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Abstract: This study proposes a novel model-based automatic search algorithm to realize the
self-calibration of nonlinear signal model for angular position sensors. In some high-precision angular
position sensors, nonlinearity of the signal model is the main source of errors and cannot be handled
effectively. By constructing a signal flow network framework and by embedding a modeling search
network, the parameters of the nonlinear signal model can be searched, and the calibration signal can
be obtained. The convergence of the network search process was analyzed. The relationship between
the optimization threshold and the convergence accuracy was also studied in simulations. Compared
with the maximum angular error reduction to 47.42% after the calibration with simplified model
that ignores signal nonlinearities, the proposed scheme was able to reduce this error to 0.0025% in
simulations. By implementing the technique in a capacitive angular position sensor, the experimental
results showed that the maximum angular error was reduced to 1.63% compared to a reduction of
86.02% achieved with the simplified model calibration. The effects of the search network order and
layer number on the calibration accuracy were also analyzed, and the optimal parameters under
experimental conditions were obtained. Correspondingly, the proposed scheme is able to handle
calibration of nonlinear signal model and further improve sensor accuracy.

Keywords: model-based automatic search; nonlinear signal model; signal flow network; angular
position sensor

1. Introduction

Angular position information is important in many control and inspection systems. In application
scenarios, such as in unmanned aerial vehicles and industrial robots, obtaining accurate angular
information is crucial. Ideally, angular position sensors such as resolvers [1,2] and capacitive angular
position sensors (CAPS) are driven by excitation voltages [3,4]. After demodulation, the angular
position information is determined by a set of orthogonal sine and cosine signals. However, the output
signals usually contain amplitude deviations, direct-current (DC) offsets, phase shifts, and other
nonlinear disturbances which are difficult to handle.
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To obtain more accurate angular position information, it is important to identify a solution to
calibrate all the errors to the largest extent possible. This problem is generally formulated as an
extraction of sinusoidal and cosine components from a signal in the simplified form of [2,3]:

ys = a · sinθ+ b,
yc = c · cos(θ+ β) + d.

(1)

Based on the above expressions, many high-precision calibration methods have been proposed,
while the application range generally does not include self-calibration scenarios. Le et al. [5] introduced
a quadrature all-digital phase-locked loop method and proposed an interpolation technique to calibrate
the angular position information. Nezar Abou Qamar et al. [6] presented the design of an auto-tuning
output filter based on the interpolation method. In turn, Dhar et al. [7] proposed the establishment of
an artificial neural network to compensate for angular errors. Tan et al. [8] used a radial-basis-function
neural network for angle calibration.

To achieve the aim of self-calibration, many valuable methods have been developed. Hudson et al. [9]
designed a new electronic nulling autocollimator to realize the calibration of the high-precision electronic
nulling autocollimator. Lu [10] presented the time measurement Dynamic Reversal (TDR) method to
realize self-calibration on the axis of angle encoders. Lu et al. [11] also introduced another self-calibration
method for on-axis rotary encoders. The selection of a self-calibration algorithm constitutes another
research direction. A self-calibration method based on the least-mean-square algorithm was first proposed
in [12]. On this basis, the ellipse fitting method [13] and the optimization algorithm [14,15] based on
gradient descent were developed. Improved iterative optimization algorithms were also developed to
deal with problems in practical applications [16–18]. Additionally, Gao et al. [19] also proposed a new
iterative algorithm for self-calibration. Additionally, Hou [20] introduced a self-calibration method based
on a state observer, and Wu et al. [21] applied the technology to design a two-step gradient estimator.

The complete expression of signal model can be expressed as a Fourier series [18]:

ys =
∞∑

i=0
(ai cos(iθ) + bi sin(iθ)),

yc =
∞∑

i=0
(ci cos(iθ) + di sin(iθ)).

(2)

There are nonlinear error factors in the actual sensor signals, and the simple model that ignores the
nonlinear part of the error makes the analysis and processing become achievable and simple. However,
the analysis for simplified models is solely based on Equation (1), which is an approximate expression
of Equation (2). The error factors that are ignored are not conducive to the further improvement of
the accuracy of the sensor. If a suitable solution to deal with nonlinear factors can be found, signal
extraction based on Equation (2) can yield higher calibration accuracies. In this study, a novel scheme
is proposed to achieve the processing of nonlinear factors and can be used for the self-calibration of the
complete nonlinear signal model.

