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Abstract: Chlorophyll meters are promising tools for improving the nitrogen (N) management of
vegetable crops. To facilitate on-farm use of these meters, sufficiency values that identify deficient
and sufficient crop N status are required. This work evaluated the ability of three chlorophyll meters
(SPAD-502, atLEAF+, and MC-100) to assess crop N status in sweet pepper. It also determined
sufficiency values for optimal N nutrition for each meter for pepper. The experimental work was
conducted in a greenhouse, in Almería, Spain, very similar to those used for commercial production,
in three different crops grown with fertigation. In each crop, there were five treatments of different N
concentration in the nutrient solution, applied in each irrigation, ranging from a very deficient to
very excessive N supply. In general, chlorophyll meter measurements were strongly related to crop
N status in all phenological stages of the three crops, indicating that these measurements are good
indicators of the crop N status of pepper. Sufficiency values determined for each meter for the four
major phenological stages were consistent between the three crops. This demonstrated the potential
for using these meters with sufficiency values to improve the N management of commercial sweet
pepper crops.

Keywords: atLEAF; CCI; greenhouse; horticulture; nitrogen nutrition index; proximal optical sensors;
SPAD; vegetable crops

1. Introduction

To optimize nitrogen (N) fertilizer application, it is necessary to match the N supply to the
N demand [1,2]. A potentially very effective approach would be the rapid and frequent on-farm
assessment of crop N status that permits rapid adjustment of the N supply [3–5]. Proximal optical
sensors are a broad group of non-destructive monitoring tools that can be used to assess crop N
status [5–7]. One particularly promising group of proximal optical sensors are leaf chlorophyll meters.

Chlorophyll meters are relatively simple proximal optical sensors that indirectly assess relative
leaf chlorophyll content by measuring the differential absorbance and transmittance of different
radiation wavelengths by the leaf [3,7,8]. Given that leaf chlorophyll content is usually related to crop
N content [6,9,10], these measurements can be used to assess crop N status [3,7]. Three commercially-
available meters, with different characteristics, such as the wavelengths used, are the SPAD-502 meter
(Konica-Minolta, Tokyo, Japan), atLEAF+ sensor (FT Green LLC, Wilmington, DE, USA), and MC-100
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chlorophyll meter (Apogee Instruments, Inc., Logan, UT, USA) [5,7,11]. The SPAD-502 measures
absorbance at 650 nm (red) and 940 nm (NIR), the atLEAF+ at 660 nm and 940 nm, and the MC-100 at
653 nm and 931 nm. Using the two absorbance values, these three meters calculate a dimensionless
numerical value, which is related to chlorophyll content [11]. There are also differences in price
between these meters; the atLEAF+ sensor is almost 10 times cheaper than the SPAD-502 and the
MC-100 meters. The major practical advantages of chlorophyll meters as indicators of crop N status
are that they are easy to use, do not require any particular training, and they make measurements very
rapidly, with no or very little data processing [3,4,7,12].

Chlorophyll meter measurements do not directly indicate crop N status, so interpretation is
required [7]. Two broad approaches have been proposed to interpret chlorophyll meter measurements
to assess crop N status. One approach is the use of so-called “reference plots” [13,14]. This approach
divides the measured values of the crop by those from a well-fertilized reference plot that has no N
limitation [15]. This is considered to isolate the effect of relative N status from other confounding
factors that are common to both areas [16], which could greatly facilitate the adoption of chlorophyll
meters on farms. However, this approach is considered to be impractical for commercial fertigated
vegetable crops, given: (1) the additional cost of having separate fertigation sectors for reference plots,
and (2) the implicit assumption of sensor saturation may not apply when luxury N uptake occurs,
as has been reported for some vegetable species [5,11].

Another approach to interpret chlorophyll meter measurements, for the assessment of crop N
status, is the use of absolute sufficiency values based on direct measurement. The sufficiency value is
an absolute value, below which the crop is deficient and responds to additional N fertilizer [3,17], and
above which yield is not affected [3] and the immediate N supply may be excessive [5]. Sufficiency
values provide information on whether adjustments in N fertilization are required when absolute
measurements deviate from sufficiency values [18].

