dx.doi.org/10.3390/s19122717
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 2717 2 of 18

used to conduct three-dimensional detection of a water environment. The underwater environment
is complex and changeable, which makes fast-fading acoustic signals the only available means to
transmit data. However, this definitely pushes up the sensor cost and network energy consumption,
and makes many conventional WSN methods unsuitable for UWSN. Therefore, many scholars have
conducted studies on UWSNs, to be specific, on topology control protocols, location algorithm, node
deployment, coverage control, etc. [2–4].

Deploying UWSN nodes reasonably can save sensor resources, improve network efficiency,
balance network energy consumption, and prolong network lifetime. Accordingly, the strategy of
node deployment has always been a hot research topic of UWSNs [5]. Gupta [6] established a 2D-WSN
mathematical model for node deployment and conducted numerical simulation by genetic algorithm
(GA). However, the model was not built in a three-dimensional environment and, thus, could not
be applied to UWSNs directly. In addition, given that network holes often occur in the topological
structure of UWSNs due to water currents or node failures, the node locations need adjusting from
time to time, which, in turn, increases the difficulty of sensor network deployment. Some research [7,8]
shows that the node deployment of UWSNs is more complex than that of a 2D-WSN; meanwhile, the
computation of the former is much heavier than that of the latter. Therefore, in the case of the massive
deployment of a UWSN, the traditional GA is far from competent when handling these problems
due to its low capability, long running time, and poor solution quality. By contrast, a parallel genetic
algorithm shows a remarkable competitive edge. Parallel GAs [9–11] divide the evolution population
into many splits and assign them to different nodes of a computing cluster, respectively, thus achieving
a high degree of parallel computation and meeting the timeliness demand of the UWSN when deployed
in a real underwater environment.

Hadoop [12] is a distributed computing framework developed by Google to deal with large-scale
data service. Its kernel modules include MapReduce and the Hadoop Distributed File System (HDFS).
Essentially, MapReduce is a distributed programming model to handle big data on large-scale computer
clusters. Compared with conventional parallel programming models, such as massively parallel
processing (MPP), MapReduce achieves elegant abstraction in the bottom layer, which enables users to
develop distributed applications easily. As for the other kernel module, HDFS realizes the distributed
reliable storage and access of mass data by various strategies, including storing redundant copies, haul
storage, etc. Hadoop clusters can be employed to handle complex distributed programs, like GA, to
achieve high parallelization. Through the full display of its scale effect, high-speed computation and
storage can be conducted, which can sensibly improve the computational efficiency of GA. However,
when complicated iterative operations are conducted with MapReduce, continuous disk reads and
writes between operations consume a large amount of time, thus leaving much space for further
improvement on computational efficiency [13].

Based on memory computing, the state-of-art distributed computing framework Spark [14]
supports complex query, stream computing, and classified data mining of large-scale datasets, which
turns lightweight quick processing into a reality. Memory computing has also been used in many areas
of edge computing [15–19], and we have carried out a series of studies on memory power [20–22].
Owing to the unique computation mechanism of resilient distributed datasets (RDD) of Spark, the
intermediate results of every iteration can be stored in the internal memory for the next iteration,
which, in turn, remarkably improves the multiple iteration efficiency of GA.

The major contribution of this paper is summarized as follows:

(1) The Shubert multi-peak function (SMPF) is used to simulate deployment of underwater sensor
network. By calculating the extremums of the Shubert multi-peak function (ESMPF), the
simulating optimal deployment sites can be obtained.

(2) Based on RDD computation model of the Spark framework, a parallel GA for optimizing the
deployment of a UWSN (DUWSN) is designed and implemented.

(3) By the comparison with the GAs based on single-node and Hadoop, it is verified that the proposed
GA runs more efficiently while showing a higher accuracy.

Sensors 2019, 19, 2717 3 of 18

The rest of this article is arranged as follows: Section 2 gives the system application model.
Section 3 introduces the application of single-node genetic algorithm in optimizing DUWSN. Section 4
describes the Hadoop-based parallel GA for optimizing DUWSN. Section 5 presents the proposed
Spark-based parallel method. Section 6 offers the experiment description. Part 7 delivers the conclusion.

2. System Application Model

The process framework of location update of UWSN is shown as Figure 1. At certain regular
intervals (e.g., 30 min), the working nodes transmit information of their location and residual energy to
the cluster head node. Judging by the two criteria (1. Residual energy is sufficient; 2. heartbeat signal
is normal (no disconnection or noticeable delay)), the cluster head selects the qualified working nodes
and sends their location to the parallel computing cluster on the ground, through the communication
link of a repeater, a base-station, and a satellite. Then, the parallel optimization computation is
immediately conducted by the computing cluster, and the result (i.e., the optimal deployment locations)
is transmitted back to the cluster head by the same way of a satellite, a base station, and a repeater.
Finally, the cluster head distributes the new deployment locations to every working node and the latter
adjusts its location to the optimal deployment accordingly.

Sensors 2019, 19, x FOR PEER REVIEW 3 of 19

Spark-based parallel method. Section 6 offers the experiment description. Part 7 delivers the
conclusion.

2. System Application Model

The process framework of location update of UWSN is shown as Figure 1. At certain regular
intervals (e.g., 30 min), the working nodes transmit information of their location and residual energy
to the cluster head node. Judging by the two criteria (1. Residual energy is sufficient; 2. heartbeat
signal is normal (no disconnection or noticeable delay)), the cluster head selects the qualified
working nodes and sends their location to the parallel computing cluster on the ground, through the
communication link of a repeater, a base-station, and a satellite. Then, the parallel optimization
computation is immediately conducted by the computing cluster, and the result (i.e., the optimal
deployment locations) is transmitted back to the cluster head by the same way of a satellite, a base
station, and a repeater. Finally, the cluster head distributes the new deployment locations to every
working node and the latter adjusts its location to the optimal deployment accordingly.

Cluster head node

Working node

(Base Station)

Node information transmission

(Parallel computing cluster)

(Satellite)

(Repeater)

1

2

3

4

5

6

Figure 1. The process framework of location updates of an UWSN.

It should be noted that the cluster head node, as the forwarding and controlling node of the
whole cluster, undertakes a heavy workload in the topological structure of UWSN as shown in
Figure 1. To ensure the sufficient energy of the cluster head, a cluster head reselection mechanism is
introduced which can balance the energy consumption of the whole network and guarantee the
normal function of the cluster head, thus prolonging the overall lifetime of the network.

As is presented in Section 1, in view of the complex underwater environment, the traditional
genetic algorithm has been abandoned gradually due to its poor computation efficiency and
accuracy. The new-generation parallel optimization has become a popular research direction for the
fast and accurate deployment of UWSNs. Therefore, a Spark-based parallel genetic algorithm is
proposed in this paper, aiming at optimizing UWSN deployment efficiently and accurately. To be
specific, the Shubert function is used to simulate the UWSN deployment that is mapped into
corresponding coordinate figures in the function. Then a Spark-based parallel genetic algorithm is
employed to obtain the optimal results. A specific description is shown in the following sections.

3. Single-Node GA for Solving ESMPF

Generally, the mathematical model of single-node GA can be expressed according to Equation
(1), where C denotes the encoding scheme of chromosomes, P stands for initial population, F denotes
the Shubert fitness function, N stands for the size of population, Θ stands for the selection operator,
Г denotes the crossover operator, Ψ denotes the mutation operator, and T stands for the termination

Figure 1. The process framework of location updates of an UWSN.

It should be noted that the cluster head node, as the forwarding and controlling node of the whole
cluster, undertakes a heavy workload in the topological structure of UWSN as shown in Figure 1. To
ensure the sufficient energy of the cluster head, a cluster head reselection mechanism is introduced
which can balance the energy consumption of the whole network and guarantee the normal function
of the cluster head, thus prolonging the overall lifetime of the network.

As is presented in Section 1, in view of the complex underwater environment, the traditional
genetic algorithm has been abandoned gradually due to its poor computation efficiency and accuracy.
The new-generation parallel optimization has become a popular research direction for the fast and
accurate deployment of UWSNs. Therefore, a Spark-based parallel genetic algorithm is proposed
in this paper, aiming at optimizing UWSN deployment efficiently and accurately. To be specific,
the Shubert function is used to simulate the UWSN deployment that is mapped into corresponding
coordinate figures in the function. Then a Spark-based parallel genetic algorithm is employed to obtain
the optimal results. A specific description is shown in the following sections.

