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Abstract: Land use classification is a fundamental task of information extraction from remote sensing
imagery. Semantic segmentation based on deep convolutional neural networks (DCNNs) has shown
outstanding performance in this task. However, these methods are still affected by the loss of
spatial features. In this study, we proposed a new network, called the dense-coordconv network
(DCCN), to reduce the loss of spatial features and strengthen object boundaries. In this network,
the coordconv module is introduced into the improved DenseNet architecture to improve spatial
information by putting coordinate information into feature maps. The proposed DCCN achieved
an obvious performance in terms of the public ISPRS (International Society for Photogrammetry
and Remote Sensing) 2D semantic labeling benchmark dataset. Compared with the results of other
deep convolutional neural networks (U-net, SegNet, Deeplab-V3), the results of the DCCN method
improved a lot and the OA (overall accuracy) and mean F1 score reached 89.48% and 86.89%,
respectively. This indicates that the DCCN method can effectively reduce the loss of spatial features
and improve the accuracy of semantic segmentation in high resolution remote sensing imagery.

Keywords: remote sensing; semantic segmentation; DCNNs; coordconv; ISPRS; high resolution

1. Introduction

Land use classification information offers a significant indication of human activities in an urban
environment [1]. This information can provide the basic datasets for change detection [2], landscape
pattern [3], and urban heat island effects [4]. With the rapid development of remote sensing technology,
this method has become a major way to obtain land use information, and innumerable high resolution
remote sensing images are used to extract spatial information regarding urban land use. However,
improvements in spatial resolution increase the internal variability of homogenous land cover units
and decrease the statistical separability of land cover classes in the spectral space, not necessarily
achieving better classification [5]. The internal variability of the high-resolution images makes the land
use classification more challenging [6,7].
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In land use classification methods, the pixel-based method applies statistical knowledge to extract
features based on the spectral characteristics of ground objects—this method is mainly used for low
resolution remote sensing images (10–30 m) [8,9]. In contrast, high resolution remote sensing images
make the land cover image characteristics more complex and diverse. Pixel-based methods cannot
take the context and texture around the pixels into consideration, which generates much of the salt and
pepper noise, and these methods cannot obtain object-level information [10]. Because of the limitations
of pixel-based classification methods, object-based methods were proposed [11] and obtained a
better performance in terms of high-resolution image classification and object identification [12]. The
object-based method first separates the spatially and spectrally similar pixels at different scale levels as
segmented objects that can effectively identify urban land cover classes [13]. Then, the texture and
geometric features of the segmented objects are calculated as a rule set to achieve the final image
classification. The object-based method effectively avoids the classification errors caused by spectral
differences in pixel-based classification and eliminates the influence of salt and pepper noise. Therefore,
object-based modules are also adopted by commercial software systems, such as the eCognition [14],
and ENVI [15] (The Enviroment for Visualizing Images) systems. However, this method overlooks
the semantic functions or spatial configurations [16] and depends heavily on the selected land-cover
classification system and the accuracy of the land-cover classification [17], and the specific object
features used in the rule set are not applicable to various ground objects. Thus, advanced methods to
automatically extract features from high-resolution remote sensing images are still urgently in demand.

Recently, deep learning has provided an effective method to automatically learn and identify
features from large amounts of data, which is the main difference compared to the traditional machine
learning methods. With the development of deep learning theory, many deep learning architectures,
such as convolutional neural network (CNN) and recurrent neural networks (RNN [18]), have achieved
state-of-the-art performance in terms of computer vision [19], object detection [20], and natural
language processing.

Jonathan Long et al. [21] used standard convolutional layers to replace the fully connected layer in
a CNN and proposed the fully convolutional network (FCN) to promote the large-scale development
of image semantic segmentation. The FCN architecture maintains the two-dimensional structure of
the feature maps in upsampling, which is quite different from the standard CNN. Recently, as an
extension of the FCN, the deep convolutional neural network (DCNN) is rapidly being adopted for
image classification [22–25].