The scheme is implemented based on the proposed model-based automatic search algorithm
(MASA). The framework of the method is based and represented by signal flow networks (SFN).
Linear layers were designed to represent the physical characteristics. In addition, an iteration
approximation network (IAN) based on a fixed-point iteration method was proposed for the first time.
It worked as a model search network and was embedded in the SFN. Regarding the search process,
the least-mean-square-error was used to design the loss function of the network, and the Adam’s
method [22] was applied as the optimizer.

For complex signal expressions that are difficult to handle, neural networks are used to re-model
the signals, and the problem of solving signal parameters is transformed into a search problem for
network parameters. Since the problem to be solved is a search problem in which the network
input is unknown and the output can be known, numerical analysis techniques are used to fit a
mapping relationship and convert the problem into a situation where the network input and output
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are known. Since the fitting scheme is unknown, an iterative approximation network is proposed,
which is embedded in the calibration network so that the fitting scheme is also obtained by searching.
This essentially proposes a solution to the problem of nonlinear equations in the case of unknown
equation coefficients.

Compared with our previous work [19], the new research method is no longer limited to simple,
definite model expressions but rather establishes a search process to achieve the fit of the model. A clear
signal transfer function to complete the establishment and optimization of the signal network is needed
in the previous work. For nonlinear signals with complex expressions in this study, the derivation of
the transfer function is difficult or impossible to achieve. The previous work cannot effectively reduce
the error. The newly proposed scheme establishes a search mechanism that can further reduce the error
by completing the establishment of the transfer function and the construction of the signal network
through the search method. The detailed results can be obtained from the simulation and experimental
results that will be introduced next.

The remainder of this study is organized as follows: In Section 2, the error model of angular
position sensors is discussed. In Section 3, the principle and specific implementation details of the
proposed method are introduced. Section 4 then presents the simulation and experiments results,
and a discussion of the results and our conclusions are outlined in Section 5.

2. Description of the Error Model

Figure 1 shows the working principle of angular position sensors such as resolvers and capacitive
angular position sensors. Under the influence of an excitation voltage, the sensors output two signals
denoted as ys0 and yc0.
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Figure 1. Working principle of angular position sensors.

The gain coefficient of the sensor is defined as k, and ωe and E are the frequency and the amplitude
of the excitation voltage, respectively, while θ is the angle that needs to be measured. The two signals
are modulated and can be expressed as [2,3]:

ys0 = k · E · cos(ωe · t) · sinθ,
yc0 = k · E · cos(ωe · t) · cosθ.

(3)

Ideally, the signals after demodulation [2,3] can be expressed as follows:

ys = sinθ, yc = cosθ. (4)

In practical applications, the complete signal model that contains the interference factors is
described according to Equation (2). Before further analyses of the model, mathematical formulas and
theorems are used to simplify the problem.
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Pn(x) is defined as a polynomial with respect to x and the subscript n is the degree of the
polynomial. By combining the binomial theorem [23] and de Moivre’s formula [24], cos(nθ) and
sin(nθ) can be expressed as:

cos(nθ) =
∞∑

i=0

(
Ci

n−i + Ci−1
n−1−i

)
(−1)i2n−1−2i cosn−2i(θ),

sin(nθ) =
∞∑

i=0
Ci

n−1−i(−1)i2n−1−2i cosn−1−2i(θ) sin(θ).
(5)

Equation (5) can be rewritten with the use of polynomial functions according to

cos(nθ) = Pn(cos(θ)), sin(nθ) = sinθ · Pn−1(cos(θ)). (6)

Combining Equations (2) and (6), the expression of the two signals becomes{
ys, yc

}
= P∞(cos(θ)) + sin(θ) · P∞(cos(θ)). (7)

If the highest degree used is smaller than N, Equation (7) can be further expressed as:

ys =
N∑

i=0
ai cosi(θ) + sin(θ) ·

N−1∑
i=0

bi cosi(θ),

yc =
N∑

i=0
ci cosi(θ) + sin(θ) ·

N−1∑
i=0

di cosi(θ).
(8)

yc can also be expressed using the equivalent equation

yc =
N∑

i=0

ci cosi(ϕ) + sin(θ) ·
N−1∑
i=0

di cosi(ϕ). (9)

where ϕ = θ+ β and β are the phase shifts of the two signals. Accordingly, the calibration method is
introduced based on Equations (8) and (9).

