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Abstract: In the IoT (Internet of things)-based smart home, the technology for recognizing individual
users among family members is very important. Although research in areas such as image recognition,
biometrics, and individual wireless devices is very active, these systems suffer from various problems
such as the need to follow an intentional procedure or own a specific device. Furthermore, with
a centralized server system for IoT service, it is difficult to guarantee real-time determinism with
high accuracy. To overcome these problems, we suggest a method of recognizing users in real time
from the foot pressure characteristics measured as a user steps on a footpad. The proposed model in
this paper uses a preprocessing algorithm to determine and generalize the angle of foot pressure.
Based on this generalized foot pressure angle, we extract nine features that can distinguish individual
human beings, and employ these features in user-recognition algorithms. Performance evaluation of
the model was conducted by combining two preprocessing algorithms used to generalize the angle
with four user-recognition algorithms.

Keywords: IoT Smart Home; user and behavior recognition; real-time identification

1. Introduction

With the increasing availability of IoT (Internet of things), many studies of smart home–based
IoT systems are being undertaken [1–5]. In particular, smart-home technology for the elderly has the
potential to improve the quality of life in an aging society. IoT smart-home service for specific users
such as senior citizens and dementia patients [6,7] should be able to distinguish between seniors who
need customized services and other family members who need only regular services. Therefore, it is
necessary to accurately determine who is in need of a service in real time and to provide enhanced
services accordingly.

Typically, most studies in user recognition cover image processing and biometric technology,
using human characteristics such as fingerprints or irises [8–10]. However, installing cameras in users’
homes raises issues such as encroachment on personal privacy, and biometric technology requires
intentional procedures on the part of the user: physical contact such as a sensor device touching a
finger or eye contact using an iris recognition sensor may be affected by users’ health conditions as well
as environmental factors [10,11]. Most importantly, real-time performance degrades in low-memory
and low-power embedded systems when users are recognized by image processing and deep learning,
which are high-complexity computational techniques. Some research has used specific wearable
devices [12] to avert this disadvantage, but such devices cannot distinguish who owns the device and
are not appropriate for people who are likely to lose these devices or who tend to resist wearing them.

In order to overcome the disadvantages of existing research, we propose a system that measures
foot pressure in real time and thereby recognizes users using a footpad consisting of pressure sensors.
The system recognizes the user simply by their stepping on the footpad, without requiring them to
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perform a specific action or use a specific device. Therefore, this system assume that at least one foot is
raised on the footpad. To enable user recognition from any angle, total least square [13] and center of
gravity algorithms are used to measure the angle of foot pressure based on data from 48 horizontal and
48 vertical pressure sensors. By using the properties of the rotation matrix, we generalize the angle
in the front of the pad and then extract features such as width and height of the user’s foot based on
generalized foot pressure.

The system can configure the smart home-based IoT system using Bluetooth, wireless PLC and
m-bus communication methods with various appliances in the house [3,4]. Also we can combine this
system with the existing smart home-based IoT platform to create a smart home-based IoT platform
for a specific users [5]. Therefore, due to the scalability of this system, many smart home-based IoT
systems will be developed and used.

In this paper, we use low-complexity computation techniques for real-time user awareness in
embedded systems, as opposed to the high-power computation techniques which have been used in
existing user perception applications; Fuzzy theory [14], Gaussian Naive Bayes (GNB) approach [15],
k-nearest neighbors (K-NN) algorithm [16], and artificial neural networks (ANNs) [17]. We were
used to compare their performance (accuracy and performance time), and an optimal combination of
algorithms was then derived.

This paper is structured as follows: Section 2 describes relevant existing research, Section 3
offers an overview of the whole system, and Section 4 presents the preprocessing methods employed.
Section 5 compares the results of algorithm performance evaluation, and finally Section 6 offers
some conclusions.

2. Related Research

As research in home IoT intensifies, many studies are being done on user recognition. Although
user recognition using image processing such as facial recognition and also voice recognition [7,18,19]
has been extensively studied, problems exist that are likely to cause errors depending on the conditions,
including camera angle, the shape of the user’s head, and the user’s physical condition. Many studies
have addressed these concerns, including studies on proximity-based neighbor identification protocol
(PNIP) [12,20], which detects a low frequency device and transmits an advertising signal with the
user’s ID, and radio-frequency identification passive (RFID passive) [21], a system that uses specific
device and radio frequency (RF) to identify the user. However, PNIP protocols are problematic due to
the need to carry or wear a specific device; for instance, they cannot reliably be applied to senior citizens
with dementia or to children who are unwilling to wear the device, when the user lost wearable device
or wear someone else’s wearable device, and malfunction due to device battery discharge, etc. Also
RFID passive protocols has problem that the user has to intentionally touch the device to the reader.