To determine sufficiency values, the nitrogen nutrition index (NNI) can be used [7,14]. The NNI is
an effective and established indicator of crop N status [19] that relates the actual crop N content to
the critical crop N content (i.e., the minimum N content necessary to achieve maximum growth of a
crop) [20]. Values of NNI = 1 correspond to optimal N nutrition [19]. Sufficiency values of chlorophyll
meter measurements are derived from the relationship between crop NNI and chlorophyll meter
measurements by solving the relationship for NNI = 1 [7,17]. Chlorophyll meter sufficiency values have
been determined for fresh tomato [4,21], and cucumber [17,22]. Sufficiency values are not available
for most vegetable species, including important crops such as sweet pepper. Additionally, sufficiency
values should be determined for specific agricultural systems and regions.

In Southeast (SE) Spain, the greenhouse-based intensive vegetable production system consists
of approximately 40,000 ha of relatively simple plastic greenhouses, most of which are concentrated
in the province of Almeria [23,24]. Nitrate (NO3

−) leaching from this system [25] is associated with
considerable aquifer NO3

− contamination [26]. Frequent monitoring of these fertigated vegetable
crops with chlorophyll meters is a promising approach to optimize crop N management, which would
reduce N fertilizer use, thereby contributing to reduced aquifer NO3

− contamination. In Almeria,
sweet pepper is either the most or second most important crop, depending on the year, occupying
approximately 8000 ha each year [27]. Globally, sweet pepper is grown on 1.9 million hectares [28].

The objectives of the present work were: (i) to evaluate the sensitivity of three different chlorophyll
meters to assess the crop N status of sweet pepper crops, and (ii) to calculate sufficiency values for
each chlorophyll meter for maximum crop growth for four different phenological stages. This work
was conducted in three different sweet pepper crops grown in different cropping years (2014–2015,
2016–2017, and 2017–2018) in a greenhouse. In each crop there was five different N treatments, ranging
from very deficient to very excessive.
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2. Materials and Methods

2.1. Experimental Site

Three sweet pepper (Capsicum annuum, cultivar ‘Melchor’) crops were grown in soil in a plastic
greenhouse, in conditions similar to commercial greenhouse vegetable production in SE Spain [27].
The experimental work was conducted at the Experimental Station of the University of Almeria (36◦51’N,
2◦16’W and 92 m elevation). The greenhouse had polycarbonate walls and a roof of low-density
polyethylene (LDPE) tri-laminated film (200 µm thickness), with transmittance to photosynthetically
active radiation (PAR) of approximately 60%. It had no heating or artificial light, had passive ventilation
(lateral side panels and flap roof windows), and an east–west orientation, with crop rows aligned
north–south. The cropping area was 1300 m2. The crops were grown in an “enarenado” soil, typical of
those used for soil-grown greenhouse production in Almería [25]. A more detailed description of the
soil used is available in Padilla et al. [29].

Above-ground drip irrigation was used for combined irrigation and mineral fertilizer application.
Drip tape was arranged in paired lines, with 0.8 m spacing between lines within each pair of lines,
1.2 m spacing between adjacent pairs of lines, and 0.5 m spacing between drip emitters within drip
lines, giving an emitter density of two emitters m−2. The greenhouse was organized into 24 plots,
measuring 6 m × 6 m; 20 plots were used in the current study. There were five N treatments with
four replicate plots per treatment, arranged in a randomized block design. Each plot contained three
paired lines of plants (six lines of plants in total), with 12 plants in each line, separated by a 0.5 m
spacing. One plant was positioned 60 mm from and immediately adjacent to each dripper, giving a
plant density of two plants m−2 and 72 plants per replicate plot. Sheets of polyethylene film (250 µm
thickness) buried up to 30 cm depth acted as a hydraulic barrier between plots [30].

2.2. Experimental Design

The three sweet pepper crops were grown in different years. The first crop, in 2014–2015
(“the 2014 crop”) was transplanted on 12 August 2014 and ended on 29 January 2015 (cropping period
of 170 days). The second crop, “the 2016 crop”, was transplanted on 19 July 2016 and ended on
24 March 2017 (cropping period of 248 days). The third crop, “the 2017 crop”, was transplanted on
21 July 2017 and ended on 20 February 2018 (cropping period of 214 days). The three crops were
transplanted as 35-day old seedlings using the same cultivar.

