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Abstract: The increasingly aging society in developed countries has raised attention to the role of
technology in seniors’ lives, namely concerning isolation-related issues. Independent seniors that
live alone frequently neglect meals, hydration and proper medication-taking behavior. This work
aims at eating and drinking recognition in free-living conditions for triggering smart reminders
to autonomously living seniors, keeping system design considerations, namely usability and
senior-acceptance criteria, in the loop. To that end, we conceived a new dataset featuring accelerometer
and gyroscope wrist data to conduct the experiments. We assessed the performance of a single
multi-class classification model when compared against several binary classification models, one for
each activity of interest (eating vs. non-eating; drinking vs. non-drinking). Binary classification
models performed consistently better for all tested classifiers (k-NN, Naive Bayes, Decision
Tree, Multilayer Perceptron, Random Forests, HMM). This evidence supported the proposal of a
semi-hierarchical activity recognition algorithm that enabled the implementation of two distinct data
stream segmentation techniques, the customization of the classification models of each activity of
interest and the establishment of a set of restrictions to apply on top of the classification output, based
on daily evidence. An F1-score of 97% was finally attained for the simultaneous recognition of eating
and drinking in an all-day acquisition from one young user, and 93% in a test set with 31 h of data
from 5 different unseen users, 2 of which were seniors. These results were deemed very promising
towards solving the problem of food and fluids intake monitoring with practical systems which shall
maximize user-acceptance.

Keywords: classification; data segmentation; drinking recognition; eating recognition; elderly care;
human activity recognition

1. Introduction

Society’s aging brings many problems. The growth of the average life expectancy is due to
the evolution of health systems, the pharmacological advances and the availability of biocompatible
devices, associated with overall improved life conditions. However, costs with health remain on
the table, with ethical and political considerations always in the loop. The seniors scenario is also
worrisome due to isolation-related issues. More often than not, seniors do not want to abandon their
homes or lose their independence and hiring assistance from a professional can be very expensive. For
that reason, the older adults frequently neglect essential daily activities, like eating properly, hydrating
or taking care of their personal hygiene [1]. The spread of smartphones has opened new windows and
cleared room for improvements even in the health sector. Wearable devices, like smartwatches, are
also recognized for their high potential and utility to monitor activities (e.g., physical exercise). This
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technological context has been providing a basis for the development of effective and low-cost health
solutions, which are currently in high demand.

The relation food–water–medication is very worrisome in the older adults. There are, in fact,
several medicines associated to the current status of the digestive system (must be taken with empty
stomach, during or after a meal). By forgetting or deliberately skipping a meal, one will probably
forget medication or improperly ensure the treatment. Therefore, in this context, it is very interesting to
be able to detect when a user performs a meal or drinks a glass of water, since it would enable proper
monitoring by the care-providers and can even be the basis for the issuing of automatic reminders in
the most opportune situations along the day. This relies on the ability to correctly identify eating and
drinking moments in real-time and real-world conditions. Moreover, establishing seniors as the target
population of a technological solution means that simplicity and unobtrusiveness of the system are
important prerequisites.

This work aims to address this need by proposing a new user-independent algorithm for
simultaneous eating and drinking recognition in real-time and free-living conditions. The system
should be unobtrusive and practical, so it does not disturb seniors’ activities and is easily accepted by
them. Therefore, it was based on wrist sensorization, following the considerations of several works on
the acceptance of wrist-worn devices by older adults for activity monitoring purposes [2–4]. Moreover,
features of low computational cost [5] and/or which have been associated with appropriate reported
results in Human Activity Recognition (HAR) works, namely those which recognize the activities of
interest, were preferred and implemented, aiming the feasibility and efficiency of an eventual future
smartphone application implementing the proposed algorithm. Validation took place following a
two-stage approach which assessed its potential for all-day utilization along with its user-independent
nature, achieving F1-scores of 97% and 93%, respectively.

Several studies were surveyed in the scope of this study, either for comparison of
approaches [6–10] or to explore the proposed state-of-the-art techniques framed within our work’s
constraints and objectives [5,7,11–13]. Among the main contributions of this work, we can highlight
the following:

• Introduction of a new dataset to assist the creation of eating and drinking recognition algorithms,
focused on capturing the diversity of wrist/hand movements inherent to free-living conditions
utilization;

• Assessment of the impact of eating and drinking simultaneous recognition through a
semi-hierarchical approach, based on two binary classifiers rather than a single multi-class
classifier;

• Assessment of the impact of adding several eating and drinking-related restrictions in a
post-processing layer, acting on top of the classification output;

• Proposal of a new application for the algorithm of dynamic segmentation of data streams proposed
by [11], and a variation of that same algorithm which improved drinking recognition sensitivity
when compared to the standard approach of that work.

This document is divided into six main sections. First, an introduction to the context, problem and
motivation is presented, followed by a review of what was already accomplished towards eating and
drinking recognition. Section 3 clarifies the methods behind the proposed algorithm, and is followed
by the presentation of the results of the experiments. A thorough discussion of results is promoted in
Section 5, and the manuscript is closed by a final section drawing the main conclusions and pointing
out future work.

2. Background

Human Activity Recognition (HAR) is a recent and very broad area. In particular, the recognition
of Activities of Daily Living (ADL) has been extensively studied, using different data sources
(inertial, image, RFID) and techniques. However, for application in free-living, monitoring systems
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must be overall appealing, so that users adhere to them. Inertial data seems to be associated to fewer
privacy concerns than the acquisition and processing of image data, even though computer vision
techniques have been popular for ADL recognition [14].

The related work overview of this section has, thus, especial focus in inertial data-based
approaches, following several techniques of time series analysis, further discussed and framed within
the purpose of this work.

2.1. Distinguishing Eating and Drinking Activities from other ADL

There are HAR systems that specifically focus on ADL recognition. While many of these works
are confined to the study of ambulatory activities, it is possible to find a few that recognize eating.
Table 1 summarizes some of these works.

Table 1. Supervised Human Activity Recognition (HAR) works that recognize the eating activity
among other Activities of Daily Living (ADL).

Work Summary of Proceedings

[15] Recognized activities Walking, walking carrying items, sitting & relaxing, working on computer, standing still, eating
or drinking, watching TV, reading, running, bicycling, stretching, strength-training, scrubbing,
vacuuming, folding laundry, lying down & relaxing, brushing teeth, climbing stairs, riding elevator
and riding escalator

Sensors Accelerometers
Features Mean, energy, frequency-domain entropy, and correlation
Classifiers Decision tree C4.5
Eating recognition metrics Accuracy: 89%

[16] Recognized activities Sitting, sit-to-stand, stand-to-sit, standing, walking, typing on keyboard, using the mouse, flipping
a page, cooking, eating

Sensors Accelerometers and location tracker
Features Mean and variance of the 3D acceleration
Classifiers Dynamic Bayesian Network
Eating recognition metrics Accuracy: 80%

[17] Recognized activities Brushing teeth, dressing/undressing, eating, sweeping, sleeping, ironing, walking, washing dishes,
watching TV

Sensors Accelerometer, thermometer and altimeter
Features Mean, minimum, maximum, standard deviation, variance, range, root-mean-square, correlation,

difference, main axis, spectral energy, spectral entropy, key coefficient
Classifiers Support Vector Machines
Eating recognition metrics Accuracy: 93%