3. Overall Description of MASA and Implementation Details

3.1. Signal Flow Networks and Self-Calibration Process

The transformation of nonlinear signals to standard orthogonal sine and cosine signals is the
key concept for self-calibration and acquisition of angle information. This method designs a novel
signal flow network to simulate the signal change process. The parameters of the transformation are
represented by the nodes of the network. By establishing forward signal flow pipelines and backward
optimization operation pipelines, the network can obtain accurate parameter values and extract the
standard sine and cosine signals in the convergence state of the network.

The proposed method mainly includes forward and backward operation pipelines. A schematic
of the method is shown in Figure 2.

The forward operation pipelines start from the input layer. The values in the input layer are
signals denoted by ys and yc in Equations (8) and (9). The coarse tuning layer deals with the coarse
calibration of the input signal. The main linear errors such as the amplitude deviations and DC offset
are suppressed. The output signals of the coarse tuning layer are denoted as ys1 and yc1. They can be
expressed according to the following equations:

ys1 =
ys−a0

b0
= sin(θ) +

N∑
i=1

a′i cosi(θ) + sin(θ) ·
N−1∑
i=1

b′i cosi(θ),

yc1 =
yc−c0

c1
= cos(ϕ) +

N∑
i=2

c′i cosi(ϕ) + sin(ϕ) ·
N−1∑
i=0

d′i cosi(ϕ).
(10)
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The coarse calibrated signals are then input into the fine-tuning layer, which consists of the
iteration approximation networks and the phase-shift-calibration layer. The output signals of the
iteration approximation networks are defined as ys2 and yc2. In Section 3, it is proved that they can be
expressed as:

ys2 = sin(θ), yc2 = cos(ϕ). (11)

The phase-shift-calibration layer is another linear layer. The output signals are denoted as ys f and
yc f , and can be formulated as:

ys f = ys2 = sin(θ),

yc f =
yc2

cos β + yc2 · tan β = cos(θ).
(12)

The backward operation pipelines start from the loss value calculation. It deals with network
optimization in the effort to ensure that the forward operation pipelines are accurate and reliable.
The optimization target is referred to as a loss function. The value of the loss function is defined as:

L =

(
1−

(
y2

s f + y2
c f

)2
)2

. (13)

The optimizer is the engine of the backward operation pipelines, mainly containing the gradient
calculation method and the parameter update rules.

The gradient calculation method is based on the back-propagation rule [25]. The parameter vector
is defined as ψ, the input vector is defined as Yi = (ys, yc)

T and the output vectors of the coarse-tuning
and fine-tuning layers are defined as Yo1 = (ys1, yc1)

T and Yo2 = (ys2, yc2)
T. There exist mapping

functions f , f1, f2 and the following expressions:

L = f (ψ, Yo2), Yo2 = f2(ψ, Yo1), Yo1 = f1(ψ, Yi). (14)

According to the back-propagation rule [25], the gradient is calculated based on the formula:

∂L
∂ψ

=
∂ f
∂Yo2

·

(
∂Yo2

∂ψ
+
∂Yo2

∂Yo1
·
∂Yo1

∂Yi

)
. (15)
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The parameter update rules were designed based on the Adam’s optimization algorithm [22].
It has the ability to adjust the learning rate adaptively and has significant advantages over other random
optimization algorithms [26]. The parameters are updated according to the following principles:

t← t + 1, mt ← β1 ·mt−1 + (1− β1) ·
∂L
∂ψ , vt ← β2 · vt−1 + (1− β2) ·

(
∂L
∂ψ

)2
,

m̂t ← mt/
(
1− βt

1

)
, v̂t ← vT/

(
1− βt

2

)
,ψt ← ψt−1 − α · m̂t/

(√
v̂t + ε

)
.

(16)

In Expression (16), the subscript t is the time step, mt is the updated biased first moment estimate,
m̂t is the bias-corrected first moment estimate, vt is the updated biased second moment estimate,
and v̂t is the bias-corrected second moment estimate. Parameter α is the step size, β1 and β2 are the
exponential decay rates for moment estimation, and ε is a constant for numerical stability. The default
settings are α = 0.001, β1 = 0.9, β2 = 0.999, ε = 10−8 [22].