To compensate for the defects of existing protocols, research is underway that recognizes users
using foot pressure, an aspect of biometrics. User recognition studies based on foot pressure include
footprint-based personal recognition [22] as well as personal recognition methods using either
Bayesian algorithms or sequential walking footprints via overlapped foot shape and center-of-pressure
trajectory [23]. For this last approach, the former technique acquires the shape of the foot and compares
the similarity of the images using Euclidean distance, while the latter achieves a low error rate by
adding a hidden Markov model to the dynamic footprint. However, because of the need for large
amounts of sampling data and high computing power, a centralized server structure is indispensable
and so predictability is low. Consequently, this method cannot guarantee definitive identification [24].
Therefore, in this paper we propose a cognitive system based on user foot-pressure distribution, which
guarantees definitive results, comparing performance time and accuracy using several algorithms in
Raspberry Pi 3 which is a low-specification embedded system platform that is easy to control because
it has a Linux kernel, and it is a scalable platform such as USB, WIFI, GPIO, so it was used to build a
user identification system quickly.
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3. Overview of the Proposed System

The proposed scenario is as follows. First, a footpad consisting of 48 horizontal and 48 vertical
pressure sensors is installed in front of user’s room in the home, including the bathroom, as well as
home appliances such as a refrigerator and a gas stove. Then, when the user steps on the footpad, the
angle of foot pressure is measured to determine the direction in which the user is likely to move.

For example, in Figure 1, if the user leaves the door and the angle of the user’s foot pressure
distribution is between 270◦ and 300◦ (a clockwise angle that assumes the Raspberry Pi 3 and its joint
is at 0◦), the system decides that the user is going to go to the bathroom, whereas an angle between 0◦

and 30◦ is interpreted as meaning that the user is moving toward the kitchen. In addition, the system
determines where the user is likely to go, simultaneously generalizing the pressure distribution, and
then extracts particular features of foot pressure in order to recognize specific users and input feature
values to the algorithm. Recognizing certain users in the family allows the IoT system to prevent
children or elderly users with dementia patients from turning on gas fires, or to alert a guardian if
these users have failed to flush the toilet. Furthermore, when calculating the time interval between
footsteps as a user moves across a room, the system can inform the designated guardian when the
user’s motion is slower than that user’s average pace. In this way, the home environment can be made
safe for all family members.
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Figure 1. Suggested scenario for using a footpad in an IoT smart home.

Figure 2 shows a system flowchart schematizing how to determine the user’s identity and where
they are likely to go next. The system consists of preprocessing, feature extraction, and learning and
execution segments. The preprocessing part comprises two steps.

First, the angle of foot pressure is measured and generalized to obtain the consistent characteristics
in foot-pressure feature extraction. Algorithm 1 shows the pseudocode representation for measurement
and generalization of the pressure distribution angle. For this study, we use the foot-pressure center
of gravity and total least squares algorithms for angle measurement. With the foot-pressure center
of gravity algorithm, the centers of gravity at the front and heel of the foot are calculated using
trigonometric functions. The results show a 180◦ discrepancy between choosing the criterion to be the
center of gravity of the front part of the foot and the center of gravity of the back part, but in this study
we were able to measure the angle of the foot correctly by locating the arch between the toe and sole of
the foot and checking the foot’s orientation. The total least squares algorithm is derived from a linear
function by minimizing the mean square distance between the foot pressure and the linear function,
which may also result in a 180◦ error between calculating an angle clockwise versus counterclockwise
from the criterion. The angle of the foot can be correctly measured by calculating clockwise from the
arch of the foot. After measuring the angle, the difference was calculated based on the Raspberry Pi 3
and its joint, and the foot-pressure angle was then generalized using a rotation matrix [25].
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The second preprocessing step breaks down as follows: we analyze the rotated foot pressure
to determine how many footfalls are detected by the footpad, then isolate each footfall, and finally
distinguish whether the detached foot pressure is left or right. The reason for isolating the foot pressure
to separate left and right footfalls is that the user is recognized by a single machine learning model,
and distinguishing between the user’s left and right foot requires much more data and a more complex
model than a machine learning model for user recognition only. Therefore, after using a simple
algorithm to distinguish the left and right foot, separate user recognition models for foot pressure on
the left foot and the right foot can be used to recognize the user efficiently while using fewer data and
simpler models.
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Algorithm 2 shows the isolation of individual foot pressures and subsequent classification as
either left or right foot, expressed in pseudocode. The isolation procedure begins with finding the
center line of the foot pressure. This attribute can be used to separate footfalls by selecting any line of
space between the first and second footfall, not simply the center between the two foot-pressure end
boundaries. The method for judging a footfall to have occurred through separated foot pressure is to
locate the arch between the toe and sole of the foot. Once a footfall is determined to have occurred, the
foot is distinguished by using the fact that the arch is convex to the left for the left foot and convex to
the right for the right foot.
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Algorithm 1. Pseudo code for generalization of pressure distribution.