[12] Recognized activities Standing, jogging, sitting, biking, writing, walking, walking upstairs, walking downstairs, drinking
coffee, talking, smoking, eating

Sensors Accelerometer, gyroscope and linear acceleration sensor
Features Mean, standard deviation, minimum, maximum, semi-quantile, median, sum of the first ten FFT

coefficients
Classifiers Naive Bayes, k-Nearest Neighbors, Decision Tree
Eating recognition metrics F1-score: up to 87%

By aiming to recognize complex activities (such as the activities of interest), which not all HAR
works focus on, the works of Table 1 faced particular challenges and drawn interesting conclusions.
Shoaib et al. studied the influence of increasingly larger windows (2 to 30 s) and concluded that a
larger window size is associated with better performance in recognizing complex activities [12]. As it
is not possible to increase the window size indefinitely, the authors recommend the implementation of
an hierarchical approach (on top of the classification output) in case of activities that inherently include
pauses among gestures or other unpredictable movements, as eating. Hierarchical activity recognition
algorithms were also explored in [1], allied to reduced computational cost. As far as we know, the work
of Shoiab et al. is also the only work that simultaneously recognizes both eating and drinking [12]
(the authors in [15] also recognize both activities, but do not distinguish one from the other). It is
also interesting to acknowledge the work of Chernbumroong et al. for focusing in the same target
population as the present work, older adults [17], and that of Zhu, which distinguishes 10 high-level
daily activities simply resorting to 2 features and a Dynamic Bayesian Network [16].

Very few works seem to distinguish the drinking activity from other ADL. Notwithstanding,
the work of [12] reports up to 91% F-measure in recognizing drinking. In [18], the authors also
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distinguish eating and drinking from smoking, writing, typing and brushing the teeth in an experiment
to assess their algorithm performance in distinguishing similar activities. Even though it was a small
experiment, with only one test subject, an overall accuracy of roughly 98% was attained.

This context may be an evidence of the challenge of optimizing the user-acceptance/performance
trade-off when developing solutions for simultaneous eating and drinking recognition and distinction.
This is a consequence of several technical challenges. First, there is the problem of handling class
unbalance, since, in free-living, both activities are sporadic and rare, and drinking, in particular,
is typically of very short duration. Both activities also involve handling tools (e.g., cutlery, cups)
and the hand-to-mouth gesture, movements which can be monitored with hand/wrist sensorization
(typically easily accepted by seniors). Collecting wrist data to make such predictions is, thus, both
adequate and challenging, due to the possibility of confusion of the activities of interest through
the sole use of gesture spotting approaches. As such, these activities are frequently gathered as a whole
in a single “eat/drink” class, which would not suit our purpose within this work. This evidences
the particular challenges of addressing eating and drinking identification under the constraints of
our unobtrusive system design, with additional requirements of near real-time response, free-living
conditions, and user-independence, with appropriate performance.

2.2. Eating Recognition

The surveyed works confirm the assumption that inertial data would be an appropriate approach
in recognizing the eating activity. Nevertheless, Thomaz has proposed several ways of detecting eating
moments, taking advantage of different types of sensor data to do so [19]. One of the approaches uses
first-person point of view photographs and computer vision techniques allied with Convolutional
Neural Networks (CNN) classification. Even though the main focus of the work was eating detection,
it recognized 19 ADL from one individual over a period of 6 months. It was possible to achieve
a total accuracy for all 19 activities, and the eating activity itself, of roughly 83%. The author also
conducted an experiment with audio signals, which resulted in eating activities being identified with
90% precision and 76% recall.

Several works focused in gesture detection to predict eating periods [6,13,20–22], proposing
segmentation methods of said gestures in the continuous data stream and their classification. However,
it is important to acknowledge the heavy and time-consuming labeling job, especially for large
datasets, as the aforementioned works remarkably present. Moreover, the subjectivity of this process
is very worrisome, as different people might not agree in the beginning and ending moments of
an activity and/or gesture. Gesture spotting approaches often resort to classifiers that instigate
sequential dependency, since gestures are frequently performed sequentially. This is why Hidden
Markov Models (HMM) are one of the most employed classification methods, namely when dealing
with continuous data streams from motion sensors. In [20], the authors discriminated eating an
drinking gestures from other movements with an accuracy of 95% on isolated gesture segments and
87% with online streaming data. Later on, a study of recognition of swallowing, chewing and arm
movements (e.g., hand-to-mouth) food intake events was performed in a multi-modal approach with
resource to 7 sensors (inertial, EMG and audio) [21]. Some works proposed an explicit segmentation
as a preprocessing step to improve the spotting task [23,24], instead of relying on HMMs intrinsic
segmentation capabilities. Believing in the importance of that step, a two-staged spotting approach was
proposed, firstly identifying potential candidate sections in the data stream and only then proceeding to
classification with HMMs in order to remove false positives (non-relevant gestures) [22]. In this work, it
was also presented a case study that aimed to distinguish between eating with cutlery, drinking, eating
with spoon and eating with hands, with an overall recall and precision of 79% and 73%, respectively.
Ramos-Garcia et al. also tracked wrist motion with inertial sensors [13]. Following the work of [7],
where they performed eating detection continuously throughout an entire day with simple, while
effective, algorithms, hierarchical HMMs that take advantage of the gesture-to-gesture sequential
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dependency were conceived. Their method improved the recognition of eating gestures, achieving
finally an overall accuracy of 97%.

The aforementioned works process data acquired in controlled environments rather than
free-living conditions. On the contrary, Table 2 summarizes some eating recognition works that
validated their algorithms with datasets acquired in free-living conditions. These works aim, however,
especially dietary monitoring and food journaling rather than the issuing reminders of any kind,
which appears to be a novel intention. Dong et al. highlighted that, in the course of a typical day,
the ratio between eating and performing other activities is 1:20 [7]. Therefore, the authors assessed
the performance of their method by computing weighted accuracy, balancing true positive and
negative predictions’ rate. In the same work, the group verifies that an eating moment is preceded and
succeeded by a peak of the energy of the accelerometer’s signal, due to the fact that eating corresponds
to a period of essentially small movements which present themselves as a “valley” in the energy signal.
This approach, however, lacks real-time response. Thomaz introduced an eating moment estimation
approach based in detecting food intake gestures [6], but HMM were not employed. It was possible
to recognize eating moments with F1-scores of 76%, for data acquired by 7 participants during 1 day,
and 71% for 1 participant over 31 days. Best results of classification of eating gestures was achieved
with the Random Forest classifier and eating moments were estimated using the DBSCAN clustering
algorithm. The same algorithm was used in [19] with inertial data acquired from Google Glass, and an
F1-score of 72% was obtained. In a final experiment, the author used inertial data from both wrists.
The results of this experiment were worse than the previous, using the same algorithm. The works
reported in [8,9] appear to present the best results. Nevertheless, their systems are more obtrusive,
requiring sensors in several locations, while [7] and [6] only use data from one wrist. Their methods
also rely in the extraction of a high number of features, some of which from the frequency domain,
increasing computational cost.