Sensors 2019, 19, 2717 4 of 18

3. Single-Node GA for Solving ESMPF

Generally, the mathematical model of single-node GA can be expressed according to Equation (1),
where C denotes the encoding scheme of chromosomes, P stands for initial population, F denotes the
Shubert fitness function, N stands for the size of population, Θ stands for the selection operator, Γ
denotes the crossover operator, Ψ denotes the mutation operator, and T stands for the termination
condition for the algorithm. As is well known, GA is a somewhat globally heuristic optimization
algorithm based on the evaluation of chromosome fitness, which actually means the use of existing
data to guide the optimization search direction can significantly improve the algorithm quality finally:

SGA = (C, P, F, N, Θ, Γ, Ψ, T) (1)

3.1. Shubert Multi-Peak Function

Given that the UWSN environment is complex and changeable, to facilitate the study of DUWSN,
the target area is assumed to be a cuboid in this article. By the simulation of the Shubert function
model [23], the extremums of the Shubert multi-peak function (ESMPF) can be obtained, which can
be then used to locate the optimal deployment sites of the UWSN. This can be justified by the fact
that the Shubert objective function has multi-dimensional parameters that can simulate the complex
underwater environment effectively, and its optimized objective can reflect vividly the deployment
objective of the UWSN. In addition, as can be seen from Figure 2, the distribution of ESMPF itself
constitutes a 3D space that shares a natural similarity with the distribution of underwater sensing
nodes. Therefore, the calculation of ESMPF is used to simulate the optimal deployment strategy of
underwater sensing nodes in this paper. Shubert function [24], which is set as the fitness function in
this paper, is a typical multi-peak function (function with multiple peak values). According to our
visualization analysis, the Shubert function has 760 local extremums and 18 global extremums within
the interval between −10 and 10, as shown in Figure 2. The Shubert function formula is as follows:

f (x, y) =
5∑

i=1
i cos[(i + 1)x + i] ×

5∑
i=1

i cos[(i + 1)y + i]

−10 < x < 10,−10 < y < 10
(2)

Sensors 2019, 19, x FOR PEER REVIEW 4 of 19

condition for the algorithm. As is well known, GA is a somewhat globally heuristic optimization
algorithm based on the evaluation of chromosome fitness, which actually means the use of existing
data to guide the optimization search direction can significantly improve the algorithm quality
finally:

)(ΤΨΓΘ= ，，，，，，， NFPCSGA (1)

3.1. Shubert Multi-Peak Function

Given that the UWSN environment is complex and changeable, to facilitate the study of
DUWSN, the target area is assumed to be a cuboid in this article. By the simulation of the Shubert
function model [23], the extremums of the Shubert multi-peak function (ESMPF) can be obtained,
which can be then used to locate the optimal deployment sites of the UWSN. This can be justified by
the fact that the Shubert objective function has multi-dimensional parameters that can simulate the
complex underwater environment effectively, and its optimized objective can reflect vividly the
deployment objective of the UWSN. In addition, as can be seen from Figure 2, the distribution of
ESMPF itself constitutes a 3D space that shares a natural similarity with the distribution of
underwater sensing nodes. Therefore, the calculation of ESMPF is used to simulate the optimal
deployment strategy of underwater sensing nodes in this paper. Shubert function [24], which is set
as the fitness function in this paper, is a typical multi-peak function (function with multiple peak
values). According to our visualization analysis, the Shubert function has 760 local extremums and
18 global extremums within the interval between –10 and 10, as shown in Figure 2. The Shubert
function formula is as follows:

 
= =

++×++=
5

1

5

1
])1cos[(])1cos[(),(

i i
iyiiixiiyxf

10, 1 1010 0x y− < < − < <

(2)

(a)

(b)

Figure 2. (a) Shubert function simulation view 1 (along X-axis and Y-axis); and (b) Shubert function
simulation view 2 (along Z-axis).

In actual applications, it is more often that the global extremums and alternative local
extremums are needed for the function with multiple peak values. However, the traditional
algorithm for solving extremums is generally denounced for its low efficiency and poor accuracy.
Meanwhile, it often easily falls into the dilemma of local optimal values.

3.2. The GA Dataset Encoding for SMPF

The design of individual encoding scheme, as the first step of genetic algorithm, is of vital
importance. When GA is used to solve the Shubert function, the decision parameters are not to be
operated on directly. Instead, the feasible solution set of the objective function is mapped into the
search space of the algorithm, which is called “individual encoding”. Then the GA is to be applied to
the encoded individuals.

Figure 2. (a) Shubert function simulation view 1 (along X-axis and Y-axis); and (b) Shubert function
simulation view 2 (along Z-axis).

In actual applications, it is more often that the global extremums and alternative local extremums
are needed for the function with multiple peak values. However, the traditional algorithm for solving
extremums is generally denounced for its low efficiency and poor accuracy. Meanwhile, it often easily
falls into the dilemma of local optimal values.

Sensors 2019, 19, 2717 5 of 18

3.2. The GA Dataset Encoding for SMPF

The design of individual encoding scheme, as the first step of genetic algorithm, is of vital
importance. When GA is used to solve the Shubert function, the decision parameters are not to be
operated on directly. Instead, the feasible solution set of the objective function is mapped into the
search space of the algorithm, which is called “individual encoding”. Then the GA is to be applied to
the encoded individuals.

Being quite easy, practicable for GA operations, and consistent with the principle of minimum
symbol set encoding, binary coding is adopted as the encoding scheme of the Shubert function.
According to the methodology of binary coding, the feasible solutions of the function are converted
into chromosome strings that are composed of 0 and 1. The total number of binary coding strings is
related with the accuracy of function solutions ϕ. Xmax and Xmin denote the maximum value and
minimum value of horizontal ordinate in the space. The formula of accuracy ϕ is as follows:

ϕ =
Xmax −Xmin

2l
(3)

To achieve higher and higher accuracy of function parameters, the corresponding binary strings
have to be longer and longer. However, this inevitably leads to the sharp expansion of search space
and the increase of calculation, which in turn reduces the search efficiency of the GA. After considering
the efficiency of the frameworks involved and weighing the relation between accuracy and calculation
amount, this paper uses nine-digit binary coding to denote the two decision parameters “x” and “y”.
The nine-digit binary coding string can represent 512 figures between 0 and 511, thus discretizing the
definition domain of “x” and “y” into 511 equal intervals with 512 discrete points (two endpoints
included). Suppose that the discrete points from −10 to 10 represent the binary codes between
000000000(0) and 111111111(511) correspondingly, then the mapping relation is expressed as follows:

000000000 = 0 → Xmin

000000001 = 1 → Xmin + ϕ
000000010 = 2 → Xmin + 2ϕ

...
...

...
111111111 = 29

− 1→ Xmax

(4)

Then two nine-digit binary coding strings are used to represent “x” and “y”. When the two strings
are combined together to form an eighteen-digit binary coding string, it is the chromosome encoding
for the Shubert function. By means of this encoding scheme, 262,144 pairs of chromosome samples can
be produced in the whole solution space, which constitutes the sample database of the Shubert function.
Meanwhile, there exists the corresponding one-one mapping relation between he coordinate solution
space and the GA search space. According to the accuracy ϕ, this scheme can guarantee that a large
amount of homogenous discrete points is produced and uniformly distributed in the solution space.
This, to some degree, can ensure both the solutions accuracy and the search capability of genetic space.

When the genetic evolution is finished, the last generation of population set needs to be decoded
to obtain the results. The decoding function for the binary coding string X = blbl−1 · · · b2b1 can be
expressed as follows:

x, y = Xmin +

 l∑
1

bi·2i−1

·Xmax −Xmin

2l − 1
, l = 9 (5)

3.3. Single-Node Implementation

GA is a kind of searching strategy for global optimization based on genetic evolution. Compared
with other kinds of algorithms, GA is more suitable for DUWSN. The process of single-node GA for
solving ESMPF (GAESMPF) is shown in Figure 3.

Sensors 2019, 19, 2717 6 of 18

Sensors 2019, 19, x FOR PEER REVIEW 6 of 19

Population
Initialization(Encoding)

Fitness Evaluation and Selection

Start

Population Crossover

Population Mutation

Decoding

Output Shubert Extremums

End

Terminate?

N

Y

Figure 3. Single-node GA for solving ESMPF.

1. Population Initialization: To input 262,144 pairs of binary coding string into the sample
database of Shubert function and set them as the initial population.

2. Fitness Evaluation: Given that the individual fitness should be non-negative, a linear
non-negative conversion should be done to the Shubert function and the fitness corresponding
to each individual should be calculated.

3. Selection Operator: According to the individual fitness and selection probability, the next
generation can be selected out by means of roulette.

4. Crossover Operator: All the individuals of the population should be coupled in a random and
pairwise way, and single-point crossover should be conducted according to the crossover
probability.

5. Mutation Operator: To traverse through each gene locus of every individual and reverse the loci
which satisfy the mutation probability.

6. Decoding and Calculation: When the termination conditions are met, the individuals of the last
generation are decoded with functions to obtain the corresponding function-value set and then
the values are sorted to locate the extremums.

Careful study of Figure 3 can reveal the deficiency of single-node GAESMPF. Since it is a kind
of serial operation, all the crossover, mutation and selection operators are conducted within the
single population. Thus, the individuals located around the local extremums possess high
probability to be selected. Consequently, the sample individuals would be more inclined to center
around the first-solved local extremum after several times of iteration, which, actually, severely
limits the further search space. In addition, in view of the changing underwater environment, the
computation time of single-node GA is too long, which means that it is more likely that the optimal
deployment location obtained may have become useless and unsuitable for the real-time underwater
environment [25]. Contrarily, if the whole population is divided into many splits, each of which can
conduct parallel searching under the guidance of different compute nodes. This can greatly reduce
the optimization time. Meanwhile, samples can be taken from the individuals near every local
extremum in each split, thus greatly enlarging the space for further searches. In other words, parallel
searches by divided splits can retain the samples near different local extremums to avoid premature
convergence to some degree. Thus far, although numerous improvement methods for single-node
GA have emerged, the parallel GAs still boast of incomparable advantage in terms of efficiency and
accuracy in UWSN deployment [26].

Figure 3. Single-node GA for solving ESMPF.

1. Population Initialization: To input 262,144 pairs of binary coding string into the sample database
of Shubert function and set them as the initial population.

2. Fitness Evaluation: Given that the individual fitness should be non-negative, a linear non-negative
conversion should be done to the Shubert function and the fitness corresponding to each individual
should be calculated.

3. Selection Operator: According to the individual fitness and selection probability, the next
generation can be selected out by means of roulette.

4. Crossover Operator: All the individuals of the population should be coupled in a random
and pairwise way, and single-point crossover should be conducted according to the
crossover probability.

5. Mutation Operator: To traverse through each gene locus of every individual and reverse the loci
which satisfy the mutation probability.

6. Decoding and Calculation: When the termination conditions are met, the individuals of the last
generation are decoded with functions to obtain the corresponding function-value set and then
the values are sorted to locate the extremums.