In each crop, there were five treatments of different N concentration in the nutrient solution,
applied by fertigation throughout the crops. In the 2014 crop, the N treatments commenced one day
after transplanting (DAT), in the 2016 crop at nine DAT, and in the 2017 crop at 10 DAT. Plants were
irrigated with water only (<0.04 mmol N L−1) prior to commencing the N treatments. The N treatments
were applied in every irrigation until the end of the crops. In each crop, the N treatments were very
deficient (N1), deficient (N2), conventional (N3), excessive (N4), and very excessive (N5). The average
mineral N (NO3

−–N + NH4
+–N) concentrations (mmol L−1), applied in the nutrient solution, and the

amounts (kg ha−1) of N applied in each N treatment in each crop are presented in Table 1. For all
treatments, N was applied mostly as nitrate (NO3

−), the rest as ammonium (NH4
+); on average 88% of

the N was applied as NO3
−. All other nutrients were applied in the nutrient solution to ensure they

were not limiting.
The crops were managed following local practice. The crops were physically supported using

a system of nylon cords placed horizontally along the side of the crop. Irrigation was scheduled to
maintain soil matric potential (SMP) in the root zone, at 12 cm deep, within −15 to −25 kPa; one
tensiometer (Irrometer, Co., Riverside, CA, USA) per plot was used to measure SMP. High temperature
within the greenhouse was controlled by white-washing the plastic cladding with CaCO3 suspension.



Sensors 2019, 19, 2949 4 of 20

Table 1. Mineral N (NO3
−–N + NH4

+–N) concentration in the nutrient solution and mineral N amount
applied in fertigation in the three sweet pepper crops.

2014 2016 2017

N Treatment
N

Concentration
(mmol L−1)

N Amount
(kg ha−1)

N
Concentration
(mmol L−1)

N Amount
(kg ha−1)

N
Concentration
(mmol L−1)

N Amount
(kg ha−1)

N1—Very deficient 2.4 64 2.0 88 2.0 86
N2—Deficient 6.2 189 5.3 302 5.7 304

N3—Conventional 12.6 516 9.7 561 9.7 519
N4—Excessive 16.1 804 13.5 1052 13.1 870

N5—Very excessive 20.0 990 17.7 1320 16.7 1198

2.3. Chlorophyll Meter Measurements

Chlorophyll meter measurements commenced on 27 (15 DAT), 18 (25 DAT), and 11 (21 DAT)
August for the 2014, 2016, and 2017 crops, respectively. In the 2014 crop, measurements were made
every seven days, and in the 2016 and 2017 crops every 14 days. In the three crops, measurements were
made until the end of the crop. Three different leaf-clip chlorophyll meters were used, the SPAD-502
meter (Konica Minolta, Inc., Tokyo, Japan), the atLEAF+ meter (FT Green LLC, Wilmington, DE,
USA), and the MC-100 Chlorophyll Concentration Meter (Apogee Instruments, Inc., Logan, UT, USA).
The respective measurement values are SPAD units, atLEAF units, and chlorophyll content index (CCI).
The SPAD-502 meter was used in each of the three crops (2014, 2016, and 2017). The atLEAF+ meter
was used in the 2016 and 2017 crops. The MC-100 meter was used only in the 2017 crop. The areas
measured in each measurement were 6 mm2 for the SPAD-502, 13 mm2 for the atLEAF+, and 63.6 mm2

for the MC-100.
Measurements were made on one leaf of each of the 16 marked plants in each replicate plot.

The value for each replicate plot was the mean of the 16 individual measurements. They were made at
the same time of day (8:00 to 10:00 solar time), before irrigation/fertigation. Measurements were made
on each plant on the most recently fully expanded and well-lit leaf, on the distal part of the adaxial
side of the leaf, midway between the margin and the mid-rib of the leaf. Measurement was made by
clipping the sensor onto the leaf. Leaves with physical damage or with condensed water were not
measured, alternative plants being selected.