Table 2. Summary of eating detection and recognition works, validated in free-living conditions.

Sensor Type No.
Sensors

Features Classifier Performance Metrics

[7] Inertial 1 Manipulation, linear acceleration, amount of wrist
roll motion, regularity of wrist roll motion

Naive
Bayes

Accuracy (weighted): 81%

[8] Multimodal 2 MAV, RMS, maximum, median, entropy, zero
crossings, no. peaks, average range, wavelength,
no. slope sign changes, energy of the frequency
spectrum, energy spectrum, entropy spectrum,
fractal dimension, peak frequency, standard
deviation, and other features derived from
the aforementioned

ANN Accuracy: 90%

[6] Inertial 1 Mean, Variance, Skewness, Kurtosis, RMS Random
Forest

F1-scores: 71–76%

[9] Inertial 2 RMS, variance, entropy, peak power, power
spectral density, zero crossing, variance of
zero crossing, peak frequency, number of
auto-correlation peaks, prominent peaks, weak
peaks, maximum auto-correlation value, first peak

Random
Forest

Accuracy: 93%; F1-score:
80%

2.3. Drinking Recognition

Drinking recognition is also an interesting task. In fact, in [10], the authors go even further and
aim to determine fluid intake. They achieved 84% recall and 94% precision in recognizing drinking
motion from a continuous data stream, with only one inertial wrist sensor. Then, container types and
fluid level were estimated. Even though all experiments took place in a controlled environment, a
suggestive 75% and 72% recognition rate of container type and fluid level, respectively, was achieved
with a C4.5 Decision Tree classifier. The same authors had already tried to distinguish drinking from
eating movements [20]. However, this work focused solely in distinguishing gestures, i.e., it did not
aim to recognize drinking (and eating) among other activities performed in the course of a day.
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Recently, a new approach for the problem of drinking recognition with inertial sensors was
proposed in [25]. The authors detected the hand-to-mouth movement before the a sipping event with
a F1-score of 97% for their offline validation and 85% for the real-time validation.

3. Methodology

This section describes the experiments conducted in the scope of this work. Their implementation
was performed in Python language, using some well-know toolboxes, namely scikit-learn [26].

3.1. Dataset Acquisition

The general purpose of eating and drinking recognition in daily living conditions required a
dataset that featured data collected in free-living conditions, with at least three well-represented
classes—eat, drink and other, which includes all non-eating and drinking activities, from a reasonable
number of volunteers. Due to the complexity of the activities, it was necessary to guarantee that
the diversity of movements involved in performing both activities of interest was captured. Since no
publicly available dataset was found to address this set of needs, a data acquisition step took place.

Wrist inertial data was acquired using a wearable sensing device, called Pandlets, and a
smartphone. Pandlets were developed by Fraunhofer Portugal AICOS, designed for ultra-low
power consumption, to simplify integration with mobile platforms and to respond to developers’
needs [27]. These are composed by the Pandlets CORE, which features inertial and environmental
sensors. The Pandlets Recorder application was used to connect the devices to a smartphone, and record
data from the accelerometer and gyroscope sensors at 100 Hz for every acquisition. Pandlets were
placed in a watch-like conformation in the dominant wrist or both wrists (depending on the protocol),
held with a strap. The orientation of the sensors was roughly the same for every acquisition and user,
since it is a common daily practice to place wrist accessories (e.g., watches, bracelets) with similar
orientation every time. In order to address all the objectives of acquisition, a total of three datasets was
attained (Table 3).

Table 3. Description of the datasets.

DATASET 1

Activity Description No. Subjects Planned Time/Subject
(s)

Total Acquisition Time
(s)

Eat With spoon
With fork and knife
With hands, sitting
With hands, standing

9
11
11
11

120
120
60
60

4055

Drink Grab mug, sip, put mug back
Get water bottle from a bag, long sip, put it back
Grab cup, sip, put cup back
Drink while standing

11
9
11
9

90
90
90
90

3727

Other Make a phone call
Comb hair
Walk
Scratch face
Working with keyboard and mouse
Texting
Writing with a pen

11
10
11
11
11
11
11

60
60
60
30
60
30
60

4114

DATASET 2

ID Sequence of Activities Approx. Total Duration
(s)

Approx. Eating Duration
(s)

Approx. Drinking
Duration (s)

1
Walk → Prepare meal → Have breakfast → Drink tea
while watching TV → Brush teeth → Comb hair →
Apply facial cream

1609 288 175 (20 events)

2
Walk → Have dinner → Drink from a cup → Have a
conversation → Make a phone call → Play with
smartphone

2425 1748 13 (2 events)

3
Eat dessert with a spoon → Descend stairs → Walk →
Drink water from a bottle → Walk → Ascend stairs →
Brush teeth → Comb hair

521 398 7 (1 event)

4 Descend stairs → Walk → Play table football → Stand
in a line → Walk with a tray → Have lunch → Walk 3859 1038 0

5
Wash dishes → Drink water from a bottle → Prepare a
meal → Have lunch → Work with mouse and keyboard
→ Drink tea from a mug while working with a computer

2620 608 105 (14 events)
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Table 3. Cont.

DATASET 3

Activity Description No. Seniors Total Acquisition Time (s)

Eat Having lunch
Having an afternoon snack

6
2

9278
666

Drink Simulate grabbing a cup/bottle, sipping and putting
the object back 16 236

3.1.1. Dataset 1: Perfectly Segmented Activities

Dataset 1 was planned to enable the understanding of the differences between the signals of
the activities of interest and other daily living activities. Therefore, it was composed of well-segmented
activities, featuring the three classes required. Since the activities of interest are complex, several ways
of performing them were specified in order to originate a complete, heterogeneous and general dataset.
In this sense, the acquisition protocol included describing each activity to the volunteers before they
were asked to execute it (see Table 3), without placing any movements’ restriction. This dataset
accounted for a total of 11 volunteers, with ages ranging from 18 to 65 years old. Some users were
not able to perform all activities due to time constraints. Data from the accelerometer and gyroscope
placed on both wrists was recorded.

3.1.2. Dataset 2: Continuous Sequence of Activities

In order to capture the diversity of eating gestures involved in a meal, drinking in different
contexts, transitions between activities and movements as natural as possible, another dataset was
acquired. Dataset 2 was conceived by asking 5 volunteers to perform a certain sequence of activities,
while inertial data was continuously recorded. It was also asked the explicit consent of the volunteers
for video recording of the performed activities, which provided ground truth for data annotation.
The sequence of activities was well-defined and explained to the volunteers, with ages ranging from 21
to 65 years-old, so that diversity was guaranteed and a few key activities were performed and recorded,
such as eating with different tools and drinking from different containers in several contexts. Data from
accelerometer and gyroscope were collected from both wrists of the users. Volunteers were asked to
raise both arms at the same time, in a fast movement, producing an isolated acceleration peak, easily
detected with both accelerometers. These peaks, detected in both sensing devices, were assumed to
correspond to the same moment and used to correct potential time offset between sensors, and enable
synchronization with the video. Kinovea [28], an open source software for video analysis that allows
the input of comments with an associated time-stamp, was used to assist this time-consuming process.
The same tool also allowed the identification of sensor synchronization peaks with frame-precision.
Three classes were identified: eat, drink, other.