Careful study of Figure 3 can reveal the deficiency of single-node GAESMPF. Since it is a kind of
serial operation, all the crossover, mutation and selection operators are conducted within the single
population. Thus, the individuals located around the local extremums possess high probability to
be selected. Consequently, the sample individuals would be more inclined to center around the
first-solved local extremum after several times of iteration, which, actually, severely limits the further
search space. In addition, in view of the changing underwater environment, the computation time of
single-node GA is too long, which means that it is more likely that the optimal deployment location
obtained may have become useless and unsuitable for the real-time underwater environment [25].
Contrarily, if the whole population is divided into many splits, each of which can conduct parallel
searching under the guidance of different compute nodes. This can greatly reduce the optimization
time. Meanwhile, samples can be taken from the individuals near every local extremum in each split,
thus greatly enlarging the space for further searches. In other words, parallel searches by divided
splits can retain the samples near different local extremums to avoid premature convergence to some
degree. Thus far, although numerous improvement methods for single-node GA have emerged, the
parallel GAs still boast of incomparable advantage in terms of efficiency and accuracy in UWSN
deployment [26].

4. Hadoop-Based Parallel GAESMPF

In order to set a benchmark for the proposed Spark-based parallel GAESMPF, Hadoop-based
parallel GAESMPF is designed and implemented here, whose core concept is to convert the single-node

Sensors 2019, 19, 2717 7 of 18

serial iterations into the corresponding MapReduce parallel operations [27]. The actual process is
shown in Figure 4.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 19

4. Hadoop-Based Parallel GAESMPF

In order to set a benchmark for the proposed Spark-based parallel GAESMPF, Hadoop-based
parallel GAESMPF is designed and implemented here, whose core concept is to convert the
single-node serial iterations into the corresponding MapReduce parallel operations [27]. The actual
process is shown in Figure 4.

Split 1
Fitness Evaluation ,

Selection,
Population Crossover

 and Mutation
…

Stored in
HDFS Terminate?

Initialize
Population

NO

Best
Individual

Output
Shubert

Extremum

Encode Best
Individual

and Calculate
Results

…
…

Split 2
Fitness Evaluation ,

Selection,
Population Crossover

and Mutation

Split n
Fitness Evaluation ,

Selection,
Population Crossover

and Mutation

Encode Best
Individual

and Calculate
Results

Encode Best
Individual

and Calculate
Results

YES

Figure 4. Hadoop-based parallel GAESMPF.

4.1. Process of Parallel Genetic Iteration

To begin with, we input Shubert sample code set into HDFS. Then we read the pre-stored code
set from HDFS as the individuals of the initial population and divide them into a certain number of
splits. Next, we calculate the Shubert function values of individuals in every split and set the values
as the individual fitness. Then we take the key-value pair <individuals, fitness> as the input and
establish independent MapReduce tasks in every split. Finally, we conduct selection, crossover, and
mutation, and store the evolved individual key-value pair <individuals, fitness> into HDFS [28]. The
pseudo code of genetic process is as Algorithm 1.

Algorithm 1. Parallel genetic iteration.

Input: N: Shubert sample code set

 T: maximum times of iteration
Output: the individual encoding key-value pair of the last generation
1. To read N from HDFS
2. To initialize the population
3. To assign the initial population to different nodes
4. For every individual i ∈ Initial population do
5. To calculate the fitness of every individual
6. To map them into key-value pair <individuals,

fitness>
7. End for
8. Sort the individuals by fitness
9. t = 0
10. while (t<T)
11. {
12. For population/2 times do

16. crossover individuals:

17. {

18. F1’ = F1&f1|F2&f2

19. F2’ = F1&~f1|F2&~f2

20. }

21. （ ）mutation F1’, F2’

22. {determining mutation-factor f0

23. mutation individuals F” = F’^f0

24. }

25. To select excellent individuals

26. End for

27. t = t+1

28. }

Figure 4. Hadoop-based parallel GAESMPF.

4.1. Process of Parallel Genetic Iteration

To begin with, we input Shubert sample code set into HDFS. Then we read the pre-stored code set
from HDFS as the individuals of the initial population and divide them into a certain number of splits.
Next, we calculate the Shubert function values of individuals in every split and set the values as the
individual fitness. Then we take the key-value pair <individuals, fitness> as the input and establish
independent MapReduce tasks in every split. Finally, we conduct selection, crossover, and mutation,
and store the evolved individual key-value pair <individuals, fitness> into HDFS [28]. The pseudo
code of genetic process is as Algorithm 1.

Algorithm 1. Parallel genetic iteration.

Input: N: Shubert sample code set
T: maximum times of iteration

Output: the individual encoding key-value pair of the last generation

1. To read N from HDFS
2. To initialize the population
3. To assign the initial population to different nodes
4. For every individual i ∈ Initial population do
5. To calculate the fitness of every individual
6. To map them into key-value pair <individuals, fitness>
7. End for
8. Sort the individuals by fitness
9. t = 0
10. while (t < T)
14. {
12. For population/2 times do
13. To select the parent individuals randomly from the

population F1, F2
14. crossover (F1, F2)
15. {determining crossover-factor f1, f2}

16. crossover individuals:
17. {
18. F1’ = F1&f1|F2&f2
19. F2’ = F1&~f1|F2&~f2
20. }
21. mutation (F1’, F2’)
22. {determining mutation-factor f0
23. mutation individuals F” = F’ˆf0
24. }
25. To select excellent individuals
26. End for
27. t = t + 1
28. }
29. Output the individual set of the last

generation (best Individuals)
30. End

Sensors 2019, 19, 2717 8 of 18

4.2. Process of Searching Extremums

During the process of searching extremums, the main task is to judge the termination conditions
and search the extremums of the population. When the termination conditions are met, the population
is decoded to obtain Shubert function values with a sorted list. Then the global extremums of the
Shubert function and its corresponding variables are output. The pseudo-code of optimizing process is
as Algorithm 2.

Algorithm 2. Searching extremums.

Input: N: Shubert sample code set of the last generation
Output: the extremums of Shubert function

1. To read N from HDFS
2. To assign the last generation population to

different nodes
3. For every individual i ∈ the individuals of the

last generation do
4. To decode the individuals
5. To calculate the extremum of Shubert

6. To map the function value and corresponding
variable into key-value pair <value, (x, y)>

7. End for
8. Sort the function values by key
9. To output the extremums of Shubert function

and corresponding variable
10. End

In the process of Hadoop-based parallel genetic iteration, the default operation of the Reduce
function will sort the evolved population and override the storage with the default text name. This
operation disrupts the previous order of the population, thus sharply increasing the randomness
and expanding the search space during the next iteration. Compared with single-node GAESMPF,
the advantage of the Hadoop-based scheme lies in the fact that it can avoid local optimization and
improve the accuracy of solutions to some degree. Unfortunately, in terms of operation efficiency of
the deployment of a UWSN, the Hadoop-based scheme still falls short.

5. Spark-Based Parallel GAESMPF

As is well known, Hadoop MapReduce is not equipped with a memory operation mechanism [29].
Therefore, the population data needs to be read from disk every time an iteration is conducted, thus
greatly increasing the running time and failing to utilize fully the parallel potential of the GA. Different
from the Hadoop-based implementation, the parallel design of the Spark-based GAESMPF sets its
ground upon RDD (resilient distributed dataset) which is unique to Spark. Briefly speaking, RDD
is a resilient distributed storage system with high fault-tolerance. It stores large-scale data in the
local memory of different computing nodes and conducts memory-based parallel computation in
distributed clusters [30]. Generally, the operations of RDD fall into two categories: (1) Transformation,
and (2) action. In short, the former is to create a new RDD based on an existing RDD, and the latter is
to conduct actual parallel computation on RDD and then send back a displayable or storable result to
the master control program. It is noteworthy that the transformations of RDD belong to lazy execution,
which means that the transformations accumulated are not triggered in turn until the next action comes
up (as shown in Figure 5).

In order to compare with single-node GAESMPF and Hadoop-based parallel GAESMPF, the
Shubert code set is read from HDFS to conduct the genetic operation. To obtain the optimal solution,
iterations need to be done continually. Whenever iterations are done, GA updates the code information
according to the split results. The updated splits serve as the key factor for the ergodic selection during
the next iteration. Therefore, when the current iteration is finished, the Spark-based GAESMPF, by the
mechanism of utilizing the memory buffer of RDD, stores the updated split information in the memory
of each node as intermediate data for the next iteration [31,32].

Sensors 2019, 19, 2717 9 of 18Sensors 2019, 19, x FOR PEER REVIEW 9 of 19

HD
FS join

HD
FS

ActionsTransformations

Stage 1

flatMap

map

A: B:

C:

map

Stage 3Stage 2
reduceByKey

F:

saveAsSequenceFile

textFile
D: E:

Figure 5. Spark operating mechanism.

In order to compare with single-node GAESMPF and Hadoop-based parallel GAESMPF, the
Shubert code set is read from HDFS to conduct the genetic operation. To obtain the optimal solution,
iterations need to be done continually. Whenever iterations are done, GA updates the code
information according to the split results. The updated splits serve as the key factor for the ergodic
selection during the next iteration. Therefore, when the current iteration is finished, the Spark-based
GAESMPF, by the mechanism of utilizing the memory buffer of RDD, stores the updated split
information in the memory of each node as intermediate data for the next iteration [31,32].

Initialize
Parameters

…

Best
Individual

Output
Shubert Extremums

and Variables
<Max, (x,y)>

Data
Received Node 01

Manager Fitness

St
or

ed
 in

 H
D

FS

Term
inate?

Population

MutationCrossover
Excutor

Container
DAG Sheduler

Executor

Begin
Resource Manager

NO

YES

SaveAsFiles

SaveAsFiles

SaveAsFiles

Node n
Manager Encode

Individual
Calculate
Shubert
Function

Excutor
Container

DAG Sheduler

Executor

Resource Manager

Reduce
ByKey

Evolutionary Process

Evaluation Process

Node 02
Manager Fitness MutationCrossover

Excutor
Container

DAG Sheduler

Executor

Node n
Manager Fitness MutationCrossover

Excutor
Container

DAG Sheduler

Executor

End

Node n
Manager Encode

Individual
Calculate
Shubert
Function

Excutor
Container

DAG Sheduler

Executor

Node 1
Manager Encode

Individual

Calculate
Shubert
Function

Excutor
Container

DAG Sheduler

Executor

Figure 6. Spark-based parallel GAESMPF.