Gravityb = Center of gravity of ball of foot
Gravityh = Center of gravity of heel of foot
Spacef = Space between toes and ball of foot
MSD =Mean Square Distance
1. begin
2. if Find Spacef then
3. switch Angle Calculation Method do
4. case Center of Gravity
5. if Find Gravity, AND Gravityh then
6. Calculate angle between Gravityb and Gravityh based on Spacef
7. else
8. return Get Data
9. case Total Least Square
10. if Find a linear function that minimizes MSD then
11. Calculate linear function angle based on Space f
12. else
13. return Get Data
14. Calculate the angle between Base line and calculated angle
15. Generalize foot pressure angle using Rotation matrix
16. else
17. return Get Data
18. return success to generation

After completion of the preprocessing process shown in Algorithms 1 and 2, the system extracts key
features of the foot pressure, which vary from person to person. Using the extracted features, machine
learning for user recognition is performed by selecting one of the following as a user-recognition
algorithm: fuzzy, GNB, K-NN, or ANN. Thus, in this study we are comparing performance on the
Raspberry Pi 3, which is a small embedded system, for two algorithms for measuring the user’s foot
angle and four algorithms for recognizing the user.

Algorithm 2. Pseudo code for separation and classification of foot pressure.

Centeri= Center line of foot pressure
Spacef = Space between toes and ball of foot
1. begin
2. if Find Centeri then
3. if Find Spacef on left side then
4. if Is arch of foot convex to the left? then
5. Foot on left side is left foot
6. else
7. Foot on left side is right foot
8. else if Find Spacef on right side then
9. if Is arch of foot convex to the right? then
10. Foot on right side is right foot
11. else
12. Foot on right side is left foot
13. else
14. return Get Data
15. return Success to classification
16. end
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4. Preprocessing and Feature Extraction

For this paper, the proposed preprocessing and feature extraction procedures are as follows. First,
calculate the difference in angle for the pressure distribution, based on the orientation of the Raspberry
Pi 3 and its joint. Second, rotate the foot pressure by a different angle for generalization. Third, separate
the specific footfall from the generalized foot pressure, and classify as either left or right foot. Fourth,
extract key foot-pressure features.

4.1. Foot-Pressure Angle Measurement

For this study, the measurement method for foot-pressure angle comprises a center-of-gravity
determination and a smallest mean square distance calculation, as described above. Section 4.1.1
describes the method for angle measurement using a center of gravity algorithm, while Section 4.1.2
describes the total least square calculation.

4.1.1. Measuring Foot-Pressure Angle Using the Center of Gravity

If the foot-pressure angle is measured only by center of gravity, an error occurs based on the
reference point. Therefore, we locate the arch between the toe and sole of the foot and measure how
the current foot pressure is directed on the footpad.

Locating the Arch of the Foot

The method for locating the arch of the foot is as follows. First, determine whether the value at
the current position is 0, and whether there is a nonzero value in the vicinity. Second, to determine
whether or not the current position corresponds to the arch, locate a point two spaces away from the
present position. Then, determine if there is a non-zero value in the vicinity that includes the point and
place it in the candidate group for the arch of the foot. Figure 3 illustrates this.Sensors 2019, 19, x FOR PEER REVIEW 7 of 24 
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Figure 3. Candidate search for the arch between toe and sole of foot candidate search.

The red box in Figure 3 is the current position; it is determined whether the sum in the vicinity
(yellow box) is nonzero based on this position. Also to be determined is whether the sum of all points
within two sensors of the current position and the surrounding area (all the green boxes) is zero or not.
If the sums of the yellow box and of the green boxes are both nonzero, then this position is a candidate
for the arch. The final selection of candidates is made using specific pressure features of the arch. The
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arch of a foot is characterized by a strong pressure at the toe, then a gradual decrease to the arch itself,
and finally a gradual increase in pressure from the arch to the sole of the foot. After applying these
features to a candidate group, a judgment is made as to whether the candidate group is the arch or not.
This is illustrated in Figure 4.
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Figure 4. Characteristic pressure features of the arch.