2.4. Determination of Crop Nitrogen Nutrition Index

The critical N curve derived for greenhouse-grown sweet pepper, Nc = 4.488·DMP−0.196

(A. Rodríguez and R.B. Thompson, University of Almeria, personal communication), where DMP is
dry matter production, was used to calculate the nitrogen nutrition index (NNI) as a measure of crop
N status.

The NNI was calculated as:
NNI =

Nact
Nc

, (1)

where Nact is the measured N content of the crop and Nc is the critical N content obtained from
the critical N curve for each treatment for each biomass sampling date. NNI values for each day of
chlorophyll meter measurement were calculated by interpolating DMP and crop N content values
between the two biomass samplings on either side of the measurement date. Above-ground dry
matter production during the crop was measured by periodic biomass sampling (approximately every
14 days) by removing two complete plants in each replicate plot. All fresh material of each biomass
component (stem, leaf, and fruit) was weighed, and the dry matter contents determined by oven-drying
representative sub-samples at 65 ◦C until a constant weight was reached. Fruit production and pruning
was determined throughout the crop, in eight selected plants in each replicate plot. Representative
samples of leaves, stems, and fruit from each biomass sampling, from each replicate plot, were
ground sequentially in knife and ball mills. The total N content (%N) of each sample was determined
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using a Dumas-type elemental analyzer system (model Rapid N, Elementar, Analysensysteme GmbH,
Hanau, Germany). The mass of N in each relevant component was calculated from the %N and the
corresponding mass of dry matter. Total crop N uptake in each replicate plot, at each biomass sampling,
was the sum of N in all relevant components. Crop N content (%N) for each biomass sampling was
calculated, for each replicate plot, as crop N uptake divided by DMP.

2.5. Data Analysis

To account for differences in planting dates that occur in vegetable crops, and to facilitate the use
and interpretation of chlorophyll meters in practical farming, measurements and analyses were based
on phenological stage rather than on days after transplanting. Because of the frequent measurements
with chlorophyll meters during the pepper cycle, there were several dates of measurements within
each phenological stage. To integrate the various dates of measurement to provide a unique value for
each phenological stage, integrated values of each chlorophyll meter measurement (SPADi, atLEAFi,
and CCIi) and for the crop nitrogen nutrition index (NNIi), were calculated for each phenological stage.
These integrated values were calculated as:

Integrated value = 1/D ×
∑

(V × ds), (2)

where D was the total number of days of each phenological stage, V was the value measured at each
measurement date, and ds was the interval between two successive measurement dates (values of each
measurement date were pondered by the time elapsed between two consecutive measurements). Four
major phenological stages were considered: (i) vegetative, (ii) flowering, (iii) early fruit growth, and
(iv) harvest. The vegetative stage was from transplanting to the beginning of flowering. The flowering
stage was from the beginning of flowering until fruit set. Early fruit growth was from fruit set until
fruit maturation. The harvest stage commenced with the first fruit harvest and ended when the crop
finished, this was the longest of the four phenological stages.

To evaluate the sensitivity of SPADi, atLEAFi, and CCIi, to estimate crop NNIi, regression analyses
were performed for each phenological stage. Four types of regression equations (linear, quadratic,
power, and exponential) were considered, and the best equation was selected using the Akaike
information criterion [31], which represents the best compromise between the goodness of fit and the
complexity of a model. These regression analyses were performed for each phenological stage in each
crop, and for each crop in its entirety. Additionally, where there was more than one crop in which a
particular chlorophyll meter was used (SPAD, atLEAF+), these regression analyses were conducted on:
(a) pooled data for each phenological stage from the different crops, and (b) composite whole crop data
from the different crops. The CurveExpert Professional®2.2.0 software (Daniel G. Hyams) was used
for these regression analyses.