During the process of continuous data collection, the backward optimization pipelines dynamically
adjust the network parameters, and the forward operation pipelines obtain accurate calibration results.

3.2. Iteration Approximation Network and Convergence Analysis

The IAN was proposed to deal with signals in Equation (10). The mathematical basis of this
network is a fixed-point iteration method [27]. The fixed-point iterative method is usually used for
numerical fitting of nonlinear models [28,29].

The schematic of the iteration approximation network is shown in Figure 3. The initial value of
the iteration process is equal to the output signal of the coarse calibration multiplied by a scaling factor
such that the absolute value is less than unity. This is to prevent gradient divergence in the iterative
process. Accordingly, sin(θk) and cos(θk) are defined based on the following iteration formulas:

sin(θk) = ys1 −
N∑

i=1
a′i cosi(θk−1) − sin(θk−1) ·

N−1∑
i=1

b′i cosi(θk−1),

cos(ϕk) = yc1 −
N∑

i=2
c′i cosi(ϕk−1) − sin(ϕk−1) ·

N−1∑
i=0

d′i cosi(ϕk−1),

cos(θk) = (cosϕk−1 + sinθk−1 · sin β)/ cos β,
sin(ϕk) = sinθk−1 · cos β+ sin β · cosθk−1.

(17)
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the fine-tuning layer is set to m.
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The total nonlinear distortions are usually less than 1% [18]. Based on the assumption that the
distortions of the parameters in Equation (17) are less than 0.01 and the expressions with small values
are ignored, Equation (17) can be simplified to:

sin(θ) = g1(sin(θ), cos(ϕ)) = ys1 −
N∑

i=1

(
a∗i sini(θ) + b∗i cosi(ϕ)

)
+

(
gm

1

)
,

cos(ϕ) = g2(sin(θ), cos(ϕ)) = yc1 −
N∑

i=1

(
c∗i sini(θ) + d∗i cosi(ϕ)

)
+

(
gm

2

)
.

(18)

where X = (sin(θ), cos(ϕ))T, G(sin(θ), cos(ϕ)) = (g1, g2)
T. By considering the L1 norm of G(X1)−G(X2),

the following inequality is established:

∣∣∣g1(X1) − g1(X2)
∣∣∣ =∣∣∣∣∣∣ N∑

i=1

(
a∗i (sini(θ1) − sini(θ2) + b∗i

(
cosi(ϕ1) − cosi(ϕ2)

))∣∣∣∣∣∣
≤

N∑
i=1

∣∣∣a∗i ∣∣∣ · ∣∣∣sini(θ1) − sini(θ2)
∣∣∣+ N∑

i=1

∣∣∣b∗i ∣∣∣ · |cosi(ϕ1) − cosi(ϕ2)|

≤

N∑
i=1

∣∣∣a∗i ∣∣∣ · i · ∣∣∣sin(θ1) − sin(θ2)
∣∣∣+ |b∗i |·i·| cos(ϕ1) − cos(ϕ2)|)

= L1 ·
∣∣∣cos(ϕ1) − cos(ϕ2)

∣∣∣+ M1 ·
∣∣∣sin(θ1) − sin(θ2)

∣∣∣,
L1 =

N∑
i=1
|a∗i | · i ≤

N∑
i=1

0.01 · i = N(N + 1)/200.

(19)

With small phase shifts, L1 ≤ N(N + 1)/200 and M1 ≤ N(N + 1)/200.
The following expression can be obtained in the same way:∣∣∣g2(X1) − g2(X2)

∣∣∣ ≤ L2 ·
∣∣∣cos(ϕ1) − cos(ϕ2)

∣∣∣+ M2 ·
∣∣∣sin(θ1) − sin(θ2)

∣∣∣, ∣∣∣∣∣∣G(X1) −G(X2)
∣∣∣∣∣∣

1

≤ (L1 + L2) ·
∣∣∣cos(ϕ1) − cos(ϕ2)

∣∣∣+ (M1 + M2) ·
∣∣∣sin(θ1) − sin(θ2)

∣∣∣
≤ 0.01N(N + 1)

(∣∣∣cos(ϕ1) − cos(ϕ2)
∣∣∣+ ∣∣∣sin(θ1) − sin(θ2)

∣∣∣)
= L · ||X1 −X2||1.