The red box in Figure 4 creates a 5 by 5 matrix of points (the yellow box in Figure 4) within a
distance of two sensors of the current position of the red box and determines whether it matches the
following pattern:

1. The sum of the first row (142) is larger than the sum of the second row (91).
2. The sum of the second row (91) is larger than the sum of the third row (7).
3. The sum of the fourth row (183) is larger than the sum of the third row (7).
4. The sum of the fifth row (249) is larger than the sum of the fourth row (183).

If the current position matches this pattern, it is judged to locate the arch. Also, if the column
sums rather than the row sums match this pattern, this position is also determined to be the location of
the arch.

Locating Centers of Gravity

The foot-pressure angle is measured as the angle between the center of gravity of the front part of
the foot and the center of gravity of the rear part. Therefore, locating centers of gravity is critical to
the whole process. This paper uses a heap data structure [26] based on a complete binary tree to find
centers of gravity. The primary key value of the heap data structure is the number of nonzero values in
the 7 by 7 matrix based on the current position. If the number of nonzero values is the same, set the
sum of all values of the 7 by 7 matrix to the secondary key and input it to heap. The parent and child
nodes of the heap data structure are set to the centers of gravity at the sole and heel of the foot. This is
shown in Figure 5.
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With the blue box in Figure 5 showing the first position, there are 32 nonzero values in the vicinity
(yellow box centered on blue), while there are 43 nonzero values in the vicinity of the green box
indicating the second position (yellow box centered on green). The green box is selected as the parent
node because there are many nonzero numbers in its vicinity, while the blue box is selected as the child
node. However, the number of nonzero values around the red (third position) and green boxes is the
same, 43. In such a situation, the parent node is set based on having the larger sum of 43. Therefore,
the position of the red box becomes the parent node. Continuing in this way, the parent node becomes
the center of gravity at the front of the foot; the child node is set at the center of gravity at the heel
of the foot. The angle between the parent node and the nearest child node is measured between the
heap data structures thus created. Because the measured angle can change by 180◦ depending on the
reference point, the angle is measured based on the position where the distance between the measured
toe point and the center of gravity is large. This is shown in Figure 6.Sensors 2019, 19, x FOR PEER REVIEW 9 of 24 
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4.1.2. Total Least Squares

Least squares (LS) [27] determines the linear function with the smallest mean square distance
between the measured two-dimensional foot pressure and that linear function. However, LS has
different linear functions associated with it because the error is measured in different ways depending
on whether the reference line is the x-axis or the y-axis, as shown in Figure 7.

Figure 7 shows that the same data can have different linear functions associated with it, depending
on which axis is taken as the reference line. In this study, the method of deriving the principal
components (PCs) using principal component analysis (PCA) [28,29] is applied. PCs are saved in PCA
in total least square (TLS) or orthogonal least square (OLS) format, in order to find an N-dimensional
vector with minimal mean square distance between the original dataset and this N-dimensional vector
as projected onto the original dataset. This is equivalent to finding the N-dimensional vector with the
largest variance out of the data projected onto it [30].
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For example, Figure 8 shows three one-dimensional vectors—two principal component vectors
and the result as projected on each vector—in a two-dimensional data scatter plot. The projected
result shows that the variance of the principal component vector v1 with the smallest mean square
distance from the original dataset is the largest, the variance of the second principal component vector
v2 orthogonal to the principal component vector v1 is second largest, and the arbitrary vector v3 has the
smallest variance. Thus, vector v1, which has the largest variance, becomes the principal component
vector for the two-dimensional data in Figure 8. We obtain principal component vectors as follows:

DataX ∈ Rn×d

Unit Vector =
→
e (UnitVectorshapeisd× a)

CovarianceX =
∑

I f theXisorthogonalprojection
→
e ,

X
→
e ∈ Rn×a

(1)
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The data matrix is represented by X ∈ Rn×d (n is the number of data points) and an arbitrary unit
vector which determines orthogonal projection, represented by the vector

→
e of dimension d× a, where

d-dimensional data is reduced to dimension a ((d > a)) through orthogonal projection. This can be
expressed by Equation (1). Therefore, the variance of the

→
e vector is obtained by Equation (2).

Var(X
→
e ) =

1
n

n∑
i=1

(X
→
e − E(X

→
e ))

2
(2)
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Assuming that the average of each column of the X matrix E(X
→
e ) is 0, the result in Equation (3)

can be obtained. In addition, if Equation (3) is developed as Equation (4), we obtain the result in
Equation (5).