Sufficiency values of chlorophyll meter measurements for maximum crop growth were derived
for each phenological stage from the relationship between integrated chlorophyll meter measurements
and NNIi. The approach of Padilla et al. [4] was used, in which the Akaike Information Criterion (AIC)
best-fit equations that related chlorophyll meter measurements to NNI were solved for NNI = 1, which
is the value of NNI that represents the optimal N nutrition for maximum growth. Sufficiency values
of chlorophyll meter measurements were calculated for: (a) each phenological stage for each crop
considered separately, (b) each whole crop, (c) each phenological stage for multiple crops, and (d) the
whole crop using data from multiple crops.

3. Results

3.1. Effects of N Treatments on the Nitrogen Nutrition Index

In general, throughout the three crops (the 2014, 2016, and 2017 crops), NNI was consistently
clearly less than one in the N1 and N2 treatments (Figure 1). The exception was the 2016 crop, where
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the N2 treatment had NNI values close to one in the second half of the crop (Figure 1b). In the three
crops evaluated, N4 and N5 treatments had values higher than one for most of the crop. The N3
treatment in the three crops had NNI values that were consistently close to one for most of the crop
(Figure 1).
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Figure 1. Temporal dynamics of the nitrogen nutrition index (NNI) for the sweet pepper (Capsicum
annuum) crops in the (a) 2014, (b) 2016, and (c) 2017 crops, subjected to five different N treatments with
four repetitions. Values are means (n = 4) ± standard error (±SE). DAT is days after transplanting.
Vertical dotted lines represent the different phenological stages; the horizontal dotted line indicates
NNI = 1.

In each of the three crops, there were significant differences in integrated NNI (NNIi) values
between the N1, N2, N3, and N4 treatments in the vegetative phenological stage (Table 2). There were
no significant differences in NNIi between the N4 and N5 treatments in the vegetative stage in the three
crops (Table 2). Generally, the statistical results from comparing the NNIi values of the N treatments
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were very similar for the flowering, early fruit growth, and harvest phenological stages, in each of the
three crops (Table 2). There were some exceptions, mostly when the NNIi values of the N3 treatment
were not significantly different to those of the N4 treatment (Table 2).

Table 2. Integrated nitrogen nutrition index (NNIi) values for each N treatment within each phenological
stage in each of the three sweet pepper (Capsicum annuum) crops. Different lower-case letters (a–d)
show significant differences between N treatments within each phenological stage and crop, after the
least significant difference (LSD) post-hoc test of ANOVA. p-value < 0.001. Values are means (n = 4) ±
standard error (SE). Each crop was subjected to five different N treatments with four repetitions.