3.1.3. Dataset 3: Eating and Drinking by Seniors

The need for another dataset was brought forward to increase the robustness and
comprehensiveness of the model. Shen et al. acknowledged that age influenced eating recognition by
roughly 4% in accuracy [29]. Therefore, when developing a tool suited for seniors, it should also be
beneficial to include data acquired from the target population in the training set. That was the purpose
of Dataset 3.

This dataset was attained later on in the process, at a time when some decisions had already been
made. Thus, it only comprises inertial data from the dominant hand of the user. Moreover, it focuses
on longer eating periods, capturing the diversity of movements older adults are expected to perform
in the course of a meal. Eating data was acquired from a total of 10 individuals, 6 of which were
having lunch, while 4 were having an afternoon snack. Additionally, 18 seniors were asked to
deliberately perform the drinking movement to enhance the diversity of drinking data in the training
set. However, some recordings had to be excluded from the final dataset due to a loss of inertial sensors’
data during the recording period. Out of the total of volunteers, there were 14 females and 4 males, all
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of which consented the participation in data collection. Due to privacy concerns, the activities were
not video recorded: eating data collection began approximately 1 min into the starting of a meal and
stopped slightly before its end, while drinking simulations were recorded from the moment the users
were ready to go from a resting position to grabbing a fluid container until the moment they put
the container back down.

3.1.4. Validation Sets

Data from 5 different subjects was collected to constitute an in-the-wild validation set with a total
of 31 h of data, following 2 distinct protocols.

Firstly, a new unseen dataset was assembled with data from 4 users, two of which were seniors
(79 and 86 years old) from the day care center previously introduced, which did not participate in
the data collection of the training set. Due to sensor limitations and the day care center’s daily dynamic,
we were only able to collect ≈3 h of data for one individual and ≈2 h for the other, including a lunch
period. During that time, both volunteers drank water 1 time each. The two remaining subjects were
young (22 and 23 years old), and data was continuously recorded over 5 h each, including lunch
periods and a total of 29 sips of water. The users kept a manual log of activities, except for the seniors,
for whom starting and ending times of activities were annotated by a third person. This protocol was
preferred to video recording as ground truth, due to privacy issues, especially in the day care center,
where the acquisitions with the seniors took place. Users were asked to perform every activity as they
would in a typical day, disregarding the sensor placed in the dominant wrist.

Then, data from another young subject (21 years old) was collected over a 16 h period
(from morning till late in the evening), excluding the 8 h of sleep. This user also kept a manual
log of activities, annotating starting and ending times of eating and drinking activities with second
precision and providing a summary of the other performed activities per hour, which constituted
the ground truth. Analogously to the previous test set acquisition protocol, this method was preferred
to video recording of the activities to disregard privacy concerns, since some of the user’s activities took
place outdoors and assumed direct contact with other people. During this time, the user performed
3 meals—breakfast (8:30 a.m.), lunch (12 a.m.) and dinner (7:30 p.m.)—and drank something on 34
occasions. Eating periods corresponded to 3.8% of the total time, and drinking to 0.7%. The performed
meals included moments when the user ate with fork and knife, spoon and hands. The utensil used
for drinking also varied (cup, mug and bottle).

3.2. Data Preprocessing and Segmentation

Data was down-sampled by a factor of 2 (i.e., to 50 Hz), in order to optimize the trade-off between
data acquisition and battery life of the devices involved in the future. The preprocessing steps involved
low-pass Butterworth filtering of the data followed by Gaussian smoothing. In order to enable its
online usage, only half of a Gaussian distribution was used [7].

Eating and drinking are activities with very different average duration. While drinking takes
only a few seconds (usually less than 10 s), the eating activity often takes several min. In this sense,
three distinct windowing methods were explored (Figure 1).

The first method consisted in traditional fixed-length windows (FW), in which data is added to
the window until its length meets the requirement. These windows can overlap in a certain percentage,
meaning that some samples would belong to at least two consecutive windows.

In [11], a new online dynamic signal segmentation approach (DW) for data streams was
proposed. The authors compared it with the typical fixed-length windows (both overlapping and
non-overlapping) reporting better accuracy for their method in the classification of ambulatory and
transitional activities. This method is attractive for the present challenge since the activities of interest
are expected to have very different duration and, so, fixed-length windows may not be an adequate
solution. It splits the data whenever a significant change is detected in the data stream. This significant
change corresponds to a descending sequence in which the difference between the maximum and
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minimum value is larger than a dynamic threshold, computed from the previous N data samples.
The authors also alert for the importance of selecting an adequate input signal to base threshold
computation, as the variation of this signal should be representative of the activities of interest in
order for the algorithm to perform well. In other words, it is important to select a meaningful signal
from which to compute the parameters and split the data stream. For our application, best results
were achieved using the magnitude of the gyroscope signal as the input. The N parameter was set
to 100 previous samples (2 s).

Figure 1. Segmentation results of a drinking activity (2 sips) following different windowing approaches.
Vertical lines divide segmented windows. Unrestricted dynamic windows correspond to the direct
implementation of the algorithm of [11].

In this work, we propose a variation of the segmentation approach of [11], in which
threshold computation should be reset every t s, while data is automatically split at that moment.
Since the dynamic segmentation of Kozina et al. [11] relies on a threshold computed at each new
sample from the N previous samples, window-splitting depends on each new sample’s before-context,
which may lead to more unpredictable windows. This might impair drinking activity segmentation in
particular, due to its very short duration. With our approach, even varying the previous activity, it is
certain that at each t seconds there is an opportunity of disregarding past data, and constituting more
coherent windows. Moreover, it restrains the maximum length of dynamic windows to t seconds. This
approach can be summarized as a dynamic splitting of fixed-length windows (DFW).

3.3. Feature Extraction and Selection

Ten time-domain features were implemented: mean, standard deviation, variance, axis covariance,
axis correlation, Haar-like features [30], manipulation [7,13], linear acceleration [7,13], zero-crossings
rate, root mean square. The criteria for the selection of this feature set was low computational load [5],
which is important if we consider running the algorithm in a smartphone, and good reported results
in HAR works, in particular those which recognize the activities of interest. Manipulation and linear
acceleration were implemented as in [7,13]. Mean, standard deviation, variance, zero-crossings rate
and Haar-like features were computed for the signal of each axis of both accelerometer and gyroscope.
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Axis covariances and correlations were calculated by combining the 3-axis of each sensor pairwise.
Root mean square was computed from the magnitude of the accelerometer and gyroscope.

In a first step of feature selection, highly correlated features were eliminated, i.e., the most
computationally inefficient feature of a feature pair with absolute correlation larger than 0.8 was
eliminated. Then, we took advantage of Random Forest’s inherent capabilities for feature ranking
based on its computation of Gini importance [31], by training two distinct Random Forest classifiers
with features computed from Dataset 1: the first was fed eating vs. non-eating labels, and the second
drinking vs. non-drinking labels. Features which verified less than 1% importance in this ranking
(for at least one of the activities of interest) were eliminated from the final feature set. The feature
selection step resulted, finally, in a vector of length 33, with mean, correlation, variance and Haar-like
features computed from all axes of both accelerometer and gyroscope, along with the covariance of
accelerometer’s axis, zero-crossings rate of the gyroscope’s axis, manipulation, linear acceleration and
root mean square of the magnitude of the accelerometer signal.