During the iterations of GA, the evolutionary process of splits in each node is completely
independent. Accordingly, the Spark-based GAESMPF divides itself into partitions in line with the
number of nodes. The partitions are then assigned to each node to create RDDs parallel to each

Figure 5. Spark operating mechanism.

During the iterations of GA, the evolutionary process of splits in each node is completely
independent. Accordingly, the Spark-based GAESMPF divides itself into partitions in line with the
number of nodes. The partitions are then assigned to each node to create RDDs parallel to each other.
For every RDD (which stands for the split in each node), the operation mode is parallel. After the
operations of selection, crossover, and mutation are conducted by the RDD mechanism on Spark, the
parallel execution of the whole population evolution is completed.

According to the above analysis, the Spark programming model is used to realize the parallel
implementation of GA for multi-peak function extremums. The actual process of Spark-based
GAESMPF is shown as Figure 6.

Sensors 2019, 19, x FOR PEER REVIEW 9 of 19

HD
FS join

HD
FS

ActionsTransformations

Stage 1

flatMap

map

A: B:

C:

map

Stage 3Stage 2
reduceByKey

F:

saveAsSequenceFile

textFile
D: E:

Figure 5. Spark operating mechanism.

In order to compare with single-node GAESMPF and Hadoop-based parallel GAESMPF, the
Shubert code set is read from HDFS to conduct the genetic operation. To obtain the optimal solution,
iterations need to be done continually. Whenever iterations are done, GA updates the code
information according to the split results. The updated splits serve as the key factor for the ergodic
selection during the next iteration. Therefore, when the current iteration is finished, the Spark-based
GAESMPF, by the mechanism of utilizing the memory buffer of RDD, stores the updated split
information in the memory of each node as intermediate data for the next iteration [31,32].

Initialize
Parameters

…

Best
Individual

Output
Shubert Extremums

and Variables
<Max, (x,y)>

Data
Received Node 01

Manager Fitness
St

or
ed

 in
 H

D
FS

Term
inate?

Population

MutationCrossover
Excutor

Container
DAG Sheduler

Executor

Begin
Resource Manager

NO

YES

SaveAsFiles

SaveAsFiles

SaveAsFiles

Node n
Manager Encode

Individual
Calculate
Shubert
Function

Excutor
Container

DAG Sheduler

Executor

Resource Manager

Reduce
ByKey

Evolutionary Process

Evaluation Process

Node 02
Manager Fitness MutationCrossover

Excutor
Container

DAG Sheduler

Executor

Node n
Manager Fitness MutationCrossover

Excutor
Container

DAG Sheduler

Executor

End

Node n
Manager Encode

Individual
Calculate
Shubert
Function

Excutor
Container

DAG Sheduler

Executor

Node 1
Manager Encode

Individual

Calculate
Shubert
Function

Excutor
Container

DAG Sheduler

Executor

Figure 6. Spark-based parallel GAESMPF.

During the iterations of GA, the evolutionary process of splits in each node is completely
independent. Accordingly, the Spark-based GAESMPF divides itself into partitions in line with the
number of nodes. The partitions are then assigned to each node to create RDDs parallel to each

Figure 6. Spark-based parallel GAESMPF.

Sensors 2019, 19, 2717 10 of 18

5.1. Phase of Parallel Genetic Operation

The genetic operation phase consists of four operations (fitness calculation, selection, crossover,
and mutation) which can be conducted with RDD model on Spark framework. The high compatibility
between Spark and HDFS makes it possible to deal with the text data stored in HDFS line-by-line.
Therefore, the initial population can be stored as individual samples in HDFS line-by-line.

Fitness calculation: Firstly, read the code set of Shubert feasible solutions (total data employed in
this paper are 262,114 pieces) from HDFS as the initial population of the GA. Then distribute the initial
population to each node evenly and calculate the individual fitness with Shubert function on each
node. Next map the key-value pair of individual code and fitness and store it in the new RDD in the
form of <individuals, fitness>. In this paper, x and y denote the location information of working nodes.
The fitness formula is the Schubert function that goes as follows:

f (x, y) =
5∑

i=1

i cos[(i + 1)x + i] ×
5∑

i=1

i cos[(i + 1)y + i] (6)

Selection: Natural selection refers to a category of selection strategies for future generations.
Common strategies include roulette, tournaments, and elite retention. Roulette is to extract progeny
with a certain probability, repeated n times, and the probability of each individual being drawn is
as follows:

pi =
f (xi, yi)

n∑
j=1

f
(
x j, y j

) (7)

Conduct natural selection upon every individual in RDD on each node, then traverse the
characteristics of all the key-value pairs in combination with Map. In every selection process, employ
a fitness value as the criterion to select out the individuals that meet the requirements for the next
generation. Finally, create the RDD of the new population based on “the survival of the fittest” and
store it in the memory. To avoid local optimization and increase the individual randomness, the
individual data on each node is re-sorted for the next operation.

Crossover: Firstly, sample all the individuals of RDD on each node by means of the take function
and store them evenly in two lists. Then create two RDDs out of the two lists by means of the parallelize
function and form key-value pairs to realize the random match of two individuals of the parent
generation. Next use the Map function to conduct single-point crossover operation upon the key-value
pairs (<individual, individual>) line-by-line. Then generate the corresponding crossover-factor f1(x)
and f2(x), retrieve the key-value pair after crossover operation and create the population RDD by
means of the Map function according to Equations (9) and (10). Finally, the newly created RDD is
stored in the memory. The crossover process is illustrated in Figure 7.

f1(x) = 1111111|00000000000 0, f2(x) = 0000000|1111111111 1 (8)

f ′a (x) = f (x)& f1(x)
∣∣∣ f (x)& f2(x) (9)

f ′b (x) = f (x)& ∼ f1(x)
∣∣∣ f (x)& ∼ f2(x) (10)

Mutation: after crossover, use Map to read every individual in the RDD line-by-line and traverse
all the gene loci of every individual code. The random number generated can be used as the criterion
to assess if the individual code has met the mutation condition, then generate the corresponding
mutation-factor f0(x). For the loci that meet the mutation condition, a negation operation is conducted,
thus creating a new individual as shown in the Equation (12); otherwise, the individual code should be

Sensors 2019, 19, 2717 11 of 18

output directly. After mutation, the population RDD created is stored in the memory. The mutation
process is illustrated in Figure 8.

f0(x) = 000010000000000000 (11)

f ”(x) = f ′(x)∧ f0(x) (12)Sensors 2019, 19, x FOR PEER REVIEW 11 of 19

Partition
Individuals 1 Individuals 2

011101001011111001
101001110100111001
110001000010001010

……
100000011001001010

010101000010011000
110101001001101101

……
100100101000101000
111010111001001001

Partition
New Individuals

011101001001101101
110101001011111001
101001110101001001
111010111000111001
110101000010011000
010001000010001010

……
100000011001001000
100100101000101010

Individuals 1
011101001011111001
101001110100111001
110001000010001010

……
100000011001001010

Individuals 2
110101001001101101
111010111001001001
010101000010011000

……
100100101000101000

RDD 2

RDD 1

RDD

RDD

CrossoverRandom Match

Map
Collections

Figure 7. Illustration of crossover.

Mutation: after crossover, use Map to read every individual in the RDD line-by-line and
traverse all the gene loci of every individual code. The random number generated can be used as the
criterion to assess if the individual code has met the mutation condition，then generate the
corresponding mutation-factor)(0 xf . For the loci that meet the mutation condition, a negation
operation is conducted, thus creating a new individual as shown in the Equation (12); otherwise, the
individual code should be output directly. After mutation, the population RDD created is stored in
the memory. The mutation process is illustrated in Figure 8.

000000000000010000)(0 =xf (11)

)()()(0 xfxfxf ∧= ’” (12)

Partition
Individuals

011101001001101101
110101001011111001
101001110101001001
111010111000111001
110101000010011000
010001000010001010

……
100000011001001000
100100101000101010

Partition1
Individuals
011101001001101101
110101001011111001
101001110101001001
111010111000111001
110101000010011000
010001000010001010

……
100000011001001000
100100101000101010

Partition2
mutation-factor (f0(x))
000000000000100000
000001000000000000
000000000100000000
000000000000000100
000000000000010000
000000001000000000

……
001000000000000000
000000100000000000

000000000000100000
000001000000000000
000000000100000000
000000000000000100
000000000000010000
000000001000000000

……
001000000000000000
000000100000000000

Map KeySet

mutation-factor (f0(x))

Individuals Mutation

Partition
Individuals

011100001001101101
110101001111111001
101001110101101001
111010011000111001
110101000010011100
011001000010001010

……
100000011001011000
100100100000101010

000000000000100000
000001000000000000
000000000100000000
000000000000000100
000000000000010000
000000001000000000

……
001000000000000000
000000100000000000

mutation-factor (f0(x))

Key ̂ Value

^
^
^
^
^
^

^
^

Partition

011100001001101101
110101001111111001
101001110101101001
111010011000111001
110101000010011100
011001000010001010

……
100000011001011000
100100100000101010

New Individuals

Figure 8. Illustration of mutation.