In general, FCNs are composed of an encoder part and a decoder part. The encoder part comprises
the stacks of “convolutional-pooling” layers, which are used as multi-scale feature extractors and aimed
at extracting abstract high-level features. The decoder part contains the upsampling and skip layer.
The upsampling is used to recover the input feature map resolution by deconvolution or interpolation
and to generate segmentation maps with the same resolution as the original image. However, the
deconvolution or interpolation operation only generates coarse segmentation maps, which lack an
accurate localization of the object boundaries and high-frequency details. Therefore, the skip layer is
used to fuse the previous input features with the output features from the upsampling. However, there
is still a loss of detailed information from the reduced feature resolution. To overcome this, tremendous
efforts have been made. Saining Xie et al. [26] developed a new algorithm called holistically nested
edge detection (HED) to resolve the challenging ambiguity problem in edge and object boundary
detection via multi-scale feature learning. Marmanis et al. [27] combined the semantic segmentation
with semantically informed edge detection to eliminate the effect of the associated loss of effective
spatial resolution washing out the high-frequency details, leading to blurry object boundaries—this
method made the boundaries more explicit and improved the overall accuracy. Gong Cheng et al. [28]
proposed discriminative CNNs and trained them by optimizing a new discriminative objective function
that imposes a metric learning regularization term on the CNN features to address the problem of
within-class diversity and between-class similarity. Wei Liu et al. [29] presented a simple technique that
introduced the global context to the FCN to enlarge the receptive field and augment the features at each
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location. This change achieved state-of-the-art performance for semantic segmentation. Furthermore,
Chen et al. [30–32] discovered that consecutive convolution and pooling operations reduced the feature
resolution and caused a loss of spatial detailed information in the downsampling. Therefore, they
used atrous convolutional layers to replace some standard convolution and pooling layers. Without
introducing extra parameters and changing the feature resolution, the atrous convolutional layer
could effectively enlarge the receptive fields, decrease the loss of spatial information, and improve
the classification accuracy. However, the consecutive atrous convolutional layers still accounted for
the missing spatial information, which is called the “gridding effect”. PanquWa et al. [33] proposed
a hybrid dilated convolution (HDC) framework by the superposition of a receptive field in various
atrous rates to counter the gridding effect. However, the HDC framework substantially increases the
computing costs at the same time. Guangsheng Chen et al. [34] used the DeepLabv3 architecture and
an added Augmented Atrous Spatial Pyramid Pool and Fully Connected (FC) Fusion Path layers to
tackle the poor classification of small objects and unclear boundaries.

In addition, to solve the coordinate transform problem, which is difficult to achieve in standard
CNNs, Liu et al. [35] proposed a significant coordconv module. Because of the lack of the input
feature coordinate information, the consecutive convolution operation will discard much of the spatial
information at multiple levels. For example, the boundary information in large-scale feature maps
will be weakened, and the tiny-scale may vanish. The coordconv module worked by giving the
convolution access to obtain its own input coordinates through the use of extra coordinate channels.
This module enabled the network to effectively learn the spatial information of different ground objects
and eliminated the loss of spatial information, especially the boundary information. The coordconv
module achieved a state-of-the-art performance in image classification, object detection, generative
modeling, and reinforcement learning.

To further reduce the loss of high-frequency details and object boundaries in high resolution
remote sensing images, inspired by coordinate convolution, we extended the coordconv module into
the FC-DenseNet and designed a novel encoder–decoder architecture called the dense-coordconv
network (DCCN) to solve the complex urban land use classification tasks by using high-resolution
remote sensing images. The study of [36] demonstrated that the DenseNet could alleviate the vanishing
gradient problem, encourage feature reuse, and effectively reduce the number of parameters; thus,
DenseNet is considered the best framework for semantic segmentation [37]. The FC-DenseNet, which
is an extension of DenseNet that works as an FCN and has the same advantages mentioned above, has
achieved an excellent performance in image semantic segmentation. Therefore, the FC-DenseNet is
used as the overall structure of our network. In addition, to analyze the effect of coordconv module
on network, the paper discusses the performance of the coordconv module located in different level
feature maps.