(20)

where L = 0.01N(N + 1) and L < 1 when N ≤ 9. The function G(sin(θ), cos(ϕ)) = (g1, g2)
T is a

contraction map and the value of the function belongs to the range of the argument. According to
the fix-point iteration theorem [28], the iterative equation has a fixed point, which is the solution of
Equation (17). The iteration error satisfies the following expression:

||εm||1 ≤
Lm

1− L
||ε1||1. (21)

where ε represents the iteration error, and the subscript represents the number of iterations. These
derivations provide proof of convergence. In fact, the IAN can be considered to converge when the
loss function converges in experiments.

4. Simulation and Experiment Results

4.1. Simulation for Feasibility Verifation

To verify the feasibility of the MASA method, a simulation experiment was conducted. The signal
models were defined as:

ys = 1.10 · sinθ · (1 + 0.02 · sin(2 · θ+ 1.00)) + 0.01,
yc = 1.05 · cosθ · (1 + 0.02 · sin(2 · θ+ 0.05)) + 0.02.

(22)
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The time domain map, the Lissajous figure, and the amplitude spectrums of the simulated signals
are shown in Figures 4 and 5.
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The simulation data were randomly shuffled and then sent to the signal flow network to test
the adaptability of the scheme in non-continuous sampling situations. The IAN deals with nonlinear
harmonic components with orders smaller than three. The order of IAN was set to three, and the layer
number was set to 14 to represent the fitting process.

In the network parameter initialization process, the maximum absolute values of the two output
signals were used as the initial fundamental frequency coefficients, while the other parameters were
initialized to zero. There are 20,000 sets of simulation data, and the parameter learning rate was set to
0.001. The other parameters of the optimizer were in accordance with the recommended values listed
in [22]. Batch gradient descent was applied [30] and the batch size was set to 256. The optimization
threshold was set to 1× 10−14.

Simulation experiments were based on the above parameter settings. The amplitude spectrum of
the calibrated sine signal is shown in Figure 6a, and the amplitudes of other signal components are
reduced to 0.005%.

In addition, self-calibration simulation experiments based on our previous work proposed in [19]
with simplified signal model were also performed. The simulation results of two different schemes
will be used to compare the superiority of the proposed scheme with respect to the previous scheme in
terms of error suppression. The amplitude spectrum of the calibrated sine signal is shown in Figure 6b,
and the amplitude of other signal components is reduced to 92.27%. The results show that the proposed
scheme is better for the self-calibration of nonlinear signal models.
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The residual values of the demodulation angle are depicted in Figure 7. The figure shows the angle
error in three different conditions: Results without calibration (condition a), results after calibration
using the method mentioned in [19] (condition b), and results after the calibration using the proposed
method (condition c).
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The results are also summarized in Table 1. The peak-to-peak value of the error and the maximum
value of the absolute value are used as an error indicator of the angle. The error peak-to-peak
value refers to the difference between the maximum value and the minimum value of the error,
which is used to describe the variation range of the error; the maximum value of the absolute value
describes the maximum level of the error. After the calibration using the method mentioned in [19],
the peak-to-peak value of angle error was reduced to approximately 53%, whereas the value was
reduced to approximately 0.0026% after the use of the proposed self-calibration process.
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Table 1. Angle errors in the three tested conditions based on simulations.

Category Peak-to-Peak
Error (◦)

Proportion for
Peak-to-Peak

Error Reduction

Absolute
Maximum Error

(◦)

Proportion for
Absolute Maximum

Error Reduction

Condition a 4.2980 / 2.6002 /
Condition b 2.2779 53.00% 1.2329 47.42%
Condition c 1.2711 × 10−4 0.0026% 6.4037 × 10−5 0.0025%

Ideally, as the optimization threshold decreases, the achievable angular accuracy increases.
For further analyses, the relationship between the threshold and angle error is shown in Figure 8.
The maximum error and the peak-to-peak error responses with respect to the threshold were fitted.
The fitting formula is log(error) = p1 · log(threshold)+ p2. The slopes for the maximum and peak-to-peak
errors are −0.6450 and −0.6491, respectively.
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The results indicate that under ideal conditions, a smaller optimization threshold will result in
more accurate signals after the parameters converge. More analyses of other influencing factors are
conducted in the experimental part.