3.4. Class Balancing Methods and Classification

Dataset 1 was the only one in which activities were planned and defined with time restrictions,
i.e., each activity was associated with a duration, which resulted in the only class-balanced dataset.
Assembling data from datasets 1 to 3, eating was the most well-represented class, with a total of
approximately 5 h of data, and drinking the rarest (approximately 1 h 10 min), due to the nature of
the movement itself. Class other comprised a total of 3 h of data relative to all non-eating and drinking
activities. This implied that a class balancing strategy should be implemented before the classification
stage. SMOTE + ENN combines the Synthetic Minority Over-sampling TEchnique (SMOTE) [32]
and the Edited Nearest Neighbor (ENN) [33] algorithms, with very good reported results [34,35].
This approach was selected and applied before training each classifier, using the imbalanced-learn
package implementation, which is compatible with scikit-learn.

The classification step took place comparing the performance of 6 different supervised classifiers:
k-NN, Naive Bayes (NB), Decision Tree (DT), HMM, MLP, and Random Forests. HMM-based
classification took place by training three different models: the first, only with eating data (5 states),
the second only with drinking data (2 states), and the third with data from class other of the acquired
datasets (7 states). The number of states parameter was tuned based on previous eating activity-related
works [13] and empirical evidence. Whenever a new sequence of observations was to be classified,
it passed through all three models and was assigned the label corresponding to the most likely
predicted state sequence.

3.5. Experiments Description

The description of all performed experiments is subsequently presented. All tests were conducted
to assess the performance of the algorithm while preserving user-independence, i.e., all validations
took place either by leave-one-subject-out validation (if using the same dataset for training and testing)
or by using a testing set which did not feature data from users of the training set.

3.5.1. Sensor Selection

As first step, we intended to determine whether to process data solely from the dominant wrist or
both wrists. Moreover, it was important to study if we should collect data from both accelerometer
and gyroscope or if one of these sensors would suffice.

In this sense, Dataset 1 was labeled in three classes—eat, drink, other—and segmented in windows of
10 s with 25% overlap, from which two features were extracted (mean and standard deviation). Features
were scaled to [0;1] range. Then, the accuracy of five classifiers was compared. Leave-one-subject-out
validation was used, i.e., the classifiers were trained with 10 subjects and tested on the remaining
one. The procedure was repeated 11 times so that all the subjects were used for testing. Finally,
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the average accuracy was computed. This flow of operations was repeated 6 times, varying the input
data: accelerometer and/or gyroscope from dominant hand or both hands.

3.5.2. Binary vs. Multi-Class Classification

Increasing the size of fixed-length windows should increase complex activities recognition
performance [12]. However, window size cannot increase indefinitely. Thus, the size of fixed-length
windows was set to 10 s, in order to optimize the trade-off between window size and overall recognition
performance of this segmentation approach. Notwithstanding, the ability to recognize drinking, an
activity which is basically a complex gesture and usually lasts less than 10 s, with such windows was
questioned. This brought forward the advantages of creating two different binary classification models,
one for each activity of interest, instead of one multi-class model for the simultaneous distinction of
eat, drink and other activities, since using several models would enable customization of parameters,
such as the segmentation method and the classifier employed. A second experiment with Dataset 1
took place to verify this hypothesis. Since this dataset was composed solely by perfectly segmented
activities, it was safe to assume that each computed window corresponded undoubtedly and totally to
its assigned label, regardless of the segmentation algorithm employed. The classification performance
would, therefore, be associated with how well the segmentation algorithms were able to capture
the distinctive characteristics of the activities of interest.

The performance of six classifiers, trained offline with instances of length 33 (number of
features that resulted from the process of feature selection), was compared following 4 different
approaches associated with different segmentation and labeling methods. First, multi-class labels
were assigned and the classifiers were trained with features extracted from 10 s windows with
25% overlap. Then, these were trained with features extracted from dynamic windows, associated
to multi-class labels. After that, the feature vectors obtained from 10 s windows were associated
with eating vs. non-eating labels, and the ones generated from dynamic windows associated with
drinking vs. non-drinking labels. Every approach employed the SMOTE + ENN algorithm for class
balancing of the training data. Leave-one-subject-out validation was performed and average accuracy
was computed.

3.5.3. Semi-Hierarchical Approach and Branch Optimization

Adopting a semi-hierarchical approach based on the constitution of two different classification
models of binary output, as Figure 2 illustrates, implied the selection of the most adequate classifier
to recognize the activities of interest. Concerning eating recognition, this process took place with
3 classifiers on the table—MLP, Random Forest, and also HMM, since its performance might had
been impaired by the nature of the previous experiment, i.e., the lack of sequential dependence of
data—and by computing another performance metric that not only assessed the representativeness
of the model (like accuracy does), but also how discriminative it is. The Area Under the receiving
operating characteristic Curve (AUC) is a measure of how above random chance true positive and
false positive rates really are. The training set was enlarged to feature not only data from Dataset 1,
but also from Dataset 3. Dataset 2 was used as the testing set. Since, during a meal it is common for
one to perform random sporadic movements that can be misleading for the classifier, resulting in
non-eating classifications among an eating period, classification results were assessed in 1 min periods,
i.e., it was only considered an eating moment if over three 10 s-windows were classified as eating
in a six-window span (10 s ×6 = 1 min). In this sense, AUC was computed from the logarithmic
probabilities associated with the predictions of each classification model, averaged per 1 min periods.
The drinking recognition classifier was selected based on the results from the experiment made clear in
Section 3.5.2. Training of the drinking recognition model was supervised and performed offline with
data from Dataset 1, every continuous acquisition from Dataset 2 in which drinking events occurred,
and drinking data from Dataset 3. Features were associated with drinking vs. non-drinking labels.
This selection of datasets was carried in order to take into account class balancing concerns, since
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the drinking activity was a pronounced minority in the overall acquired set. The training set presented
a class distribution of 1 drinking instance to 3.5 non-drinking instances.

Figure 2. Semi-hierarchical flow of operations of the eating and drinking recognition algorithm. Other
includes all non-eating and non-drinking daily living activities.