The remainder of this paper is arranged as follows. Section 2 mainly introduces the network
architecture and coordconv module. Section 3 presents the experimental results, and Section 4
introduces the experimental discussion. The conclusion is shown in Section 5.

2. Methods

2.1. Network Architecture

Similar to other encoder–decoder architectures, this paper also employed an encoder–decoder
architecture based on the architecture of the FC-DenseNet. The coordconv layer in the top of network
was used to obtain its own input coordinate information and determine the pixel positions in the
feature maps. In the encoder part, a series of dense blocks were applied to extract the abstract features,
and there was a transition layer between the dense blocks. In the decoder part, the low-level features
and the high-level features from the transposed layers were directly concatenated by a skip connection
to form a new dense block input. At the end of the designed network, the segmentation maps were
outputted after a 1 × 1 convolution. The complete architecture of our network is shown in Figure 1.
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As an essential architecture of the proposed network, the DenseNet has a better performance
in extracting features than other networks. Generally, the traditional convolutional networks with L
layers will produce L connections, while the DenseNet has L × (L + 1)/2 connections. For each layer,
the feature maps of all the preceding layers will be used as the inputs, and its own feature maps are
also used as the inputs of the subsequent layers. This dense connectivity has several advantages, such
as strengthening feature reuse and reducing the number of parameters, which makes the network
more easily trained. In the layers, the nonlinear transformation function of layer L is FL, which was
proposed to further improve the information flow between the layers, and the output is XL. Therefore,
the transformation of each layer can be defined as follows:

XL = FL([X0, X1, . . . , XL−1]), (1)

where XL represents the received total feature maps in layer L, and [X0, X1, . . . , XL−1] represents the
concatenation of all the preceding feature maps before layer L. The nonlinear transformation FL is often
defined as a composite function containing a batch normalization (BN) layer [38], a rectified linear unit
(ReLU) [39], and a 3 × 3 convolution layer. Moreover, to suppress the redundancy of the feature maps,
the DenseNet uses a growth rate to limit the number of feature maps at each dense block.

2.2. The Coordconv Module

The coordconv layer proposed in [35] can be considered an extension of the traditional
convolutional layer, as shown in Figure 2. The coordinate information in the feature maps is
extracted first and filled in the extra channels, and then it will be concatenated with the original
feature maps. After that, the standard convolutional operation is adopted. Generally, the channels
are prepared for i coordinates and j coordinates, and there is a relevant linear transform of both i
and j to normalize them in the range [−1, 1]. The two coordinates are sufficient to record the spatial
information in the input feature maps. If necessary, the other channel, which is the r coordinate, can
also be introduced to deal with specific cases. The r coordinate can be calculated as follows:

r =
√
(i− h/2)2 + ( j−w/2)2, (2)

where h and w are the sizes of the feature maps. The i and j represent the basic coordinates.
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Figure 2. Comparison of the convolutional layer and coordconv layer. (a) A standard convolutional
layer, where the input feature maps with shape h × w × c to new feature maps with shape h1 × w1 × c1.
(b) A coordconv layer has the same input shape as the convolutional layer but first concatenates with
extra channels from the incoming feature maps. Then, a standard convolutional layer is used.

Compared with the standard convolutional layer, the coordconv layer can be considered a spatial
attention unit. The coordconv layer stores the horizontal and vertical pixel information of the object
boundary with extra channels as the input. Therefore, the proposed network could output the feature
maps with rich information after consecutive convolutional operations. This coordconv module
is effective in highlighting the detailed information and decreasing the loss of features, as well as
benefiting the pixel-level segmentation, which is quite different from the standard convolutional layer.
Figure 3 shows the characteristics of both the coordconv layer and convolutional layer. As seen from
Figure 3, the coordconv layer was feasible to strengthen the boundary information and decrease the
internal variability in each class.
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Figure 3. Comparison results between the convolutional and coordconv layers. The up route is a
standard convolution including a 3 × 3 convolutional layer and a dense block. The down route is the
coordconv layer including a coordinate convolution, a 3 × 3 convolutional layer and a dense block. The
dense output maps are all 128 × 128.
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2.3. Implementation Details of the Networks