4.2. Experimental Results

For practical applications, experiments were conducted to verify the effectiveness and to study
the factors that affect the accuracy of the proposed technique. The experimental equipment used for
verification is illustrated in Figure 9.
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In the experiment, the sensitive petal-form electrodes of the CAPS [3] are sine waves in polar
coordinates spanning 36 cycles. The CAPS was mounted on a turntable which rotated at 0.5 ◦/s.
The relationship between the angle information θe at each of the sensor output signals’ electrical cycle
and the actual mechanical angle information θm is θm = θe/36. The frequency of θe is 0.05 Hz.

During the rotation process, the acquisition equipment processed the signals and sent the data to
the laptop computer at a sampling frequency of 250 Hz. The acquisition time was 2 min, and a total of
180,000 data points were collected, which included 72 electrical angle periods and two mechanical angle
periods. The exact values of the angle information were obtained through the turntable. Figure 10
shows the amplitude spectrum of the two sets of collected data.
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Following calibration results were based on the 4th order IAN and the layer number was set
to 14. In the network parameter initialization process, the maximum absolute values of the signals
were used as the initial fundamental frequency coefficients, while other parameters were initialized
to zero. The learning rate was set to 0.00001 and the other parameters were in accordance with the
recommended values in [22]. The batch size was set to 256 and the optimization threshold was set
to 1× 10−8.

The amplitude spectrum of the calibrated sine signal after the use of the proposed method is
shown in Figure 11a. The amplitude spectrum of the sine signal with the method mentioned in [19] is
shown in Figure 11b.
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Figure 11. Amplitude spectrum of experimental sine signals after calibration. (a) Proposed method; (b)
method with simplified signal model.

According to the results shown in the spectrum, the amplitude component of the sinusoidal signal
after calibration in the proposed scheme is 0.4999, which is close to 0.5 (ideal amplitude), while the
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value is 0.4988 after calibration with simplified model. For further analyses, the residual values of
the mechanical angle are depicted in Figure 12. The three different tested conditions in simulation
experiments are shown in Figure 12.
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Figure 12. Mechanical angle errors in three tested conditions. (a) Display of the three demodulation
errors; (b) mechanical angle errors using the proposed method.

The detailed information is summarized in Table 2.

Table 2. Mechanical angle errors corresponding to the three tested conditions obtained from
the experiments.

Category Peak-to-Peak
Error (◦)

Proportion for
Peak-to-Peak

Error Reduction

Absolute
Maximum Error

(◦)

Proportion for
Absolute Maximum

Error Reduction

Condition a 0.1274 / 0.0701 /
Condition b 0. 1195 93.80% 0.0603 86.02%
Condition c 2.24 × 10−4 1.76% 1.14 × 10−3 1.63%

The value of the loss function cannot be reduced indefinitely in practical applications. When the
optimal threshold is reached, the network structure becomes the main impact factor on the calibration
results. The variation of the angular error as a function of the order of the IAN for a batch size of 256
and for 24 IAN layers with a learning rate of 0.00001 is shown in Figure 13.
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The order of IAN has an influence on the nonlinear fitting accuracy. Higher orders may lead
to improved accuracy, while they also result in a greater computational overhead and a slower
convergence speed. According to the results of Figure 13, the accuracy of the output angle will be
improved with the use of the 4th order IAN in association with the measured data.

The number of IAN layers is another parameter used to evaluate the network fitting ability.
It mainly reflects the iterative precision of the iterative formula. Figure 14 shows the relationship
between the number of IAN layers and the calibration effect.
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Ideally, more precise angular information can be obtained with additional layers. However,
the network structure will become more complex and the convergence speed will be reduced. According
to the results shown in Figure 14, the effect of the layer number on the improvement of the calibration
accuracy is not as obvious as expected. On the basis of conforming to the accuracy requirements,
the number of IAN layers, the parameter sizes, and the network complexity should be reduced to
improve the convergence speed. The number of layers set in the experiment was 14 and corresponds
to the case associated with the highest precision.

The results indicated that the proposed technology can reduce the peak-to-peak error and the
maximum error to 1.76% and 1.63% respectively, while the conventional methodology that does not
deal with nonlinear factors [19] can only reduce the errors to 93.80% and 86.02%. The basic building
blocks of IAN determine the way in which nonlinear models are searched and fitted. In the experiment,
sine and cosine functions were used as the basic units. The analysis of Figure 14 shows that the basic
units may not be optimal. Different basic units result in different experimental results and there should
be other more suitable units to achieve additional accuracy improvements.