I f eachrowaverageis0,

Var(X
→
e ) = 1

n

n∑
i=1

(X
→
e )

2
= 1

n (X
→
e )

T
×X

→
e (3)

Var(X
→
e ) = 1

n (X
→
e )

T
×X

→
e = 1

n
→
e

T
XTX

→
e

1
n
→
e

T
(XTX)

→
e =

→
e

T(XTX
n

)
→
e =

∑→
e

(4)

max
e
{Var(X

→
e )} = max

e

→
e

T ∑
→
e (5)

There are numerous possibilities for a vector
→
e satisfying Equation (5). Since the variance increases

simply by increasing the length of the
→
e vector, the Lagrange multiplier method [31] can be used

to construct the constraint of Equation (6), which can then be used to derive the Lagrange function
Equation (7). To obtain the maximum value, we can derive Equation (8) by differentiating L with
respect to

→
e .

‖
→
e ‖ =

→
e

T→
e = 1 (6)

L =
→
e

T ∑
→
e − λ(

→
e

T→
e − 1) (7)

∂L

∂
→
e
(
→
e

T ∑
→
e − λ(

→
e

T→
e − 1)) = 2

∑
→
e − 2λ

→
e =

→
e (

∑
−λ) = 0 (8)

In Equation (8),
→
e is the eigenvector of the covariance matrix

∑
and λ is an eigenvalue of

∑
according to the definition of an eigenvector.

In this study, the principal component vector is derived by locating the center of gravity of foot
pressure at (0, 0), finding the covariance matrix of the foot pressure’s data matrix, and then finding the
eigenvector of the covariance matrix with large eigenvalue. The result is shown in Figure 9.
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Figure 9. Angular measurement result using total least squares procedure.

Figure 9 shows the angle at which the error is minimized, but there could be an error of 180◦ due
to the choice of reference point. As previously mentioned, we overcome this error by measuring the
angle in the clockwise direction, based on the arch of the foot.
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4.2. Rotation of Foot Pressure

After measuring the angle, we use a rotation matrix to generalize the foot pressure. The rotation
matrix rotates a two-dimensional foot-pressure data matrix about a central reference point. In this
paper, generalization of the foot pressure is performed by setting the reference point as the center of
the footpad, at (24, 24), as shown in Figure 10.Sensors 2019, 19, x FOR PEER REVIEW 12 of 24 
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4.3. Separation and Classification of Foot Pressure

It is not easy to ensure high accuracy using machine learning algorithms with low data and
low computing power. In order to increase accuracy under these conditions, the rotated footfalls are
separated during the preprocessing process and each separated part is classified as either the left or the
right foot. The separation method consists in finding the start and end points of the foot for left and
right, and then using the average of the points where the first foot ends and where the second foot
begins, respectively. We locate the starting point of a foot as follows.

1. The current position has a value of zero.
2. The sum of the values at the eight cardinal points of the current position is nonzero.
3. The sum for the eight cardinal points of the previous position is zero.

The rearmost point of a foot is located as follows.

1. The current position has a value of zero.
2. The sum of the values at the eight cardinal points of the current position is zero.
3. The sum for the eight cardinal points of the previous position is nonzero.

The red box in Figure 11 is determined as the starting point of the foot if the sum of values at
the eight cardinal points of the current position (the green box) is not zero, and the sum of the eight
cardinal points of the previous position (the yellow box) to the left of the current position is zero. Also,
if the current position (blue box) has a zero value, the sum for the eight cardinal points of the current
position (green box) is 0, and the sum for the eight cardinal points of the previous position (yellow box)
is nonzero, then the current position is judged to be the foot’s rearmost point. Therefore, we divide the
foot pressure data by using the average (orange line) of red and blue boxes in Figure 11.
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After separating foot-pressure data, foot classification takes advantage of the characteristics of the
arch of the foot. The arch is characterized by a left-handed convexity in the left foot and a right-handed
convexity in the right foot. Thus, the left side of the left foot is flat, so deviation is small, while the
right side is concave, so deviation will be large. Based on these characteristics, the foot classification
procedure in this paper is as follows:

1. Calculate the deviation on the left of the widest part of the front of the foot and on the left of the
narrowest part of the center of the foot.

2. Calculate the deviation from the left of the widest part of the heel to the left of the narrowest part
of the center of the foot.

3. Calculate the deviation on the right side in the same way.
4. If the deviation on the left side is larger than the deviation on the right side, classify this as a right

foot. If the deviation is larger on the right side is larger, classify as a left foot.

This procedure is illustrated in Figure 12.
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The red boxes in Figure 12 correspond to the left and right sides of the widest part of the front of
the foot, the blue boxes to the left and right sides of the narrowest part of the center of the foot, and the
green boxes to the left and right sides of the widest part of the heel. The difference between the red box
and the blue box on the left of Figure 12, plus the difference between the green box and the blue box, is
4, while the deviation on the right is 9. Therefore, this foot is distinguished as a left foot because the
deviation on the right side is larger.