In this experiment, the DCCN consisted of ten dense blocks, four transition layers, and five
transposed layers in the encoder and decoder parts. The detailed architecture is shown in Figure 4. In
the top of the network, we designed a coordconv layer to obtain the spatial information in feature
maps. Before applying the first dense block, a 7 × 7 convolutional layer with stride = 2 was used to
extract the features as the initial input. In the encoder part, the transition layer in the adjacent dense
blocks mainly contained a 1 × 1 convolutional layer, a dropout layer, and a 2 × 2 average pooling layer
with stride = 2. In the decoder part, there was a 3 × 3 transposed convolutional layer, with stride =

2 and a skip connection layer in each dense block (except the last block). The skip connection layer
included a 3 × 3 convolutional layer. At the end of the network, a 1 × 1 convolutional layer with a
ReLU activation function was used to output the final feature maps.
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3. Experiments

3.1. Dataset

In this research, we trained the proposed model on two images datasets from the ISPRS 2D
semantic labeling contest, which were open benchmark datasets that are available online. The two
datasets were both comprised of very high-resolution images from two cities in Germany (Potsdam
and Vaihingen). These datasets were provided to perform the semantic labeling, and they are generally
classified into six common land cover classes: buildings, impervious surfaces, low vegetation, trees,
cars, and clutter or background.

3.1.1. ISPRS Potsdam Dataset

The Potsdam dataset in total contained 38 high-resolution true orthophoto (TOP) patches, which
were extracted from a larger true orthophoto (TOP) mosaic. Each patch contained approximately
6000 × 6000 pixels at a spatial resolution of 5 cm. However, only 24 patches were labeled with the
pixel-level ground truth, and the remaining 14 patches were unreleased. These labeled images consisted
of infrared-red-green-blue multispectral images, however, we only used the infrared-red-green (IRRG)
channels of the multispectral images as samples. Furthermore, to reduce the interference from clutter
or background and train the model more effectively, we selected five labeled images that did not
include a large amount of typical background, such as water, as the validation set, and the other labeled
images were used as training samples.
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3.1.2. ISPRS Vaihingen Dataset

The Vaihingen dataset contained 33 high resolution patches extracted from a larger true orthophoto
(TOP) mosaic. Each patch contained approximately 2000 × 2000 pixels at a spatial resolution of 9 cm.
However, only 16 patches had a public ground truth. These labeled images only consisted of the
infrared-red-green (IRRG) images. In our research, we randomly selected three patches as the validation
set, and the others were used as training samples.

3.2. Experimental Setup

3.2.1. Implementation Details

Considering the number of training samples and the diversity of the samples, we split the labeled
images with 6000 × 6000 pixels into three scales: 256 × 256, 320 × 320, and 448 × 448. Therefore, we
had a total of 21,527 subset images for training our model. Due to the limited memory of the GPU, we
split the size of testing data into 3000 × 3000 pixels.

For more suitable network training, we set an automatic learning rate controlled by the training
epochs. There was a total of 200 epochs in the training process, and the batch size was 10. The initial
learning rate was set at 0.001. When the number of epochs reached 20, the learning rate was 0.0001.
Similarly, when the number of epochs reached 100 and 150, the learning rate became 0.00005 and
0.00001, respectively. The computational cost of training the model was approximately 90 h, and the
average testing time of one image (3000 × 3000) was approximately 2 s. In addition, the Adam is an
adaptive optimizer with high computational efficiency and low memory requirement, so we adopted
the Adam algorithm as the optimizer to optimize the network and update all the parameters.

3.2.2. Evaluation Metrics

According to the benchmark rules, the overall accuracy (OA) and F1 score are always applied to
evaluate the quantitative performance. The OA is calculated as follows:

OA =
k∑

i=0

pi

N
, (3)

where k represents the classes, Pi is the total number of correct pixels in class i, and N represents the
number of image pixels. The F1 score can be calculated through the precision and recall metrics, and it
is a powerful evaluation metric for the harmonic mean of the precision and recall metrics. The F1 score
can be calculated by:

F1 = 2×
precision× recall
precision + recall

, (4)

where
recall =

TP
TP + FN

, precision =
TP

TP + FP
. (5)

The recall represents the proportion of correct pixels in the ground truth, and the precision is
the proportion of correct pixels in the prediction result. TP, FP, and FN represent the true positives,
false positives, and false negatives, respectively. These values can be calculated using the pixel-based
confusion matrix per patch.