The scope of this work does not exactly aim the recognition of every single time a user eats
something (e.g., taking a piece of chocolate, or having a taste of the food being cooked). It is, however,
of extreme importance that every performed meal is detected. Therefore, a set of extra restrictions was
brought forward for application on top of the eating classification model output, that should lead to
the sole detection of meaningful eating moments:

• Probability of eating depending on the daily hour (E1): There are some common practices concerning
the relation between eating habits and time of day in western culture countries, which make it
overall possible to assume that during some specific times of the day the probability of performing
a meal increases and during some other times it can be very low. In this sense, the probability that
a user is eating by time of day was estimated by means of the sum of three Gaussian distributions
(one for each main meal), each one centered at a reasonable time of the day for that meal to happen
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and with a standard deviation of 1.5 h. Figure 3 illustrates the outcome of this process. Gaussian
distributions were centered at 8 a.m., 12:30 p.m. and 8 p.m., corresponding to breakfast, lunch and
dinner, respectively. The probability at each time of day for a meal to happen was then used to
filter eating predictions by means of Equation (1), where pclass(i) is the probability of the prediction
returned by the classifier for the i-th 10 s window, ptime(i) is the meal probability estimation by
time that corresponds to that same window, and N is the number of previous window-associated
probabilities considered to smooth the output (in this case, N = 3). If pmeal(i) > 0.5, then an is
eating label was assigned.

pmeal(i) =
∑N

n=0 pclass(i− n)× ptime(i− n)
N

(1)

• Minimum duration of a meal (E2): Statistics indicate that the OECD country which spends fewer
time per day eating (UK) spends 1 h, on average, in this process [36]. This means that, even if
four meals take place (breakfast, lunch, afternoon snack, dinner), these would last for 15 min
on average, which could support the hypothesis that eating periods that last for less than a 5
to 10 min would not correspond to a meal period and, thus, would not qualify as meaningful in
the context of this work. Following these ideas, a 5 min threshold was set, i.e., eating periods
shorter than 5 min would not be considered. This threshold is also coherent with the purpose of
issuing medication-related reminders, since triggering them 5 min into a meal would optimize
the trade-off between time opportunity and guaranteeing that a meal is taking place, in order not
to mislead the user.

• Energy peaks before meals (E3): The hypothesis of a third restriction was based on the work of [7],
in which meals were considered to be preceded and succeeded by energy peaks of the acceleration
signal from the wrist of the user. In fact, this assumption is supported by daily evidences. Hand
movements are usually slow and small during a meal, but before it takes place it is necessary to
prepare it, grab some tools or wash hands, and, after it, several other movements should also
occur (e.g., cleaning the dishes). The eating activity would, therefore, happen during a “valley” in
the energy of the acceleration signal, preceded and succeeded by energy peaks. In the present
case, this concept was used as a preventive measure to avoid false positives, by only considering
that a meal is taking place if it was preceded by said peak. Energy computation was implemented
as in [7].

Figure 3. Estimation of the probability of having a meal by time of day.

Furthermore, each drinking event was found to have at least two rotational magnitude peaks
(one when a drinking utensil is grabbed and carried to the mouth, and another when it is put back).
Thus, it was expected that the magnitude drop after a peak would often match the end of a dynamic
window. Following this consideration, both dynamic segmentation approaches, DW and DFW,
were tested, and its impact in drinking recognition performance compared. Since most drinking
moments lasted 5–8 s, DFW’s t parameter was tuned to 10 s, coinciding with the size of eating
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recognition fixed-length windows. Moreover, a false positive occurrence preventive measure was put
in place: positive drinking predictions were only considered true drinking moments if these featured
at least one rotational magnitude peak (D1).

The validation set (excluding the all-day acquisition) was used to assess classification performance
and the impact of each proposed post-processing step. Such a test set enabled a proper comparison of
approaches since it featured a period during which it was guaranteed that a meal would be performed.
In addition, it provided a proper basis on which the meal probability estimation restriction could be
tested, since it included a time of maximal eating probability. Three performance metrics suitable for
dealing with highly imbalanced classes were computed, taking into account that eating and drinking
corresponded to 6.33% and 0.88% of the total time, respectively. Sensitivity and specificity indicate
the ratio between true positive and negative predictions and the number of positive and negative
instances, respectively. The number of false positives per hour of acquisition (FP/h) was brought as a
way to assess the occurrence of false positive predictions. This metric was preferred to precision, since,
in this case, the relation between true positives and the total number of positive predictions was not as
important as the frequency with which FP occur. These metrics enabled a performance comparison
between solely considering the direct classification output and combining it with further processing
steps, in both eating and drinking recognition.

3.5.4. Validation

In order to assess the performance of the final algorithm, a two-stage validation approach took
place using all data from the validation sets, so that we could assess (1) the algorithm’s suitability
for all-day utilization (using data collected over the entire day), and (2) its user-independent nature
(namely with data from the target senior population), even at daily times of high meal probability
(using data collected around lunch periods). These experiments should provide an adequate testbed
for the system, since they should fairly assess the impact of the meal probability estimation restriction,
by considering its impact both over a day and around periods prone to the occurrence of meals.

Recognition results were presented in terms of precision, recall and F1-score to enable comparison
with related works.

4. Results

4.1. Sensor Selection

Table 4 exhibits the classification results of the sensor selection experiment. Decision tree, MLP
and HMM were found to perform better with data from the dominant wrist of both accelerometer and
gyroscope. This fact based the decision to only use data from one device, placed in the dominant wrist
of the user, even though inertial data from both wrists seemed to slightly improve k-NN and Naive
Bayes classification results. The fact that using only one device would reduce the obstructiveness of
the system also weighted in the decision.

Table 4. Accuracy of the classification using accelerometer (A) and/or gyroscope (G) data from the dominant
(D) vs. both (B) wrists.

Wrists Sensors Classifiers *

D B A G kNN NB DT MLP HMM

X X 0.65 0.64 0.56 0.66 0.73
X X 0.56 0.48 0.47 0.56 0.59
X X X 0.72 0.66 0.61 0.75 0.75

X X 0.70 0.68 0.58 0.68 0.69
X X 0.62 0.51 0.46 0.64 0.59
X X X 0.75 0.64 0.57 0.74 0.73

* Bold values highlight highest achieved accuracy for each classifier.



Sensors 2019, 19, 2803 15 of 22

4.2. Binary vs. Multi-Class Classification

The assumption that maintaining the same segmentation approach for both activities might
impair the recognition was confirmed by the results reported in Figure 4. When assessing
multi-class classification, better results were achieved for fixed-length windows, since large
windows are frequently associated with a better recognition of complex activities, as previously
discussed. Dynamic windows performed poorly in this case, because these over-segment the data.
Overall, binary classification was proved to be advantageous in the recognition of both activities.
The most significant difference was found for HMM, which greatly improved its classification results
with the binary classification approach. Dynamic windows seemed to be a good approach to segment
drinking gestures, associated with an accuracy of up to 86% with Random Forest. By being a more
complex activity, eating recognition was expected to be more difficult, which is supported by the results.
Nevertheless, an accuracy of up to 79% was achieved with MLP.

Figure 4. Comparison between overall accuracy of multi-class (striped) vs. binary (full) classification
models generated in the sequence of different segmentation methods.

Out of the 3 approaches which performed eating recognition, fixed-length segmentation of
the data stream was associated to better performance in identifying this activity, with MLP and
Random Forest classification proving to provide the most accurate results. Concerning drinking
classification, the best performance was achieved using the dynamic segmentation algorithm proposed
by [11] in combination with a Random Forest model. Following these conclusions, eating and
drinking recognition performance were separately studied and improved, aiming a solution in which
the activities of interest would be classified by two distinct recognition models, relying in different
segmentation approaches.
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4.3. Semi-Hierarchical Approach and Branch Optimization

Table 5 presents the average AUC for each eating classification model. Random Forest presented
significantly better results than MLP and HMM in this experiment. Therefore, it was considered
the best classifier for eating recognition. Thus, it was employed in all further experiments, and
integrated the final recognition model. The same type of classifier was also selected for the purpose of
drinking recognition, as supported by the results presented in Figure 4.