4.4. Feature Extraction

In this paper, we define nine features for each of the left and right foot.

1. The width of the foot
2. The length of the foot
3. The width of the widest part of the front of the foot
4. The length from the widest point 3O of the front of the foot front to the front end 1O of the foot
5. The minimum width at the center of the foot
6. The length from the narrowest point 5O of the center of the foot to the widest point 3O of the front

of the foot
7. The maximum width of the heel
8. The length from the widest point 7O of the heel to the narrowest point 5O of the center of the foot
9. The length from the widest point 7O of the heel to the widest point 3O of the front of the foot

Figure 13 shows these nine features.
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5. Performance Comparison of User Recognition Algorithms

In this study, the foot pressure dataset with six data samples selected to be used in the experiment
consists of a data set preprocessed by center of gravity rotation and a data set preprocessed with
TLS. Each data set contains 80 data points per person generated by preprocessing foot-pressure data
measured at the four cardinal points (20 times per direction). Our model classifies the left and right feet
in the preprocessing stage, separating the user recognition models for left and right feet. To measure
the performance of the model, the model performance for each foot was evaluated as the average
of five sets of cross-validation results, and the performance of the user recognition model was then
evaluated as the average of the model performances for each foot. The ratio of the learner data set to
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the execution data set was set to 8:2, and the ratio of the data set per person to the data set of the four
cardinal points was set to be equal.

5.1. Fuzzy Theory

Fuzzy theory began with the concept of accepting ambiguous middle values instead of the
dichotomous 1-0 logic characteristic of existing computers, expressing such values via many-valued
logic. So, for example, a characteristic value of α is expressed using weights as A 70, B 30, not as either
A or B. Figure 14 illustrates this concept.
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In this study, weights are assigned differently for each feature, based on standard deviation.
The standard deviation indicates how far the data are scattered from the average, so if the standard
deviation is small, the data are clustered tightly. Here, we calculated averages of the features for
each user and then calculated the standard deviations for these averages to determine how much the
features were scattered. Features with large standard deviations gave high weights and those with
small standard deviations gave low weights. We also set the range of the fuzzy graph to be (standard
deviation) × 10 to cover the full possible range of feature values.

Figure 15 is a fuzzy graph of the ‘width of foot’ feature. In a fuzzy graph that expresses one feature,
it is difficult to distinguish, for instance, user D from user E because the averages are very similar. For
this reason, we use nine features and set different weights for each feature to model significance so as
to output users with highest probability.
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Figure 16 shows the performance evaluation of the fuzzy algorithm. As shown in the results, the
accuracy of the TLS method is improved by 0.2% compared to the center of gravity rotation method.
This is because the TLS method performs better generalization of the foot pressure than the center of
gravity method, and extracts features with low standard deviation.Sensors 2019, 19, x FOR PEER REVIEW 16 of 24 

 

 
Figure 16. Performance evaluation of the fuzzy algorithm. 

5.2. Gaussian Naive Bayes (GNB) Method 

GNB is a method for applying a Bayesian algorithm given the assumption that the feature 
collected from the preprocessed data comprises continuous data with Gaussian distribution. GNB is 
a fast, easy to implement, and relatively high-performance classifier. Therefore, we chose to study it 
as the best machine learning algorithm for a real-time user recognition system. However, GNB tends 
to degrade if the basic independence hypothesis is not supported. That is, once data with a large error 
are input, the performance rapidly deteriorates [15]. In this study, we experimented with GNB with 
the same prior probability and used the GNB model implemented in Python’s scikit-learn package 
[32]. The results of the experiment are shown in Figure 17. 

 
Figure 17. Performance evaluation of the GNB algorithm. 

Figure 17 shows the performance evaluation of the GNB model. The accuracy of the TLS method 
has increased by 3.57% over the center of gravity method. This means that data preprocessed by the 
TLS method has little error data from the average compared to the data preprocessed by the center 
of gravity method. That is, the data preprocessed by the TLS method is better generalized. 
  

Figure 16. Performance evaluation of the fuzzy algorithm.