5. Discussion for Computational Complexity

Time complexity and spatial complexity are often used to describe the computational complexity
of an algorithm [31]. The spatial complexity is used to measure the size of the storage space temporarily
occupied by the algorithm during operation, and the time complexity measures the running time of
the algorithm.

For performance analysis, the amount of computation, which refers to the number of floating-point
operations (without considering addition and subtraction operations) that occur when the model
performs a forward propagation for a single input sample, is used to describe the time complexity.
In the coarse adjustment layer, the input signal passes through the linear layer, and the number of
floating-point operations is 2. In the fine-tuning layer, assuming that the IAN order is N and the
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number of layers is m, the number of floating-point operations required for each iteration unit can be
calculated according to (17). The calculation results are as follows:

t1 =
N∑

i=1
(i + 1) +

N−1∑
i=1

(i + 1) + 1 = N(N + 2),

t2 =
N∑

i=2
(i + 1) +

N−1∑
i=0

(i + 1) + 1 = N2 + 3N − 2,

t3 = 3,
t4 = 2.
t f = t1 + t2 + t3 + t4 = 2N2 + 5N + 3.

(23)

For the model consisting of the coarse adjustment layer and an IAN with m layers, the total
calculation amount defined as ta and the value is:

ta = 2 + m · t f = (2N2 + 5N + 3) ·m + 2,
ta = O(N2),
ta = O(m).

(24)

According to the results of Figures 13 and 14, when the order and the number of layers are large,
the calibration performance couldn’t be greatly improved, while the time complexity of the model
is increased. This means that when the accuracy meets the requirements, it is necessary to reduce
the order and number of layers as much as possible. In the experiment, N = 4, m = 14. The total
calculation amount is about 772 floating point operations.

For spatial complexity, the total amount of memory access that occurs when the model completes
a forward propagation process is used for analysis, which is expressed using the number of parameters
of the model. The value of the total amount of memory access is 4N + 3 according to Equations (8)
and (9). In the experiment, the total amount of memory access is about 19 floating point numbers.

The order and number of layers of IAN affect the time complexity of the model. The order has a
greater impact on time complexity and also affects the size of the parameters. The number of layers
of IAN describes the number of iterations of fixed points. It does not affect the parameter size while
mainly affects the calculation speed. The trade-off between calibration performance and computational
complexity should be noted when the technique is applied.

6. Conclusions

Self-calibration of angle position sensors is commonly used and is necessary in practical
applications to improve their accuracies when unknown input signals are used. This study proposed
the use of the MASA method as a means of calibration. The self-calibration scheme was based on the
nonlinear expression [2] and was achieved by combining the numerical analyses with iterative learning
methods. The essence of this method is to reconstruct a signal expression model that can be searched
to identify the parameters. This approach is more concerned with signal models than self-calibrating
devices and is therefore likely to be applied to self-calibration of other devices.

Simulation experiments were also performed. The peak-to-peak and the maximum errors were
reduced to 0.0026% and 0.0025% respectively, while the self-calibration for simplified model [19]
reduced the errors to 53.00% and 47.42%, respectively. The relationship between the optimization
threshold and the calibration accuracy was also analyzed, and the relationship curves and expressions
under ideal conditions were obtained. Experiments were implemented in CAPS. The peak-to-peak and
the maximum errors were reduced to 1.76% and 1.63% respectively, while the method for simplified
model [19] reduced the errors to 93.80% and 86.02%. In addition, the order of IAN and the number of
layers were also analyzed, and their effects on the calibration accuracy were determined. The optimal
order and the optimal number of layers under experimental conditions were obtained. For the
nonlinear problem discussed in this study, the key part of the method is to use the IAN architecture to
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characterize the nonlinear information. In the previous work [19], the nonlinear information required
a clear functional expression to characterize. If the expression could not be found, only the simplified
model could be processed and the nonlinear information had to be ignored.

For the proposed method in this article, the basic units and network structure in IAN need
to undergo rigorous mathematical derivation. The construction method is complicated, while the
experimental results showed that the advantages of the automatic search model for parameter
adaptation cannot be fully utilized. Future research will focus on the automatic search of the signal
expression architecture. To meet the real-time requirements, optimization of algorithmic computational
complexity and hardware implementation will also be studied.
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