Phenological Stage Treatment 2014 Crop 2016 Crop 2017 Crop

Vegetative

N1 0.82 ± 0.02a 0.65 ± 0.04a 0.64 ± 0.03a

N2 0.94 ± 0.02b 0.79 ± 0.04b 0.80 ± 0.03b

N3 1.06 ± 0.02c 0.88 ± 0.02c 0.92 ± 0.02c

N4 1.12 ± 0.02d 0.98 ± 0.01d 1.05 ± 0.02d

N5 1.12 ± 0.01d 1.01 ± 0.02d 1.05 ± 0.02d

Flowering

N1 0.59 ± 0.01a 0.62 ± 0.04a 0.59 ± 0.02a

N2 0.80 ± 0.02b 0.89 ± 0.03b 0.82 ± 0.02b

N3 1.11 ± 0.02c 0.92 ± 0.03b 1.05 ± 0.03c

N4 1.13 ± 0.01c 1.06 ± 0.03c 1.07 ± 0.02c

N5 1.11 ± 0.02c 1.10 ± 0.02c 1.08 ± 0.02c

Early fruit growth

N1 0.58 ± 0.03a 0.62 ± 0.05a 0.51 ± 0.02a

N2 0.81 ± 0.02b 0.85 ± 0.01b 0.74 ± 0.02b

N3 1.03 ± 0.03c 0.99 ± 0.01c 1.02 ± 0.01c

N4 1.09 ± 0.01cd 1.11 ± 0.03d 1.09 ± 0.01d

N5 1.10 ± 0.00d 1.11 ± 0.03d 1.12 ± 0.02d

Harvest

N1 0.56 ± 0.02a 0.74 ± 0.01a 0.51 ± 0.02a

N2 0.77 ± 0.01b 0.93 ± 0.01b 0.77 ± 0.01b

N3 0.99 ± 0.00c 1.01 ± 0.02c 0.96 ± 0.02c

N4 1.02 ± 0.01cd 1.07 ± 0.02d 1.05 ± 0.01d

N5 1.03 ± 0.00d 1.03 ± 0.02cd 1.05 ± 0.02d

3.2. Effects of N Treatments on Chlorophyll Meters Measurements

The temporal dynamics of measurements with the three chlorophyll meters (SPAD-502, atLEAF+,
and MC-100) throughout the crops were very similar, regardless of the chlorophyll meter (Figure 2).
Generally, treatment N1 had the lowest values, treatment N2 was lower than treatments N3, N4,
and N5, treatments N4 and N5 were the highest and were very similar, and treatment N3 was often
intermediate between treatments N2 and N4. At times, values from treatments N3, N4, and N5 were
all similar.
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Figure 2. Temporal dynamics of chlorophyll meters measurements of SPAD values (a–c), atLEAF values
(d,e), and CCI values (f), for the sweet pepper (Capsicum annuum) crops subjected to five different N
treatments with four repetitions. Vertical dotted lines and numbers represent the different phenological
stages: 1—vegetative, 2—flowering, 3—early fruit growth, 4—harvest. Values are means (n = 4) ±
standard error (SE). DAT is days after transplanting.

In each of the three crops (2014, 2016, and 2017) there were generally significant differences in
integrated SPAD (SPADi) values between the N1, N2, and N3 treatments in each phenological stage
(vegetative, flowering, early fruit growth, and harvest) (Table 3). There were generally no significant
differences in SPADi values between the N3 and N4 treatments. In all of the phenological stages of
crops, there were no significant differences in SPADi between the N4 and N5 treatments (Table 3).

Regarding the atLEAF+ meter, there were significant differences in integrated atLEAF (atLEAFi)
values between the N1 and N2 treatments in all phenological stages in the 2016 and 2017 crops (Table 4).
However, for the 2016 crop in most phenological stages there were no significant differences in atLEAFi
values between the N2 and N3, but there were significant differences between these treatments in the
2017 crop. For both crops there were no significant differences between the N3 and N4 treatments, and
between the N4 and N5 treatments in most phenological stages (Table 4).
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Table 3. Integrated SPAD (SPADi) values for each N treatment within each phenological stage in each
of the three sweet pepper (Capsicum annuum) crops. Different lower-case letters (a–d) show significant
differences between N treatments within each phenological stage and crop, after LSD post-hoc test of
ANOVA. p-value < 0.001. Values are means (n = 4) ± standard error (SE). Each crop was subjected to
five different N treatments with four repetitions.