5.2. Gaussian Naive Bayes (GNB) Method

GNB is a method for applying a Bayesian algorithm given the assumption that the feature collected
from the preprocessed data comprises continuous data with Gaussian distribution. GNB is a fast, easy
to implement, and relatively high-performance classifier. Therefore, we chose to study it as the best
machine learning algorithm for a real-time user recognition system. However, GNB tends to degrade
if the basic independence hypothesis is not supported. That is, once data with a large error are input,
the performance rapidly deteriorates [15]. In this study, we experimented with GNB with the same
prior probability and used the GNB model implemented in Python’s scikit-learn package [32]. The
results of the experiment are shown in Figure 17.
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Figure 17 shows the performance evaluation of the GNB model. The accuracy of the TLS method
has increased by 3.57% over the center of gravity method. This means that data preprocessed by the
TLS method has little error data from the average compared to the data preprocessed by the center of
gravity method. That is, the data preprocessed by the TLS method is better generalized.
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5.3. K-Nearest Neighbor (K-NN)

The K-NN classifier finds the k closest neighbors of the pressure distribution with the highest
similarity and classifies this as the most strongly weighted group. The advantage of the K-NN classifier
is that it performs more accurately than the GNB algorithm, but it has the disadvantage of slow
processing speed for large learning sets [16]. However, since the proposed user recognition system
does not recognize many people, it does not require a large learning data set. Therefore, if the K-NN
algorithm is used in this system, the processing speed will not be slow enough to impede real-time
recognition. The K-NN algorithm model used in this system is the one implemented in scikit-learn [32].

The K-NN algorithm varies in accuracy and processing speed depending on the value of k.
Therefore, the K-NN model with optimal k is the optimal K-NN model. Figure 18 shows the accuracy
of the K-NN model as the value of k is increased. When k is 1, Err (1-NN) ≤ 2 × Ideal Err (error of the
ideal model, which is suitable for given data) proves [33,34] that the model performance is guaranteed
over 94%, and that increasing the value of k results in lower accuracy of both center of gravity and TLS
methods. Thus, in this study, performance is compared using a model with k set to 1.
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Figure 19 compares the results of the experiment with the data preprocessed by the center of
gravity and TLS methods. The results show that TLS is about 0.5% less accurate than other user
perception algorithms. This is because the K-NN algorithm is not affected as much by variance as
GNB or fuzzy theory, but is influenced by the number (k) of nearest distant features. In other words, if
the difference between the features is not large, the accuracy is lowered because the number of errors
with TLS is small. K-NN is also susceptible to the curse of dimensionality: if dimensional reduction is
applied, higher accuracy will result [35,36].Sensors 2019, 19, x FOR PEER REVIEW 18 of 24 
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5.4. Artificial Neural Network (ANN)

Artificial neural networks are designed to mimic the working principles of the human brain and
neurons. An ANN is made up of connections among nodes that mimic neurons and consists of one
input layer, one or more hidden layers, and one output layer. The speed depends on the size of the
hidden layer(s) and the number of repetitions [37,38]. This paper uses the ANN model implemented
in scikit-learn [32] and consists of nine characteristics in the input layer and the user in output layer.
The model was constructed by selecting the optimal hidden layer (M ×M ×M) and Max_Iteration
with Learning_Rate = 0.001, Activation = ‘Relu’, Optimizer = ‘Adam’, and Max_Iteration = N.

Figure 20 shows the accuracy obtained by increasing the hidden layer and Max_Iteration of the
ANN model. Figure 21 shows the time from the input of one footfall to the output. As shown in
Figure 20, when the hidden layer = 10, accuracy increases when Max_Iteration increases. However,
with the hidden layer = 50, the highest accuracy is obtained when Max_Iteration = 200, and finally the
highest accuracy of the ANN model is obtained when the hidden layer = 80 and Max_Iteration = 200.
In Figure 21, when the hidden layer = 80 and Max_Iteration = 200, the performance time is less than
2 µs, so both the accuracy and the performance time are satisfied. Therefore, we compare performance
using an ANN model with hidden layer = 80 and Max_Iteration = 200.
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5.5. Determinism Evaluation

There are two important points to consider in this study. The first is guaranteed determinism in
small embedded systems. That is, in a small embedded system, the calculation must be completed
within a certain time, and the time given in the system is from the moment the dementia patient or
senior citizen steps on the footpad to the time when the foot lifts off the foot pad. Therefore, since
foot-pressure measurement using the footpad is 20 Hz, the maximum performance time must be 50
µs in order to recognize the user before the next foot pressure distribution. If it is longer than 50 µs,
the next foot pressure will not allow recognition of the user and it will be necessary to wait until the
first subsequent foot pressure after user recognition is complete. Therefore, in order to guarantee
determinism, performance time must be guaranteed less than 50 µs.