5.2. Phase of Searching Extremums

Figure 9 displays the process of searching optimal extremums of the last-generation population.
If the iteration times meet the preset termination condition, the RDD created in the end will be
handled with the Map function. During the Map operation, the variable-decoding step is conducted
to obtain Shubert function values. The extremums obtained and their corresponding variables are
stored in the form of key-value pairs which, to be specific, is denoted as <Value, (X, Y)>. The
key-value pairs are ranked by sortByKey and stored in HDFS. The result stored in HDFS is actually
the collection of all node locations ranked by merits. In other words, the result includes not only the

Figure 7. Illustration of crossover.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 19

Partition
Individuals 1 Individuals 2

011101001011111001
101001110100111001
110001000010001010

……
100000011001001010

010101000010011000
110101001001101101

……
100100101000101000
111010111001001001

Partition
New Individuals

011101001001101101
110101001011111001
101001110101001001
111010111000111001
110101000010011000
010001000010001010

……
100000011001001000
100100101000101010

Individuals 1
011101001011111001
101001110100111001
110001000010001010

……
100000011001001010

Individuals 2
110101001001101101
111010111001001001
010101000010011000

……
100100101000101000

RDD 2

RDD 1

RDD

RDD

CrossoverRandom Match

Map
Collections

Figure 7. Illustration of crossover.

Mutation: after crossover, use Map to read every individual in the RDD line-by-line and
traverse all the gene loci of every individual code. The random number generated can be used as the
criterion to assess if the individual code has met the mutation condition，then generate the
corresponding mutation-factor)(0 xf . For the loci that meet the mutation condition, a negation
operation is conducted, thus creating a new individual as shown in the Equation (12); otherwise, the
individual code should be output directly. After mutation, the population RDD created is stored in
the memory. The mutation process is illustrated in Figure 8.

000000000000010000)(0 =xf (11)

)()()(0 xfxfxf ∧= ’” (12)

Partition
Individuals

011101001001101101
110101001011111001
101001110101001001
111010111000111001
110101000010011000
010001000010001010

……
100000011001001000
100100101000101010

Partition1
Individuals
011101001001101101
110101001011111001
101001110101001001
111010111000111001
110101000010011000
010001000010001010

……
100000011001001000
100100101000101010

Partition2
mutation-factor (f0(x))
000000000000100000
000001000000000000
000000000100000000
000000000000000100
000000000000010000
000000001000000000

……
001000000000000000
000000100000000000

000000000000100000
000001000000000000
000000000100000000
000000000000000100
000000000000010000
000000001000000000

……
001000000000000000
000000100000000000

Map KeySet

mutation-factor (f0(x))

Individuals Mutation

Partition
Individuals

011100001001101101
110101001111111001
101001110101101001
111010011000111001
110101000010011100
011001000010001010

……
100000011001011000
100100100000101010

000000000000100000
000001000000000000
000000000100000000
000000000000000100
000000000000010000
000000001000000000

……
001000000000000000
000000100000000000

mutation-factor (f0(x))

Key ̂ Value

^
^
^
^
^
^

^
^

Partition

011100001001101101
110101001111111001
101001110101101001
111010011000111001
110101000010011100
011001000010001010

……
100000011001011000
100100100000101010

New Individuals

Figure 8. Illustration of mutation.

5.2. Phase of Searching Extremums

Figure 9 displays the process of searching optimal extremums of the last-generation population.
If the iteration times meet the preset termination condition, the RDD created in the end will be
handled with the Map function. During the Map operation, the variable-decoding step is conducted
to obtain Shubert function values. The extremums obtained and their corresponding variables are
stored in the form of key-value pairs which, to be specific, is denoted as <Value, (X, Y)>. The
key-value pairs are ranked by sortByKey and stored in HDFS. The result stored in HDFS is actually
the collection of all node locations ranked by merits. In other words, the result includes not only the

Figure 8. Illustration of mutation.

5.2. Phase of Searching Extremums

Figure 9 displays the process of searching optimal extremums of the last-generation population. If
the iteration times meet the preset termination condition, the RDD created in the end will be handled
with the Map function. During the Map operation, the variable-decoding step is conducted to obtain
Shubert function values. The extremums obtained and their corresponding variables are stored in
the form of key-value pairs which, to be specific, is denoted as <Value, (X, Y)>. The key-value pairs
are ranked by sortByKey and stored in HDFS. The result stored in HDFS is actually the collection of
all node locations ranked by merits. In other words, the result includes not only the information of
optimal node locations but also that of other node locations. This “whole result” can better meet the
actual demand of optimization deployment of UWSN. The last step is to output the extremums of
Shubert function and its corresponding variables. Thus, the corresponding variables (Xi, Yi) are the
best locations for deployment of a UWSN.

Sensors 2019, 19, 2717 12 of 18

Sensors 2019, 19, x FOR PEER REVIEW 12 of 19

information of optimal node locations but also that of other node locations. This “whole result” can
better meet the actual demand of optimization deployment of UWSN. The last step is to output the
extremums of Shubert function and its corresponding variables. Thus, the corresponding variables
(Xi, Yi) are the best locations for deployment of a UWSN.

Calculation
Shubert
function

RDD

Variables
(X1,Y 1)
(X2,Y 2)
……

(X n- 1 ,Y n - 1)
(Xn,Y n)

RDD
K-V

Va lu e1, (X 1,Y 1)
Va lu e2 , (X 2,Y 2)

……

Va lu en - 1 , (Xn - 1 ,Y n- 1)
Va lu en , (X n,Y n)

RDD
K-V

Va lu ema x , (X ma x ,Y ma x)

sortBykey

RDD
Value

V a l u e 1
V a l u e 2
… …

V a l u e n - 1
V a l u e n

RDD
K-V

Va lu ema x , (X ma x ,Y ma x)
……

……
Va lu emi n , (X mi n ,Y mi n)

clone

RDD

Variables
(X 1,Y 1)
(X 2,Y 2)
……

(Xn - 1 ,Y n- 1)
(X n,Y n)

getMax

Map

RDD
Variables

(X 1,Y 1)
(X 2,Y 2)
……

(Xn - 1 ,Y n- 1)
(X n,Y n)

BestIndividuals
011110100011001001
110101001111111001

……
111010111001011000
010001011000101010

decode

RDD

Figure 9. Searching optimal extremums for SMPF based on RDD.

6. Experiment and Analysis

The goal of the experiment is to verify the advantages of the proposed method, GAESMPF,
especially for large-scale data, from the following two aspects:

1. High efficiency: Through the comparison of running time, speedup ratio, and average time
consumed for iterations on single-node, Hadoop, and Spark, respectively, the high efficiency of
the Spark-based GAESMPF is verified.

2. Accuracy and stability: Through comparison of the Shubert function extremums obtained with
different times of iterations, the accuracy and stability of parallel GAESMPF based on Spark is
verified.

6.1. Experiment Configuration

The computing cluster consists of 20 nodes (one master and 19 slaves). The same sample dataset
is used on all the frameworks. The actual configuration and operation parameters are shown in
Table 1.

Table 1. Configuration of the experiments.

Node Maximum
population

Crossover
rate

Mutation
rate

CPU
(Core)

Memory Network JDK
Version

Hadoop
Version

Spark
Version

Master 262,144 0.9 0.05 4 6 GB 1 GB/s 1.7.0 1.2.1 1.6.0

Figure 9. Searching optimal extremums for SMPF based on RDD.

6. Experiment and Analysis

The goal of the experiment is to verify the advantages of the proposed method, GAESMPF,
especially for large-scale data, from the following two aspects:

1. High efficiency: Through the comparison of running time, speedup ratio, and average time
consumed for iterations on single-node, Hadoop, and Spark, respectively, the high efficiency of
the Spark-based GAESMPF is verified.

2. Accuracy and stability: Through comparison of the Shubert function extremums obtained with
different times of iterations, the accuracy and stability of parallel GAESMPF based on Spark
is verified.

6.1. Experiment Configuration

The computing cluster consists of 20 nodes (one master and 19 slaves). The same sample dataset is
used on all the frameworks. The actual configuration and operation parameters are shown in Table 1.

Table 1. Configuration of the experiments.

Node Maximum
Population

Crossover
Rate

Mutation
Rate

CPU
(Core) Memory Network JDK

Version
Hadoop
Version

Spark
Version

Master 262,144 0.9 0.05 4 6 GB 1 GB/s 1.7.0 1.2.1 1.6.0
Slave
(1~19) 262,144 0.9 0.05 4 6 GB 1 GB/s 1.7.0 1.2.1 1.6.0

6.2. General Running Efficiency

The experiments use 262,144 pairs of chromosomes provided by the code database of Shubert
function feasible solutions that has been established in previous sections. The iteration times are set at
30, 50, 70, 90, 110, 130, and 150, respectively. The experiment results are shown in Table 2. For every
result of a row in Table 2, we take the average value of ten repeats of GAESMPF computation.

Sensors 2019, 19, 2717 13 of 18

Table 2. The optimal result of GAESMPF based on single-node, Hadoop, and Spark.

Iterations
Single-Node Hadoop Spark

Time/s Extremum Time/s Extremum Time/s Extremum

30 1152.645 175.27 94.810 205.32 9.169 206.67
50 2231.642 182.45 156.104 206.89 11.008 207.73
70 3081.259 196.65 217.609 206.12 14.507 208.83
90 3953.328 206.15 278.967 207.73 18.997 209.52

110 4881.409 208.14 340.735 209.12 23.050 209.32
130 5560.156 208.16 401.761 210.22 27.633 210.32
150 6515.616 209.67 463.883 210.42 32.771 210.43

As can be seen from Table 2, compared with GAESMPF based on Hadoop or Spark, the single-node
GAESMPF needs many more iteration times to reach the optimal extremum and, thus, needs a much
longer running time. Compared with the single-node GAESMPF, the Hadoop-based GAESMPF
boasts a much higher efficiency. Meanwhile, as is shown in Figure 10, the X-Y variations of iteration
times and running time on the three frameworks are generally distributed linearly. As for the two
parallel algorithms, Spark-based GAESMPF virtually saves ten times the running time compared
with Hadoop-based GAESMPF. Moreover, the tendency of running time curves indicates that, as the
iteration times increase, the running efficiency of Spark-based GAESMPF rises more sharply and
the gap between the two distributed GAESMPFs becomes wider and wider. When the iteration
times reach 150, Spark-based GAESMPF can save up 92.93% of the running time. Therefore, when
the computing capacity is sufficient, the Spark-based GAESMPF can fully utilize its advantage of
memory computing to reduce the running time significantly and, thus, greatly improve the timeliness
of UWSN deployment.