Phenological Stage Treatment 2014 Crop 2016 Crop 2017 Crop

Vegetative

N1 45.0 ± 0.1a 42.5 ± 0.2a 40.8 ± 0.2a

N2 47.3 ± 0.3b 46.4 ± 0.8b 44.7 ± 0.9b

N3 50.2 ± 0.4c 47.3 ± 0.7bc 50.8 ± 0.7c

N4 51.2 ± 0.6cd 48.6 ± 0.6bc 52.0 ± 0.4c

N5 52.0 ± 0.5d 49.5 ± 1.1c 51.8 ± 0.7c

Flowering

N1 47.7 ± 0.7a 51.1 ± 0.7a 45.8 ± 0.5a

N2 52.5 ± 0.1b 57.6 ± 0.4b 50.9 ± 0.4b

N3 57.9 ± 0.5c 59.5 ± 0.5c 55.2 ± 0.5c

N4 58.8 ± 0.2cd 61.4 ± 0.4d 55.8 ± 0.6c

N5 59.6 ± 039d 61.3 ± 0.4d 55.8 ± 0.3c

Early fruit growth

N1 49.8 ± 1.0a 55.9 ± 0.6a 45.7 ± 0.5a

N2 59.1 ± 0.3b 59.4 ± 0.4b 54.7 ± 0.2b

N3 64.5 ± 0.4c 62.5 ± 0.7c 61.8 ± 0.7c

N4 65.5 ± 0.4cd 64.5 ± 0.2d 62.4 ± 0.5c

N5 67.0 ± 0.4d 65.2 ± 0.3d 62.7 ± 0.4c

Harvest

N1 52.7 ± 1.2a 54.9 ± 0.7a 43.2 ± 0.8a

N2 63.2 ± 0.3b 59.7 ± 0.3b 51.2 ± 1.9b

N3 67.4 ± 0.3c 62.4 ± 0.2c 55.9 ± 1.6c

N4 69.3 ± 0.2d 63.0 ± 0.4cd 62.3 ± 0.6d

N5 70.0 ± 0.3d 63.7 ± 0.4d 62.3 ± 1.0d

Table 4. Integrated atLEAF (atLEAFi) values for each N treatment within each phenological stage in
the two sweet pepper (Capsicum annuum) crops. Different lower-case letters (a–d) show significant
differences between treatments within each phenological stage and crop, after LSD post-hoc test of
ANOVA. p-value < 0.001. Values are means (n = 4) ± standard error (SE). Each crop was subjected to
five different N treatments with four repetitions.

Phenological Stage Treatment 2016 Crop 2017 Crop

Vegetative

N1 45.1 ± 0.6a 42.7 ± 0.3a

N2 46.8 ± 0.6ab 46.1 ± 0.6b

N3 48.4 ± 0.4bc 51.3 ± 0.4c

N4 50.1 ± 0.7cd 51.6 ± 0.4c

N5 51.0 ± 1.1d 52.4 ± 0.6c

Flowering

N1 48.2 ± 0.6a 46.7 ± 0.4a

N2 53.2 ± 0.3b 50.2 ± 0.4b

N3 54.3 ± 0.2b 53.5 ± 0.3c

N4 55.8 ± 0.3c 54.5 ± 0.3d

N5 55.9 ± 0.2c 54.5 ± 0.2d

Early fruit growth

N1 53.8 ± 0.6a 46.5 ± 0.7a

N2 56.7 ± 0.6b 53.0 ± 0.4b

N3 58.8 ± 0.6c 58.1 ± 0.4c

N4 59.4 ± 0.1cd 58.0 ± 0.6c

N5 60.3 ± 0.2d 58.2 ± 0.2c

Harvest

N1 53.4 ± 0.3a 43.1 ± 0.8a

N2 56.3 ± 0.4b 49.2 ± 0.8b

N3 57.2 ± 0.2bc 52.2 ± 0.8c

N4 57.3 ± 0.2c 55.9 ± 0.4d

N5 58.0 ± 0.2c 55.6 ± 0.4d
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For integrated CCI values (CCIi) measured with the MC-100 meter in the 2017 crop, there were
significant differences in CCIi between N1 and N2 treatments, and between N2 and N3 treatments
(Table 5). There were no significant differences in CCIi between the N4 and N5 treatments (Table 5).

Table 5. Integrated CCI (CCIi) values for each N treatment within each phenological stage in the
2017 sweet pepper (Capsicum annuum) crop. Different lower-case letters (a–d) show significant
differences between N treatments within each phenological stage, after LSD post-hoc test of ANOVA.
p-value < 0.001. Values are means (n = 4) ± standard error (SE). The crop was subjected to five different
N treatments with four repetitions.