Table 5. Average Area Under the receiving operating characteristic Curve (AUC) for each eating
classification model.

MLP HMM Random Forest

AUC 0.77 (+/− 0.21) 0.75 (+/− 0.22) 0.84 (+/− 0.12)

Post-Processing Layer Restrictions Assessment

The results reported in Table 6 enable the comparison between approaches which led to branch
optimization. Since eating recognition was performed with minute precision, eating-related FP are
presented in min. On its hand, concerning drinking recognition, and to minimize the impact of
annotation imprecision, it was considered that a drinking event was correctly identified if a positive
prediction occurred within 10 s from the ground truth. In this sense, FP correspond to positive
predictions that occurred when a true drinking moment did not, in a 10 s time-span.

Table 6. Performance metrics of eating and drinking recognition, based on Random Forest classification,
with respect to the added restrictions.

Activity Segmentation + Post-Processing Sensitivity Specificity FP/h

Eat FW

FW + E1

FW + E2

FW + E3

FW + E1 + E2 *

0.95

0.84

0.93

0.23

0.73

0.42

0.81

0.56

0.81

0.93

34.47

11.13

25.80

10.93

4.27

Drink DW

DFW

DFW + D1 *

0.57

0.63

0.63

0.99

0.98

0.99

5.33

6.13

5.06

* Best segmentation/post-processing combination for eating and drinking detection.

The metrics extracted from the eating predictions of the Random Forest classifier with minute
smoothing indicate that, while almost every eating period was classified as such, many false positive
instances occurred. Indeed, during a typical day, there are many activities that might resemble using
cutlery, the hand-to-mouth movement and many other hand/wrist movements that are common
during a meal. Many of the misclassified instances corresponded to isolated min, usually when
the user was performing an activity over a table. The significance of this problem increased with
the duration of said activity (e.g., one of the seniors spent approximately an hour playing domino over
a table, during which time many misclassified eating predictions were verified). The 5 min threshold
restriction had a positive impact in the results, fighting against sporadic occurrences of FP. The meal
probability estimation proved to be the single restriction with better impact in recognition performance,
which shall be even more notorious in all-day applications. On the other hand, the hypothesis of [7]
proved not to suit this application, since many eating periods were not preceded by an energy peak
in the acceleration signal, probably because of the conditions of some acquisitions (e.g., the waiting
period at the table before lunch for the seniors did not produce an energy peak before the meal started).
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While it is an approach worth of further investigation, it was important to realize that not all eating
periods verify this premise, since it is always dependent on the before-meal context. The approach
which led to better results consisted in combining the 5 min threshold restriction with the estimation
of meal probability, which minimized the occurrence of FP to ≈4 misclassified min per hour while
maintaining a good TP classification rate (all meals were identified, even though some of its min were
not, usually in the beginning and ending of the meal, which may be associated with the labeling
problem, discussed in the previous section). Thus, this was the eating recognition approach finally
selected.

It is also possible to assess the positive impact of restraining the dynamic segmentation of data
to 10 s-windows instead of unrestrictedly to the data stream in terms of minimizing the occurrence
of false negatives. However, it increases overall sensitivity at the expense of decreasing specificity.
This problem was compensated by the rotational magnitude peak restriction, which minimized
the occurrence of FP to 5 misclassified drinking instances per hour. This test set also revealed that there
were some unforeseen activities frequently misclassified as drinking, e.g., bitting nails. In fact, one
of the users did this frequently, and those misclassified instances corresponded to ≈64% of the total
number of FP. The introduction of that activity in the training set constitutes, therefore, a future step
that shall improve drinking identification in free-living conditions.

All in all, these results verified that filtering the classification output based on what is known
about the activities of interest is a very good approach to improve overall recognition performance
with very simple and computationally efficient strategies.

4.4. Validation

The algorithm’s capabilities for all-day utilization were assessed using the all-day test set.
The results presented in Table 7 indicate the performance of the algorithm concerning sole
eating/drinking recognition and the simultaneous recognition of both activities. All meals were
detected, even though some of their initial and final min were not. Once again, the problem of labeling
data is clear, and a more accurate method might be in demand to further assess the potential of
activity recognition algorithms, in spite of the advantages in terms of privacy of manually logging
activities. Even though we were considering a period of 16 h, out of which only a small percentage
was spent eating, the eating-class precision value indicates a fair decrease of FP occurrences per hour,
when compared to eating recognition results reported in Table 6, reinforcing the efficacy of the meal
probability estimation restriction—only one eating period was mistakenly predicted. Moreover, FP
predictions could only occur in periods when the meal probability estimation is larger than 0.5, which
minimizes their negative impact by limiting them to an opportune time-span. The potential of such
an approach can even increase by incrementally adapting the center of the Gaussian distribution
for each meal to the user’s habits, leading to better user-dependent results. Drinking recognition
performance results for this 16 h acquisition indicate that the algorithm performs well in detecting only
true drinking moments even when unrestricted, natural and spontaneous movements are performed.
Nonetheless, to enrich the classification model with data from more activities that might resemble
drinking, such as bitting nails, but are not, might be an adequate next step to improve its performance.
Overall, the entire algorithm identified both activities of interest with a weighted F1-score of 97%,
which was considered very promising towards the success of the tool.

The entire validation set was finally taken to assess the global performance of the algorithm
(Table 8), including not only all-day data but also 15 other hours of data from 4 different users acquired
at daily times of high meal probability. This validation was particularly demanding in terms of
eating recognition, due to the meal probability estimation restriction. Indeed, 48% of the 31 h of data
corresponded to daily periods of over 70% probability of performing a meal. Even so, less than 2 h
of data were mistakenly classified as eating, an evidence of the decent performance achieved even at
the most critical times. This fact justifies the modest value of unweighted eating recognition precision.
Drinking recognition results were mostly coherent with those reported in Tables 6 and 7. Due to class
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imbalance, weighted metrics are the ones which better describe overall performance, delivering an
F1-score of 93%. This value is particularly suggestive of the good performance of the algorithm under
the demanding circumstances under which these experiments took place.

Table 7. All day acquisition recognition performance.

EATING *

Confusion Matrix Performance Metrics

Eat Not eat Total Precision Recall F1-score
Eat
Not eat

25
14

11
904

36
933

0.64
0.99

0.69
0.98

0.67
0.99

Total/Avg 39 915 969 0.97 0.97 0.97

DRINKING *

Confusion Matrix Performance Metrics

Drink Not drink Total Precision Recall F1-score
Drink
Not drink

26
10

14
5689

40
5699

0.72
1.00

0.65
1.00

0.68
1.00

Total/Avg 36 5703 5739 1.00 1.00 1.00

OVERALL *

Confusion Matrix Performance Metrics

Eat Drink Other Total Precision Recall F1-score
Eat
Drink
Other

150
5
79

0
24
10

66
11
5380

216
40
5469

0.64
0.71
0.99

0.69
0.60
0.98

0.67
0.65
0.98

Total/Avg 234 34 5457 5725 0.97 0.97 0.97

* Total no. samples per class and average of performance metrics are highlighted in bold. Rows and columns
correspond to true and predicted labels, respectively.