In addition, another metric, IoU,(the intersection over union) was adopted to evaluate the shape
and area of all classes. The IoU is the intersection of the prediction and ground truth regions over their
union for a specific class. The mean IoU can be calculated by averaging the IoU of all classes:

IoU =
TP

FN + TP + FP
. (6)

The numerator and denominator all represent the areas of detected objects.
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3.3. Experimental Results

All the prediction results for the five datasets are displayed in next section (DCCN). We can see
that each image has a better result and that the six land cover classes are classified completely and
are very close to the ground truth images. To quantitatively demonstrate the excellent performance,
the average OA and mean F1 score of five images is listed in Table 1. For all the validation images,
the overall accuracy (OA) and mean F1 score are 89.48% and 86.89%, respectively. For each class, the
accuracies of classifying buildings, impervious surfaces, and cars all exceed 90%, and the accuracies of
the buildings are even up to 95.59%. Although the accuracies of classifying trees and low vegetation
are lower than those of the other classes, each image still achieves a remarkable accuracy. In a word,
all the results show that the proposed DCCN can perform well in semantic segmentation for very
high-resolution remote sensing images.

Table 1. The average overall accuracy (OA) and mean F1 score on all the validation datasets and
individual datasets.

Validation Datasets Buildings Imp Surf Tree Low_Veg Car Overall Accuracy Mean F1 Score

All images 95.59% 91.27% 79.04% 78.26% 90.27% 89.48% 86.89%
image1 94.15% 92.01% 79.50% 85.95% 91.57% 89.21% 88.64%
image2 95.64% 90.03% 84.15% 80.06% 89.70% 88.98% 87.92%
image3 95.05% 89.21% 76.68% 73.17% 88.55% 88.79% 84.53%
image4 97.01% 92.42% 82.72% 78.04% 92.57% 91.40% 88.55%
image5 96.10% 92.68% 73.96% 74.07% 88.94% 89.00% 85.15%

To evaluate the shape and area of detected objects effectively, the IoU evaluation results are given
in Table 2. The accuracy of the IoU results is lower than the pixel-based results. This indicates that there
is some difference in various metrics and the IoU matric may be more appropriate for the assessment
on the shape and area of detected objects.

Table 2. The results of IoU and Mean IoU on all the validation datasets.

IoU (%)
Mean IoU (%)

Buildings Imp Surf Tree Low_Veg Car

all
images 91.57 83.98 66.00 64.52 82.30 77.67

image1 88.95 85.21 65.98 75.37 84.44 79.99
image2 91.65 81.87 72.63 66.75 81.33 78.85
image3 90.57 80.53 62.18 57.69 79.46 74.09
image4 94.18 85.91 70.52 63.99 86.17 80.15
image5 92.50 86.36 58.68 58.82 80.08 75.29

In addition, we also evaluated the results of the prediction for five validation datasets measured
in terms of confusion matrix. As we can see from the Figure 5, the confusion matrix of each image has
a better performance. The Prod Accuracy (PA) and User Accuracy (UA) have a higher results and the
kappa coefficient of each image exceeds 80%. However, the low vegetation class in the PA of each
confusion matrix is worse than other classes. This is quite consistent with the case in Table 1.
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4. Evaluation and Discussion

4.1. The Advancement of the DCCN

To prove the advancement of the proposed DCCN in terms of network architecture and capability,
we compared the DCCN with several typical semantic segmentation methods, including the U-net,
Deeplab-v3, and SegNet methods, with two datasets. These methods have played a crucial role in the
development of semantic segmentation. Many deep convolutional neural networks for classification
are extensions of these typical methods, such as those of [40,41]. We implemented and tested these
methods on the same experimental dataset.