The second point concerns accuracy. Even if determinism is guaranteed, if the accuracy is too
low, the system is useless. Therefore, the highest possible accuracy should be achieved under the
condition that determinism is guaranteed. In order to satisfy both conditions, performance evaluation
was carried out based on determinism in Raspberry Pi 3, which is a small embedded system. The
performance evaluation is as follows:

Table 1 displays a performance evaluation and accuracy on Raspberry Pi 3. The combining center
of gravity and KNN accuracy is the highest at 94.89%. Because KNN is an algorithm that compares the
similarity by calculating the distance between features. So it is a noise-robust algorithm compared
to algorithms. Moreover, in this paper, we set K = 1 to find the nearest neighbors to guarantee the
performance of the model. Therefore, KNN accuracy is best of all algorithms. And the combining
TLS and ANN is below expectations at 83.85%. Because, for real-time processing in an embedded
system environment, we should limit hidden layer size and the number of iterations. Therefore, ANN
performance is relatively low. The performance time is the average over ten repetitions of the time
taken for one foot pressure, and the maximum performance time is the longest time among these
times. Among preprocessing algorithms, the performance time of the center of gravity method is
24.44 µs, while the performance time of the TLS is 25.9 µs. Although the difference is only 1.5 µs,
the performance time of TLS depends on the number of data points for foot pressure. Therefore,
the maximum performance times differ by 2.2 µs. The user recognition algorithm with the shortest
performance time is the fuzzy algorithm, 0.71µs, while the K-NN algorithm has the longest performance
time at 3.87 µs. Among performance times of the whole system combining user recognition algorithm
and preprocessing, the system combining center of gravity and fuzzy theory is the fastest at 25.15 µs,
while the system with TLS and K-NN is the slowest at 29.77 µs.
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Table 1. Performance evaluation with Raspberry Pi 3.

Accuracy (%) and Performance Time (µs) on Raspberry Pi3

Preprocessing Performance
Time

Maximum
Performance

Time

Recognition
Algorithm

Performance
Time

Maximum
Performance

Time

Whole System
Performance

Time

Whole system
Maximum

Performance Time
Accuracy

Center of
gravity 24.44 µs 24.7 µs

FUZZY 0.71 µs 1.2 µs 25.15 µs 25.9 µs 81.36%

GNB 2.48 µs 2.9 µs 26.92 µs 27.6 µs 81.85%

K-NN 3.87 µs 5.3 µs 28.31 µs 30 µs 94.89%

ANN 2.51 µs 3.4 µs 26.95 µs 28.1 µs 82%

TLS 25.9 µs 26.9 µs

FUZZY 0.71 µs 1.2 µs 26.61 µs 28.1 µs 81.56%

GNB 2.48 µs 2.9 µs 28.38 µs 29.8 µs 85.42%

K-NN 3.87 µs 5.3 µs 29.77 µs 32.2 µs 94.27%

ANN 2.51 µs 3.4 µs 28.41 µs 30.3 µs 83.85%
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In this study, the algorithm should be selected to guarantee the highest accuracy under the
condition that determinism is guaranteed. If all the algorithms satisfy determinism because they
recognize the user within 50 µs, it would be best to use a system with the highest accuracy: one that
combines center of gravity rotation and the K-NN algorithm. However, as can be seen in Figure 23,
which shows the performance time graph of the user recognition algorithm as the amount of data
increases, when the amount of learning data is 4800 the performance time of the K-NN algorithm is 75
µs, but performance time increases rapidly as learning data increases [39,40]. Therefore, proceeding
with online learning to learn data in real time is not possible. In this system, we combine TLS and
GNB with the second highest accuracy, but with less variation in performance time depending on the
amount of data.
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6. Conclusions

In this study, we propose a system that recognizes the user in real time by measuring the user’s
foot pressure on a footpad. This system recognizes users as they simply step onto a footpad, to avoid
the disadvantages of existing systems: cumbersome authentication procedures, invasion of privacy,
and the necessity of having and using a specific device. For this purpose, the characteristics of the
user’s foot pressure are extracted and applied to various user recognition algorithms. We also studied
which algorithms guaranteed the greatest determinism by measuring the performance time of various
user-recognition algorithms. In our results, a combination of center of gravity and k-nearest neighbor
algorithms on a Raspberry Pi 3 computer showed about 95% accuracy for a performance time of about
28 µs.

Future research will recognize patterns of user behavior as well as user recognition by installing
footpads in various locations and exploiting communication between units. And we will provide
a more reliable service when the foot is partially stepped, in combination with the data analysis
technology on the existing smart home platform. Therefore, the security or communication that should
be considered important when creating an application will be covered in the future research, not in
this research that classification users. As a result, we will be able to identify a user’s health condition
and extent of dementia, and furthermore, we will study the behavior patterns of dementia patients to
create an environment where they can live independently without constant caregiver supervision.
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