Table 8. Complete validation set recognition performance.

Precision Recall F1-Score No. Samples

Eat 0.39 0.77 0.52 552
Drink 0.37 0.62 0.46 81
Other 0.99 0.93 0.96 10737

Total/Avg 0.95 0.92 0.93 11370

5. Discussion of Results

The results of these experiments base the main contributions of this work, and are worthy of a
thorough discussion so that its pertinence is clear.

The in-the-wild validation tests unveiled the challenges of designing training sets to base
predictions in free-living conditions. Besides providing data for the training stage, these sets of
data also enabled sensor selection: both accelerometer and gyroscope were found to hold important
eating and drinking distinctive information, even when considering solely the dominant hand of
the users. The training sets were planned to feature the most distinct daily activities and specifically
intended to capture the diversity of movements inherent to free-living. However, some unseen
activities were still performed in the in-the-wild validation, unveiling handicaps of the classification
models, namely misclassification of bitting nails as drinking, and of performing small movements at a
table (e.g., playing cards) as eating. The training set could therefore be improved, as it was possible
to survey new activities that should be considered in the training process. Despite that, the collected
set provided an adequate basis for a robust classification, as the models’ handicaps were partially
compensated by post-processing the classification output (Table 6).
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Verifying the improvement of performance associated to binary classification as opposed to
multi-label classification inspired the implementation of a semi-hierarchical eating and drinking
recognition approach. The potential of hierarchical approaches has been explored in related
works [1,12], associated to results that should motivate further research from the daily living activity
recognition community. One of the main advantages of such a technique is the possibility of
customization of branches. In this case, it enabled the application of different data stream segmentation
techniques, and a sequence of post-processing restrictions taking advantage of the characteristics
of each activity of interest. These restrictions proved to have a significant positive impact in
the recognition performance, supporting the work of [12], which drew attention to the importance of
processing the classification output to improve the recognition of complex activities. As such, these
conclusions should contribute towards more mature eating and drinking recognition algorithms, as
the proposed post-processing techniques can be further combined with other approaches. Our results
also verify an increase of the sensitivity of drinking recognition when using DFW instead of
the typical DW segmentation. This outcome should bring awareness for the potential of the method in
the detection of specific anomalies, like the drinking movement, in data streams, without impairing
other running classification mechanisms.

Comparing this work with others that preceded it is not a straightforward task. Firstly, because of
its very own purpose of simultaneous eating and drinking recognition (and distinction) in free-living
conditions, which, to the best of the authors’ knowledge, is a novel intention. Moreover, this work aims
the issuing of reminders in opportune daily moments and not dietary monitoring or food journaling,
which is the main goal of the prior art, and has an impact in the definition of prerequisites for the system.
Nonetheless, several techniques used in related works were combined and tested [5,7,11–13], while
being framed within the purpose of our work, providing a starting point for creating a more mature
solution which built upon the prior art. Considering eating recognition performance of the works
that cared to preserve some of our important prerequisites, namely free-living utilization (and, thus,
validated in free-living conditions) by using inertial data from an unobtrusive wristband, the results
reported in this work appear to outperform those reported by [7] and [6], by achieving 97% F1-score
for eating recognition in the all-day test set and 93% in the entire validation set with 5 different users,
which included data from senior volunteers. Moreover, [7] proposed an algorithm of offline response
and [6] an approach that looks for eating moments every hour, which would not suit our goal of
real-time eating detection with, at least, minute precision to enable the reminders. On the other hand,
both [7] and [6] validated their approaches in larger datasets, meaning that further data collections
might be in demand for a fairer comparison of approaches. In [8] and [9], eating periods corresponded
to 36% and 11%, respectively, of the total time of the free-living datasets that were used, hindering
comparison with our system. Those works also involved more obstructive systems and algorithms of,
apparently, higher computational cost that this one, comprising a large number of features, some of
which from the frequency domain. No works of drinking recognition in free-living conditions were
found for comparison. The conditions in which our study took place were also much more challenging
than those of [10], since that was an in-the-lab study, a controlled environment which did not account
for all the challenges of free-living sporadic activity recognition. Therefore, slightly worse results were
expected in this case. Nevertheless, most drinking events were correctly identified for all users of
the test sets and activities associated with FP were surveyed, in order to improve the next iteration of
our drinking classification model.

This study presented, however, some limitations. On one hand, the fact that it was only possible
to perform an all-day acquisition of data from 1 young volunteer. Since it is intended that users use
this system throughout the entire day, all-day data are the most useful to reveal potential handicaps
of the system. Thus, having only one test subject in that test set is a clear limitation of the validation
process, which hinders the comparison with previous works. This fact was compensated by considering
the data of 4 other subjects, including 2 seniors, in the validation process, even though it was not
possible to perform all-day acquisitions with them. The system was also not tested with left-handed
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users, so its impact in the results is yet to know, despite the inclusion of data from a left-handed
subject in the training set. Analogously, we were not able to study the generalization of our models
for different age groups, even though our tests with data from young and older adults did not
evidence a particular drop of performance for any specific group. In addition, in theory, age should
not particularly impact the outcome of the post-processing layer of restrictions. Furthermore, this
system depends on inertial data from the dominant wrist of users, which means that movements
performed with the non-dominant hand are lost. While the impact of this problem is dimmed for
the eating activity, since it usually involves the use of both hands, it means that drinking events are
completely lost if performed with the non-dominant hand, a problem that must be revisited in further
research. The final recognition algorithm also presents some limitations. The 5-min restriction, which
increases confidence in eating predictions, is one of them: while the algorithm detects eating with
minute precision, it requires a 5-min confidence period to pass before it decides on a true eating
moment. While this is not very important considering the goal of issuing reminders, it leaves room
for improvement. As previously discussed, it is also still difficult for the classification models to
distinguish some daily activities from eating and drinking, meaning that further data collections of
some specific activities might be in demand to improve the training set.

6. Conclusions

This work proposed a new algorithm of activity recognition, which built upon the prior art
to deliver a user-independent solution relying on a sensing system of low obstructiveness for
the simultaneous recognition of eating and drinking activities in free-living conditions. An F1-score
of 97% was attained for the recognition of the activities of interest in an all-day acquisition from
one unseen user. The validation was also extended to feature data from 4 extra subjects, 2 of which
were older adults, testing the user-independent nature of the algorithm, and achieved an F1-score of
93%. As such, the system shall provide an adequate basis for triggering useful smart reminders
for autonomously living seniors, since it delivered promising results while being tested under
user-independent and free-living conditions, important objectives of this work. Moreover, the system
relied on simple wrist sensorization, which shall promote user acceptance by an older population.

As future work, we intend to enrich the classification models with data from activities that were
frequently mistaken with the activities of interest (e.g., in case of eating, activities that involve small
movements over a table, like playing board games; in case of drinking, bitting nails). Improving
the training set shall also lead to general optimizations of the algorithm, e.g., reducing the number
of features and/or trees of the Random Forest classifiers, taking advantage of the possibility of
customizing each branch of the algorithm, namely the recognition models. The solution shall also be
mobile implemented and tested in real-time.
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