Sensors 2019, 19, x FOR PEER REVIEW 14 of 19

0 20 40 60 80 100 120 140 160
-500

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500

R
un

 T
im

e（
s）

Evolution times
 Spark Hadoop Local

1152.645

2231.642

3081.259

3953.328

4881.409

5560.156

6515.616

94.810156.104 217.609 278.967340.735 401.761463.883

9.169 11.008 14.507 18.997 23.050 27.633 32.771

Figure 10. Running efficiency comparison of GAESMPF.

The implementation of GAESMPF based on Hadoop provides a feasible operation process for
the storage and transmission of evolved populations on each computing node. In this process, one
iteration needs a map phase and a reduce phase. The two phases inevitably involve massive data
transmission that is quite time-consuming. By contrast, for Spark-based GAESMPF, the process of
population evolution is conducted completely on RDD in the memory. The population of RDDs is
distributed evenly on each node in the Spark cluster. In the process of iteration, the population
searches the optimal solution through a series of RDD conversion. These techniques can release the
great potential of memory computing of the Spark framework. Moreover, it can be easily seen from
Figure 10 that as the iteration times increase, Spark-based GAESMPF saves more and more time than
Hadoop-based GAESMPF.

6.3. Solution Accuracy with Evolution Times

In order to ensure the accuracy of extremums and minimize the influence of outliers, the
average value of ten running results is taken as the analysis object. As can be seen clearly from
Figure 11, as the times of iteration increase, the extremums of single-node GAESMPF keeps
changing significantly. Moreover, compared with the results of two distributed versions, the error
rate is relatively high and local extremums appear many times. Until the iteration times reach a
certain degree (90 times), the accuracy of single-node GAESMPF tends to be stable. On the contrary,
the accuracies of distributed versions fluctuate quite mildly and show no obvious correlation with
the times of iteration. As is shown, the two distributed versions boast of relatively high accuracies
even when the iteration times are quite small. In addition, as the iteration times increase, the results
tend to approach the final exact extremums of the Shubert multi-model function. Therefore, the
accuracy and stability of the distributed versions are remarkably higher than those of the
single-node version.

Figure 10. Running efficiency comparison of GAESMPF.

The implementation of GAESMPF based on Hadoop provides a feasible operation process for
the storage and transmission of evolved populations on each computing node. In this process, one
iteration needs a map phase and a reduce phase. The two phases inevitably involve massive data
transmission that is quite time-consuming. By contrast, for Spark-based GAESMPF, the process of
population evolution is conducted completely on RDD in the memory. The population of RDDs
is distributed evenly on each node in the Spark cluster. In the process of iteration, the population
searches the optimal solution through a series of RDD conversion. These techniques can release the
great potential of memory computing of the Spark framework. Moreover, it can be easily seen from

Sensors 2019, 19, 2717 14 of 18

Figure 10 that as the iteration times increase, Spark-based GAESMPF saves more and more time than
Hadoop-based GAESMPF.

6.3. Solution Accuracy with Evolution Times

In order to ensure the accuracy of extremums and minimize the influence of outliers, the average
value of ten running results is taken as the analysis object. As can be seen clearly from Figure 11, as
the times of iteration increase, the extremums of single-node GAESMPF keeps changing significantly.
Moreover, compared with the results of two distributed versions, the error rate is relatively high and
local extremums appear many times. Until the iteration times reach a certain degree (90 times), the
accuracy of single-node GAESMPF tends to be stable. On the contrary, the accuracies of distributed
versions fluctuate quite mildly and show no obvious correlation with the times of iteration. As is
shown, the two distributed versions boast of relatively high accuracies even when the iteration times
are quite small. In addition, as the iteration times increase, the results tend to approach the final
exact extremums of the Shubert multi-model function. Therefore, the accuracy and stability of the
distributed versions are remarkably higher than those of the single-node version.

Sensors 2019, 19, x FOR PEER REVIEW 14 of 18

The implementation of GAESMPF based on Hadoop provides a feasible operation process for

the storage and transmission of evolved populations on each computing node. In this process, one

iteration needs a map phase and a reduce phase. The two phases inevitably involve massive data

transmission that is quite time-consuming. By contrast, for Spark-based GAESMPF, the process of

population evolution is conducted completely on RDD in the memory. The population of RDDs is

distributed evenly on each node in the Spark cluster. In the process of iteration, the population

searches the optimal solution through a series of RDD conversion. These techniques can release the

great potential of memory computing of the Spark framework. Moreover, it can be easily seen from

Figure 10 that as the iteration times increase, Spark-based GAESMPF saves more and more time than

Hadoop-based GAESMPF.

6.3. Solution Accuracy with Evolution Times

In order to ensure the accuracy of extremums and minimize the influence of outliers, the

average value of ten running results is taken as the analysis object. As can be seen clearly from

Figure 11, as the times of iteration increase, the extremums of single-node GAESMPF keeps

changing significantly. Moreover, compared with the results of two distributed versions, the error

rate is relatively high and local extremums appear many times. Until the iteration times reach a

certain degree (90 times), the accuracy of single-node GAESMPF tends to be stable. On the contrary,

the accuracies of distributed versions fluctuate quite mildly and show no obvious correlation with

the times of iteration. As is shown, the two distributed versions boast of relatively high accuracies

even when the iteration times are quite small. In addition, as the iteration times increase, the results

tend to approach the final exact extremums of the Shubert multi-model function. Therefore, the

accuracy and stability of the distributed versions are remarkably higher than those of the

single-node version.

206.67 207.73 208.83 209.52 209.32 210.32 210.43

205.32 206.89 206.12 207.73 209.12 210.22 210.42

175.27

182.45

196.65

206.15
208.14 208.16 209.67

170

175

180

185

190

195

200

205

210

215

75%

80%

85%

90%

95%

100%

105%

30 50 70 90 110 130 150
S

h
u

b
e
rt

 M
a
x

im
u

m

Sh
u

b
e

rt
 M

ax
im

u
m

 A
cc

u
rr

ac
y

Evolution times

Spark Hadoop Local Spark Hadoop Local

Figure 11. Solution accuracy comparison of GAESMPF.

It is noteworthy that Figure 11 demonstrates a vital characteristic of GAESMPF, that is, the high

randomness brought forward by parallel computation. This characteristic makes it feasible to dig out

the “genetic” potential to fully and effectively avoid local optimal solutions (LOS), which, in turn,

remarkably improves the accuracy and stability of GAESMPF. Why do GAs easily fall into LOS? The

main reason lies in the fact that in a single population the individuals near the LOS are more likely to

be selected, which means the data samples in the genetic space will readily cluster around the LOS

after several times of iteration. This will greatly limit the space for further searches. Thus, the

purpose of dividing the initial population into multi-node splits is to ensure that samples are to be

Figure 11. Solution accuracy comparison of GAESMPF.

It is noteworthy that Figure 11 demonstrates a vital characteristic of GAESMPF, that is, the high
randomness brought forward by parallel computation. This characteristic makes it feasible to dig out
the “genetic” potential to fully and effectively avoid local optimal solutions (LOS), which, in turn,
remarkably improves the accuracy and stability of GAESMPF. Why do GAs easily fall into LOS? The
main reason lies in the fact that in a single population the individuals near the LOS are more likely
to be selected, which means the data samples in the genetic space will readily cluster around the
LOS after several times of iteration. This will greatly limit the space for further searches. Thus, the
purpose of dividing the initial population into multi-node splits is to ensure that samples are to be
evenly distributed near every LOS. By doing so, the space for further searches will be expanded greatly
and effectively. Therefore, based on the distributed computing framework, the GAESMPF conducts
crossover and mutation within the splits on each node at first, and then integrates and stores the results.
This will retain the samples around different LOS and, thus, significantly improve the search efficiency
and accuracy.

Sensors 2019, 19, 2717 15 of 18

6.4. Run Time of a Single Iteration

The performance of GAESMPF can be further analyzed through the comparison of average run
times for a single iteration. Figure 12 displays the run time distribution of single iteration at different
evolution times on the two distributed frameworks. As the evolution times increase and exceed 80
times, the run time for a single iteration tends to be quite stable. The average run time for a single
iteration on Hadoop is 3.09 s, while that on Spark is 0.22 s. In other words, the Spark-based version is
2.87 s faster than the Hadoop-based version when dealing with a single evolution. That is also to say
that the working efficiency of the Spark-based version is improved by 13 times than the Hadoop-based
version, thus ensuring the timeliness of UWSN deployment.

Sensors 2019, 19, x FOR PEER REVIEW 15 of 18

evenly distributed near every LOS. By doing so, the space for further searches will be expanded

greatly and effectively. Therefore, based on the distributed computing framework, the GAESMPF

conducts crossover and mutation within the splits on each node at first, and then integrates and

stores the results. This will retain the samples around different LOS and, thus, significantly improve

the search efficiency and accuracy.

6.4. Run Time of a Single Iteration

The performance of GAESMPF can be further analyzed through the comparison of average run

times for a single iteration. Figure 12 displays the run time distribution of single iteration at different

evolution times on the two distributed frameworks. As the evolution times increase and exceed 80

times, the run time for a single iteration tends to be quite stable. The average run time for a single

iteration on Hadoop is 3.09 seconds, while that on Spark is 0.22 second. In other words, the

Spark-based version is 2.87 seconds faster than the Hadoop-based version when dealing with a

single evolution. That is also to say that the working efficiency of the Spark-based version is

improved by 13 times than the Hadoop-based version, thus ensuring the timeliness of UWSN

deployment.