4.1.1. Testing the Potsdam Dataset

All the testing results on the Potsdam dataset are shown in Figure 6. Due to the coordinate
convolution module and the efficient feature extraction of multilevel features, the segmentation results
of the proposed DCCN are highly complete and precise, while the U-net, Deeplab-V3, and SegNet
methods produced serious misclassifications and missing pixels, especially in terms of the impervious
surfaces and buildings (see the pink boxes in Figure 6). This suggests that the coordconv mechanism
and efficient dense block architecture are significant in improving accuracy. Furthermore, to quantify
the results among the proposed DCCN and the U-net, Deeplab-V3, and SegNet methods, the overall
accuracy (OA) and mean F1 score of the five classes are listed in Table 3. We can see that the DCCN
obviously outperforms the other mainstream models in terms of both the OA and mean F1 score. The
OA and mean F1 score of the DCCN are 1.36% and 1.16% higher, respectively, than those of the SegNet
model and far exceed those of the Deeplab-V3 and U-net methods. However, in terms of the individual
classes, the accuracy in the low vegetation class for the DCCN is 78.26%, which is 1.51% lower than
that of SegNet. Although there are a few shortcomings in a specific class, the proposed DCCN still
achieves a better performance for the classification of very high-resolution images. Similarly, the IoU
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results between the DCCN and mainstream models are displayed in Table 4. The IoU result of DCCN
is obviously better than other three networks. It indicates that the proposed DCCN is more effective
for assessing the shape and area of detected objects. Although the IoU metrics are different from the
pixel-based system, the DCCN results of these metrics all achieve high scores. This shows that the
proposed DCCN is a successful method.
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Figure 6. The prediction results of U-net, Deeplab-v3, SegNet and the proposed dense-coordconv
network (DCCN) on the validation images.

Table 3. Comparisons between the proposed DCCN and several typical models.

Method Building Imp Surf Tree Low Veg Car Overall Accuracy Mean F1 Score

U-net 62.10% 66.65% 36.30% 57.66% 43.95% 61.28% 53.33%
Deeplab-v3 89.51% 85.83% 72.93% 74.34% 80.54% 83.85% 80.63%

SegNet 93.04% 89.99% 78.98% 79.77% 86.88% 88.12% 85.73%

DCCN 95.59% 91.27% 79.04% 78.26% 90.27% 89.48% 86.89%
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Table 4. IoU results between the proposed DCCN and several typical models.

IoU (%)
Mean IoU (%)

Buildings Imp Surf Tree Low veg Car

Unet 45.17 56.46 22.43 41.08 28.19 38.67
DeeplabV3 81.11 75.24 57.58 59.57 67.47 68.19

SegNet 87.12 81.83 65.59 66.69 76.82 75.61

DCCN 91.57 83.98 66.00 64.52 82.30 77.67

4.1.2. Testing the Vaihingen Dataset

Our proposed model achieved a superior performance on the previous dataset. To prove the
advancement of the proposed DCCN further, we transferred the learning of these networks to another
ISPRS benchmark (Vaihingen) dataset, described in detail in Section 3, and the testing results of all
networks are displayed in Figure 7. In these testing images, the results of the DCCN show a better
performance in terms of the completeness of an object boundary than any of the other methods, as
seen in Figure 7e. However, these prediction results are still seriously affected by the limited number
of labeled samples (approximately 1300 256 × 256 samples in total). Therefore, there are a few false
classifications and missing pixels in the different prediction results. Additionally, the overall accuracy
and F1 score of all the methods are listed in Table 5 and the IoU results are shown in Table 6. In spite
of the limited number of samples, the DCCN still achieved a higher accuracy than the other typical
methods, in terms of both the OA and F1 score and IoU in each class. This shows that the proposed
DCCN is a successful and powerful method for urban land use classification with a small sample size.

Sensors 2019, 19, x FOR PEER REVIEW 11 of 16 

 

4.1.2. Testing the Vaihingen Dataset 

Our proposed model achieved a superior performance on the previous dataset. To prove the 
advancement of the proposed DCCN further, we transferred the learning of these networks to 
another ISPRS benchmark (Vaihingen) dataset, described in detail in Section 3, and the testing results 
of all networks are displayed in Figure 7. In these testing images, the results of the DCCN show a 
better performance in terms of the completeness of an object boundary than any of the other methods, 
as seen in Figure 7e. However, these prediction results are still seriously affected by the limited 
number of labeled samples (approximately 1300 256 × 256 samples in total). Therefore, there are a few 
false classifications and missing pixels in the different prediction results. Additionally, the overall 
accuracy and F1 score of all the methods are listed in Table 5 and the IoU results are shown in Table 6. 
In spite of the limited number of samples, the DCCN still achieved a higher accuracy than the other 
typical methods, in terms of both the OA and F1 score and IoU in each class. This shows that the 
proposed DCCN is a successful and powerful method for urban land use classification with a small 
sample size. 

 
Figure 7. The prediction results of all methods with the Vaihingen dataset. 

Table 5. Quantitative comparisons of different methods with the Vaihingen dataset. 

Method Building Imp Surf Tree Low Veg Car Overall Accuracy Mean F1 Score 
U-net 79.95% 79.05% 70.50% 68.10% 15.72% 75.60% 62.66% 

Deeplab-v3 83.74% 66.18% 78.78% 64.52% 36.31% 73.86% 65.91% 
SegNet 85.97% 80.21% 79.24% 70.36% 26.72% 79.87% 68.50% 
DCCN 92.07% 86.43% 82.54% 79.36% 66.40% 85.31% 81.36% 

 

 

Figure 7. The prediction results of all methods with the Vaihingen dataset.



Sensors 2019, 19, 2792 12 of 16

Table 5. Quantitative comparisons of different methods with the Vaihingen dataset.

Method Building Imp Surf Tree Low Veg Car Overall
Accuracy

Mean F1
Score

U-net 79.95% 79.05% 70.50% 68.10% 15.72% 75.60% 62.66%
Deeplab-v3 83.74% 66.18% 78.78% 64.52% 36.31% 73.86% 65.91%

SegNet 85.97% 80.21% 79.24% 70.36% 26.72% 79.87% 68.50%
DCCN 92.07% 86.43% 82.54% 79.36% 66.40% 85.31% 81.36%

Table 6. IoU results of different methods with the Vaihingen dataset.

IoU (%)
Mean IoU (%)

Buildings Imp Surf Tree Low veg Car

Unet 66.61 65.39 54.94 52.60 14.78 50.86
DeeplabV3 72.64 51.32 65.13 48.99 22.27 52.07

SegNet 74.47 68.95 76.23 40.84 14.61 55.02

DCCN 85.39 76.37 70.80 65.87 50.29 69.74

4.2. Effect of the Coordconv Module

To properly highlight the advantage of adding the coordconv layer to the network, we used the
results of the DCCN without the coordconv layer as the baseline, which is equivalent to the improved
FC-DenseNet (see Figure 8a). The proposed model with one coordconv layer (DCCN) outperformed
the baseline model with improvements of 0.27% and 0.12% in the OA and mean F1 score, respectively,
as shown in Table 7. This showed that the coordconv module had an effective positive impact on
feature extraction. Therefore, we attempted to add two coordconv layers to the network, which were
located at the top and bottom of the network, called D2CCN (see in Figure 8c). However, the results
of the D2CCN were worse than the results of both the baseline model and the DCCN. This indicates
that the coordconv layer was useful but may result in negative effects if improperly implemented.
Moreover, we also evaluated the kappa coefficient results of the baseline, D2CCN, and DCCN, given
in Table 8. Although the kappa coefficients of image 1 and image 2 are lower than the baseline and
D2CCN, the Mean kappa of DCCN is the best and reaches 84.80%.
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Table 7. The quantitative results of the baseline, D2CCN, and DCCN models with the validation datasets.

Method Building Imp Surf Tree Low Veg Car Overall
Accuracy

Mean F1
Score

baseline 95.51% 91.10% 79.03% 77.94% 90.27% 89.21% 86.77%
D2CCN 94.60% 90.66% 79.53% 77.19% 90.01% 88.81% 86.40%
DCCN 95.59% 91.27% 79.04% 78.26% 90.27% 89.48% 86.89%
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Table 8. The kappa coefficient results of the baseline, D2CCN, and DCCN.