3.16 3.12 3.11 3.10 3.10 3.09 3.09

0.24 0.22 0.21 0.20 0.20 0.20 0.20

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

10 30 50 70 90 110 130 150 170

S
in

g
le

 E
v

o
lu

ti
o

n
 R

u
n

 T
im

e
（

s）

Evolution times

Hadoop Spark

Figure 12. Comparison of the run time of a single iteration of GAESMPF.

6.5. Speedup Ratio Analysis

Experiments were conducted to evaluate the speedup ratio of GAESMPF based on Spark and

Hadoop. The speedup ratio is a key indicator for the system performance under the same workload.

For distributed versions, compared with the single-node version, the larger the speedup ratio is, the

greater the working efficiency is. The formula of the speedup ratio is shown as follows:

pp TTS /1 (13)

where pS denotes the speedup ratio, 1T stands for the run time of GAESMPF based on a single

node, and pT stands for the run time of GAESMPF based on distributed frameworks.

6.5.1. Speedup Ratio with Different Evolution Times

MapReduce is a batch-processing engine whose normal operation is to read data from the disc,

deal with the data, and write the results back to the disc. Since Hadoop-based iterative evolution

needs to read the disc constantly, it is quite time-consuming. On the Spark framework, intermediate

data are stored in the memory rather than disc and similar operations are all conducted in memory,

thus greatly improving the running efficiency. Figure 13 displays the speedup ratio distribution of

Figure 12. Comparison of the run time of a single iteration of GAESMPF.

6.5. Speedup Ratio Analysis

Experiments were conducted to evaluate the speedup ratio of GAESMPF based on Spark and
Hadoop. The speedup ratio is a key indicator for the system performance under the same workload.
For distributed versions, compared with the single-node version, the larger the speedup ratio is, the
greater the working efficiency is. The formula of the speedup ratio is shown as follows:

Sp = T1/Tp (13)

where Sp denotes the speedup ratio, T1 stands for the run time of GAESMPF based on a single node,
and Tp stands for the run time of GAESMPF based on distributed frameworks.

6.5.1. Speedup Ratio with Different Evolution Times

MapReduce is a batch-processing engine whose normal operation is to read data from the disc,
deal with the data, and write the results back to the disc. Since Hadoop-based iterative evolution needs
to read the disc constantly, it is quite time-consuming. On the Spark framework, intermediate data are
stored in the memory rather than disc and similar operations are all conducted in memory, thus greatly
improving the running efficiency. Figure 13 displays the speedup ratio distribution of Hadoop-based
GAESMPF and Spark-based GAESMPF with different evolution times. As can be seen straightly, the
average speedup ratio of the Spark-based GAESMPF is approximately 194.4 while that of the Hadoop
version is about 13.9. This indicates that the Spark-based version possesses remarkable advantages
over the Hadoop-based version in terms of the speedup ratio.

Sensors 2019, 19, 2717 16 of 18

Sensors 2019, 19, x FOR PEER REVIEW 16 of 18

Hadoop-based GAESMPF and Spark-based GAESMPF with different evolution times. As can be

seen straightly, the average speedup ratio of the Spark-based GAESMPF is approximately 194.4

while that of the Hadoop version is about 13.9. This indicates that the Spark-based version possesses

remarkable advantages over the Hadoop-based version in terms of the speedup ratio.

12.157 14.295 14.159 14.171 14.328 14.839 14.046

125.711

202.729
212.398 208.102 211.774

201.214 198.822

0

30

60

90

120

150

180

210

240

30 50 70 90 110 130 150

S
p
ee

d
u
p
（

ti
m

es
）

Evolution times

Hadoop Spark

Figure 13. Comparison of the speedup ratio with different evolution times.

6.5.2. Speedup Ratio with Different Node Numbers

As is designed in the experiment, when iterations reach 150 times, the speedup ratio is analyzed

with different node numbers. From Figure 14 it can be seen that, as the node number increases, the

gap of speedup ratio between the Spark version and Hadoop version becomes wider and wider.

When the node number reaches the maximum 19, the speedup ratio of Spark version and Hadoop

version is 198.822 and 14.046, respectively, the former 14 times greater the latter. This can be

explained by the fact that, for time-consuming GAESMPF operations, as the number of working

nodes increases, the Spark-based version occupies more and more obvious advantages over the

Hadoop-based version in the process of the optimal deployment of the UWSN.

2.392
19.577

50.467

80.97

120.832

159.611

178.125
185.989190.563

198.822

1.561 2.98 4.437 7.138 8.842 10.726 12.031 12.857 13.459 14.046

0

20

40

60

80

100

120

140

160

180

200

220

1 3 5 7 9 11 13 15 17 19

S
p

e
e
d

u
p
（

ti
m

e
s）

Slave Nodes

Spark Hadoop

Figure 14. Comparison of speedup ratio with different node numbers.

7. Conclusion

In this paper, a Spark-based parallel GA is proposed to simulate the optimal deployment of an

underwater sensing network. Compared with single-node-based GA and Hadoop-based GA, the

Spark-based parallel GA can significantly shorten the computation time of iterative evolution when

dealing with large-scale underwater sensing nodes. As can be seen from the experiment results in

Figure 10, the computation efficiency of the proposed method is improved by over 200 times

compared with the single-node-based GA, and 15 times compared with the Hadoop-based GA.

Thus, a remarkable improvement in the timeliness of solving the optimal deployment of a UWSN is

Figure 13. Comparison of the speedup ratio with different evolution times.

6.5.2. Speedup Ratio with Different Node Numbers

As is designed in the experiment, when iterations reach 150 times, the speedup ratio is analyzed
with different node numbers. From Figure 14 it can be seen that, as the node number increases, the gap
of speedup ratio between the Spark version and Hadoop version becomes wider and wider. When the
node number reaches the maximum 19, the speedup ratio of Spark version and Hadoop version is
198.822 and 14.046, respectively, the former 14 times greater the latter. This can be explained by the
fact that, for time-consuming GAESMPF operations, as the number of working nodes increases, the
Spark-based version occupies more and more obvious advantages over the Hadoop-based version in
the process of the optimal deployment of the UWSN.

Sensors 2019, 19, x FOR PEER REVIEW 16 of 18

Hadoop-based GAESMPF and Spark-based GAESMPF with different evolution times. As can be

seen straightly, the average speedup ratio of the Spark-based GAESMPF is approximately 194.4

while that of the Hadoop version is about 13.9. This indicates that the Spark-based version possesses

remarkable advantages over the Hadoop-based version in terms of the speedup ratio.

Figure 13. Comparison of the speedup ratio with different evolution times.

6.5.2. Speedup Ratio with Different Node Numbers

As is designed in the experiment, when iterations reach 150 times, the speedup ratio is analyzed

with different node numbers. From Figure 14 it can be seen that, as the node number increases, the

gap of speedup ratio between the Spark version and Hadoop version becomes wider and wider.

When the node number reaches the maximum 19, the speedup ratio of Spark version and Hadoop

version is 198.822 and 14.046, respectively, the former 14 times greater the latter. This can be

explained by the fact that, for time-consuming GAESMPF operations, as the number of working

nodes increases, the Spark-based version occupies more and more obvious advantages over the

Hadoop-based version in the process of the optimal deployment of the UWSN.

2.392
19.577

50.467

80.97

120.832

159.611

178.125
185.989190.563

198.822

1.561 2.98 4.437 7.138 8.842 10.726 12.031 12.857 13.459 14.046

0

20

40

60

80

100

120

140

160

180

200

220

1 3 5 7 9 11 13 15 17 19

S
p

e
e
d

u
p
（

ti
m

e
s）

Slave Nodes

Spark Hadoop

Figure 14. Comparison of speedup ratio with different node numbers.

7. Conclusion

In this paper, a Spark-based parallel GA is proposed to simulate the optimal deployment of an

underwater sensing network. Compared with single-node-based GA and Hadoop-based GA, the

Spark-based parallel GA can significantly shorten the computation time of iterative evolution when

dealing with large-scale underwater sensing nodes. As can be seen from the experiment results in

Figure 10, the computation efficiency of the proposed method is improved by over 200 times

compared with the single-node-based GA, and 15 times compared with the Hadoop-based GA. Thus,

a remarkable improvement in the timeliness of solving the optimal deployment of a UWSN is

Figure 14. Comparison of speedup ratio with different node numbers.

7. Conclusions

In this paper, a Spark-based parallel GA is proposed to simulate the optimal deployment of an
underwater sensing network. Compared with single-node-based GA and Hadoop-based GA, the
Spark-based parallel GA can significantly shorten the computation time of iterative evolution when
dealing with large-scale underwater sensing nodes. As can be seen from the experiment results
in Figure 10, the computation efficiency of the proposed method is improved by over 200 times
compared with the single-node-based GA, and 15 times compared with the Hadoop-based GA. Thus, a
remarkable improvement in the timeliness of solving the optimal deployment of a UWSN is achieved.
Encouragingly, the innate natural randomness and distribution of the Spark-based parallel GA entitles
it to avoid local optimization effectively, which further improves the accuracy of the proposed method
and finally results in optimal deployment of the UWSN. Therefore, the proposed method of Spark-based

Sensors 2019, 19, 2717 17 of 18

parallel GA is rather promising in solving the optimized deployment strategy of a large-scale UWSN. In
the future, the author will further investigate the deployment strategy and topology control protocols
of a large-scale UWSN by means of the fusion of parallel GA and parallel machine learning algorithms.

Author Contributions: Conceptualization, P.L. and Z.Z.; Methodology, P.L., S.Y. and C.W.; Software, S.Y. and
C.W.; Validation, P.L., S.Y. and C.W.; Formal analysis, P.L. and Z.Z.; Investigation, P.L. and Z.Z.; Data curation, S.Y.
and C.W.; Writing—original draft preparation, S.Y and C.W.; Writing—review and editing, P.L, S.Y. and Z.Z.