Method Image 1 Image 2 Image 3 Image 4 Image 5 Mean Kappa

baseline 84.52% 84.80% 82.25% 87.08% 83.57% 84.44%
D2CCN 85.32% 83.63% 80.39% 87.17% 82.31% 83.79%
DCCN 85.21% 84.72% 82.73% 87.32% 84.00% 84.80%

4.3. Problem Analysis

Although the proposed DCCN has achieved a satisfying result on land use classification, it should
be noted that the accuracy for high resolution images is still affected by some factors, as demonstrated
in Figure 9.
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Figure 9. Some factors caused misclassification. (a–c) A special testing sample that lawn on building
roof is classified as low vegetation class shown in (b), while the ground truth image (c) labels it as
building. (d–f) The building and trees are incorrectly labeled as the background and low vegetation
class shown in (f), while the (e) achieves a correct prediction result.

Figure 9a–c shows that the vegetation covering on a building’s roof is classified into vegetation
class rather than the labeled building class. We can see that the appearance of the vegetation is the same
as the building’s roof in Figure 9a. Therefore, the proposed method easily leads to misclassification
due to not considering the surrounding context. This type of misclassification causes a negative effect
on improving accuracy. Another problem is improperly labeled ground truth images, as shown in
Figure 9d–f. A ground truth image is a benchmark for evaluating models. However, many ground
truth images are obviously incorrectly labeled as ground objects. The building’s roof and some trees
are incorrectly labeled in the background and vegetation classes in the ground truth dataset (Figure 9f),
while the prediction result normally performs well in prediction (Figure 9e). This difference between
the original image and the ground truth image truly decreases the overall accuracy.
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Many improved deep convolutional neural networks have provided some methods that can be
used as effective techniques to deal with these problems and to improve accuracy. Recently, much
research on attention mechanisms has focused on segmentation and has achieved state-of-the-art
performance [42–44]. The attention mechanism mainly consists of the local attention module and
global attention module. Yongyang Xu et al. [45] designed a local attention unit to fuse different
scale feature maps and designed a global attention unit to eliminate the effects on shadow and object
covering, which effectively improved the accuracy of road extraction. Moreover, a useful method
is to use the entropy to weight the uncertainty of pixels and guide the low-level feature maps, and
this method was used by Hongzhen Wang et al. [46] for land use classification. Most importantly,
preprocessing and postprocessing of the datasets are also essential to improve accuracy. The cases of
buildings being often misclassified as roads may diminish if we add a digital surface model (DSM) to
enhance the building features. These methods make a contribution to improving the performance, and
we will attempt to add them into our future work.

5. Conclusions

In this work, a novel deep convolutional neural network, DCCN, was proposed for semantic
segmentation in high-resolution remote sensing images. The major contributions of our method
were the proposed encoder–decoder architecture and the introduction of dense blocks as the feature
extractors. At the same time, we also added the coordinate convolution module in the network, which
obviously improved the OA and F1 score (89.48% and 86.89% in Potsdam, 85.31% and 81.36% in
Vaihingen). The proposed DCCN aimed to make full use of multilevel features and eliminate the loss
of spatial information. Experiments were carried out on the ISPRS dataset. Six land cover classes were
extracted successfully with the proposed DCCN, and the results demonstrated the effectiveness and
feasibility of the DCCN in improving the performance for land use classification. The proposed DCCN
was compared with other typical networks for semantic segmentation, such as the U-net, SegNet, and
Deeplab-V3 models. The experimental results showed that the proposed model performed better
than other networks. The OA and mean F1 score of proposed model are 1.36% and 1.16% higher than
SegNet method in Potsdam, and far exceed the Deeplab-V3 and the U-net. However, the performance
was still affected by complex land covers. In fact, our proposed model has the potential to perform
better if some widely used methods, such as the attention mechanism or data preprocessing and
postprocessing, are considered.
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