Funding: This work is supported by the Xuzhou S and T Research Project (KC18071) and the National Key R and
D Program of China (2017YFC0804401).

Acknowledgments: The authors would like to thank the editors and the anonymous reviewers for their valuable
comments and constructive suggestions.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study.

References

1. Peng, J.; Yang, F.; Feng, W. Fruit fly inspired underwater sensor network deployment algorithm. J. Chin. J.
Electron. 2017, 45, 1403–1407.

2. Alam, S.M.N.; Haas, Z.J. Coverage and Connectivity in Three-Dimensional Networks with Random Node Deployment;
Elsevier Science Publishers B. V.: Amsterdam, The Netherlands, 2015; pp. 285–286.

3. Ismail, N.S.N.; Hussein, L.A.; Ariffin, S.H.S. Analyzing the Performance of Acoustic Channel in Underwater
Wireless Sensor Network (UWSN). In Proceedings of the Fourth Asia International Conference on
Mathematical/Analytical Modelling & Computer Simulation, Kota Kinabalu, Malaysia, 26–28 May 2010.

4. Anguita, D.; Brizzolara, D.; Parodi, G. Building an Underwater Wireless Sensor Network Based on Optical
Communication: Research Challenges and Current Results. In Proceedings of the International Conference
on Sensor Technologies & Applications, Venice, Italy, 15–18 July 2010.

5. Yang, G.; Wei, Z.; Cong, Y. Analysis of Security and Threat of Underwater Wireless Sensor Network Topology.
In Proceedings of the International Conference on Digital Image Processing, Kuala Lumpur, Malaysia, 7–8
April 2012.

6. Gupta, S.K.; Kuila, P.; Jana, P.K. Genetic algorithm approach for k -coverage and m -connected node placement
in target based wireless sensor networks. J. Comput. Electr. Eng. 2015, 56, 544–556. [CrossRef]

7. Cao, B.; Zhao, J.W.; Lu, Z.H. Deployment optimization for 3D industrial wireless sensor networks based on
particle swarm optimizers with distributed parallelism. J. Netw. Comput. Appl. 2018, 103, 225–238. [CrossRef]

8. Han, G.; Jiang, J.; Shu, L. Localization algorithms of Underwater Wireless Sensor Networks: A survey.
Sensors 2012, 12, 2026–2061. [CrossRef] [PubMed]

9. Luque, G.; Alba, E. Parallel Genetic Algorithms: Theory and Real World Applications. In Parallel Genetic
Algorithms: Theory and Real World Applications; Springer: Berlin, Germany, 2011.

10. Arthur, L.C.; Roger, L.W. A Parallel Island Model Genetic Algorithm for the Multi-processor Scheduling
Problem. In Proceedings of the ACM/SIGAPP Symposium on Applied Computing, Phoenix, AZ, USA, 6–8
March 1994; pp. 483–487.

11. Alba, E.; Troya, J.M. A survey of parallel distributed genetic algorithms. J. Complex. 1999, 4, 31–52. [CrossRef]
12. Wang, Z.Q.; Lu, Y.Y. Research on Big Data Processing Technology Based on Hadoop. In Proceedings of the

International Conference on Electronics, Electrical Engineering and Information Science, Guangzhou, China,
7–9 August 2015.

13. Jin, C.; Vecchiola, C.; Buyya, R. MRPGA: An Extension of MapReduce for Parallelizing Genetic Algorithms.
In Proceedings of the IEEE 5th International Conference on Escience, Oxford, UK, 9–11 December 2009;
pp. 214–221.

14. Han, Z.; Zhang, Y. Spark: A Big Data Processing Platform Based on Memory Computing. In Proceedings of
the Seventh International Symposium on Parallel Architectures, Nanjin, China, 12–14 December 2016.

15. Nair, L.R.; Shetty, S.D.; Shetty, S.D. Applying spark based machine learning model on streaming big data for
health status prediction. J. Comput. Electr. Eng. 2017, 65, 393–399. [CrossRef]

16. Jia, G.; Han, G.; Du, J. A Maximum Cache Value Policy in Hybrid Memory based Edge Computing for 5G
Mobile Devices. IEEE Internet Things J. 2018. [CrossRef]

http://dx.doi.org/10.1016/j.compeleceng.2015.11.009
http://dx.doi.org/10.1016/j.jnca.2017.08.009
http://dx.doi.org/10.3390/s120202026
http://www.ncbi.nlm.nih.gov/pubmed/22438752
http://dx.doi.org/10.1002/(SICI)1099-0526(199903/04)4:4<31::AID-CPLX5>3.0.CO;2-4
http://dx.doi.org/10.1016/j.compeleceng.2017.03.009
http://dx.doi.org/10.1109/JIOT.2018.2878872

Sensors 2019, 19, 2717 18 of 18

17. Jia, G.; Han, G.; Li, A. SSL: Smart Street Lamp based on Fog Computing for Smarter Cities. J. IEEE Trans. Ind.
Inf. 2018, 14, 4995–5004. [CrossRef]

18. Jia, G.; Han, G.; Xie, H. Hybrid-LRU Caching for Optimizing Data Storage and Retrieval in Edge
Computing-Based Wearable Sensors. IEEE Internet Things J. 2018, 6, 1342–1351. [CrossRef]

19. Jia, G.; Han, G.; Rao, H.; Shu, L. Edge Computing-based Intelligent Manhole Cover Management System for
Smart Cities. IEEE Internet Things J. 2018, 5, 1648–1656. [CrossRef]

20. Jia, G.; Han, G.; Rodrigues, J.J. Coordinate Memory Deduplication and Partition for Improving Performance
in Cloud Computing. J. IEEE Trans. Cloud Comput. 2015, 7, 357–368. [CrossRef]

21. Zongwei, Z.; Fan, W.; Jing, C.; Xi, L.; Gangyong, J. A Thread-Oriented Memory Resource Management
Framework for Mobile Edge Computing. IEEE Access 2019, 7, 45881–45890.

22. Zongwei, Z.; Jing, C.; Xi, L.; Junneng, Z.; Youqing, X.; Gangyong, J. Impacts of Memory Address Mapping
Scheme on Reducing DRAM Self-Refresh Power for Mobile Computing Devices. IEEE Access 2018, 6,
78513–78520.

23. Jiafen, G.; Xiufen, Z.; Hui, J. A Dynamic Two-Level Evolutionary Algorithm for Solving Multi-peak Function
Optimization Problem. J. Prog. Intell. Comput. Appl. 2005, 50–55.

24. Tomassini, M.; Vanneschi, L. Special issue on parallel and distributed evolutionary algorithms. J. Genet.
Program. Evolvable Mach. 2009, 10, 339–341. [CrossRef]

25. Min, X.; Shi, W.R.; Jiang, C.J. Energy efficient clustering algorithm for maximizing lifetime of wireless sensor
networks. J. AEUE Int. J. Electron. Commun. 2010, 64, 289–298. [CrossRef]

26. Dean, J.; Ghemawat, S. MapReduce: Simplified Data Processing on Large Clusters. In Proceedings of the
6th Symposium on Operating System Design and Implementation (OSDI), San Francisco, CA, USA, 6–8
Decmber 2004.

27. Verma, A.; Xavier, L.; Goldberg, D.E. Scaling Genetic Algorithms using MapReduce. In Proceedings of the
Ninth International Conference on Intelligent Systems Design and Applications, Pisa, Italy, 30 November–2
December 2009.

28. Flores, P.; Yoonsik, C.P. WiseGen: Generating Test Cases for Pairwise Testing Using Genetic Algorithms.
In Proceedings of the IEEE International Conference on Computer Science and Automation Engineering
(CSAE), Zhangjiajie, China, 10–11 June 2011.

29. Geronimo, D.L.; Ferrucci, F.; Murolo, A.; Sarro, F. A Parallel Genetic Algorithm Based on Hadoop MapReduce
for the Automatic Generation of JUnit Test Suites. In Proceedings of the 5th IEEE International Conference
on Software Testing, Verification and Validation, Montreal, QC, Canada, 17–21 April 2012.

30. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. J. Commun. ACM 2008, 51,
107–113. [CrossRef]

31. Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauly, M.; Franklin, M.J.; Shenker, S.; Stoica, I.
Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In
Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation, San Jose,
CA, USA, 25–27 April 2012.

32. Zhu, Z.; Li, X.; Wang, C. Memory Power Optimization on Different Memory Address Mapping Schemas.
In Proceedings of the IEEE International Conference on Embedded & Real-time Computing Systems &
Applications, Daegu, Korea, 17–18 August 2016.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TII.2018.2857918
http://dx.doi.org/10.1109/JIOT.2018.2834533
http://dx.doi.org/10.1109/JIOT.2017.2786349
http://dx.doi.org/10.1109/TCC.2015.2511738
http://dx.doi.org/10.1007/s10710-009-9094-1
http://dx.doi.org/10.1016/j.aeue.2009.01.004
http://dx.doi.org/10.1145/1327452.1327492
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	System Application Model
	Single-Node GA for Solving ESMPF
	Shubert Multi-Peak Function
	The GA Dataset Encoding for SMPF
	Single-Node Implementation

	Hadoop-Based Parallel GAESMPF
	Process of Parallel Genetic Iteration
	Process of Searching Extremums

	Spark-Based Parallel GAESMPF
	Phase of Parallel Genetic Operation
	Phase of Searching Extremums

	Experiment and Analysis
	Experiment Configuration
	General Running Efficiency
	Solution Accuracy with Evolution Times
	Run Time of a Single Iteration
	Speedup Ratio Analysis
	Speedup Ratio with Different Evolution Times
	Speedup Ratio with Different Node Numbers

	Conclusions
	References