Phenological Stage Treatment CCIi

Vegetative

N1 22.3 ± 0.5a

N2 29.1 ± 1.5b

N3 40.5 ± 1.4c

N4 44.8 ± 1.2c

N5 45.0 ± 2.0c

Flowering

N1 29.9 ± 0.8a

N2 39.5 ± 0.7b

N3 49.2 ± 0.8c

N4 52.9 ± 1.8d

N5 52.2 ± 1.3cd

Early fruit growth

N1 29.0 ± 1.0a

N2 47.5 ± 0.8b

N3 69.7 ± 2.1c

N4 71.6 ± 1.1c

N5 72.2 ± 1.4c

Harvest

N1 25.5 ± 1.1a

N2 39.2 ± 3.4b

N3 50.2 ± 3.2c

N4 71.1 ± 2.4d

N5 70.7 ± 2.5d

3.3. Relationships between Integrated Chlorophyll Meters Measurements and Integrated NNI

Relationships between SPADi and NNIi values for each phenological stage in each of the three
crops had coefficients of determination (R2) of 0.89–0.97, 0.80–0.88, and 0.86–0.96 for the 2014, 2016,
and 2017 crops, respectively (Table 6). When averaged for the duration of each crop, the R2 values
of the 2014, 2016, and 2017 crops were 0.93, 0.86, and 0.90, respectively (Table 6). Generally, in each
of the three crops, the relationships between SPADi and NNIi values had similar R2 values for the
different phenological stages (Table 6). Combining the three crops together, the R2 values of the four
phenological stages ranged from 0.64 (harvest) to 0.85 (early fruit growth), with an average R2 value
of 0.76 across the four phenological stages (Table 6). There was no evidence of saturation of SPAD
values at higher NNI values in any of the four phenological stages in any of the three crops (Figure 3).
Regression analysis showed that SPAD values increased when NNI values exceeded the optimal value,
for instance, for crop growth.



Sensors 2019, 19, 2949 11 of 20

Table 6. Coefficients of determination (R2) of regressions between integrated SPAD (SPADi) values and integrated nitrogen nutrition index (NNIi) for each phenological
stage in each of the three sweet pepper (Capsicum annuum) crops independently, and for the three crops together. Each crop was subjected to five different N treatments
with four repetitions. According to the Akaike information criterion, the best-fit regression model (exponential, linear, power, quadratic, and natural logarithm) is
shown. Also, the fitted equation and standard error of the estimate (SEE) are presented. All regressions were highly significant at p-value <0.001. N is the number of
data points of regressions.

Crop Phenological Stage Regression Equation R2 SEE (±NNIi) N

2014

Vegetative Quadratic NNIi = −0.004·SPADi2 + 0.4324·SPADi − 10.5 0.89 0.04 20
Flowering Linear NNIi = 0.047 SPADi − 1.6315 0.95 0.05 20

Early fruit growth Exponential NNIi = 0.087e0.038·SPADi 0.92 0.05 20
Harvest Exponential NNIi = 0.082e0.0362·SPADi 0.97 0.04 20

2016

Vegetative Natural Logarithm NNIi = 2.127·log(SPADi) − 7.319 0.80 0.07 20
Flowering Linear NNIi = 0.043·SPADi − 1.5753 0.88 0.07 20

Early fruit growth Natural Logarithm NNIi = 3.079·log(SPADi) − 11.741 0.88 0.07 20
Harvest Natural Logarithm NNIi = 1.981·log(SPADi) − 7.1744 0.86 0.05 20

2017

Vegetative Natural Logarithm NNIi = 1.517·log(SPADi) − 4.9752 0.86 0.07 20
Flowering Natural Logarithm NNIi = 2.379·log(SPADi) − 8.5002 0.92 0.06 20

Early fruit growth Exponential NNIi = 0.064·e0.0453·SPADi 0.96 0.06 20
Harvest Natural Logarithm NNIi = 1.349·log(SPADi) − 4.523 0.87 0.08 20

2014 + 2016 + 2017

Vegetative Quadratic NNIi = −0.002·SPADi2 + 0.1935·SPADi − 4.57 0.82 0.07 60
Flowering Quadratic NNIi = −0.002·SPADi2 + 0.2031·SPADi − 5.5115 0.73 0.11 60

Early fruit growth Power NNIi = 0.00007·SPADi2.3116 0.85 0.08 60
Harvest Natural Logarithm NNIi = 1.125·log(SPADi) − 3.6978 0.64 0.11 60
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Figure 3. Relationships between integrated SPAD (SPADi) values and the integrated crop nitrogen
nutrition index (NNIi) for each phenological stage in each of the three sweet pepper (Capsicum annuum)
crops. Each crop was subjected to five different N treatments with four repetitions. The bold black line
and the equation represent the adjustment for the combined dataset of the three crops together. Results
of regression for each crop separately are in Table 6.

For the atLEAF+ meter, relationships between atLEAFi values and NNIi values for each
phenological stage, in each of the crops, had R2 values of 0.74 to 0.94 (Table 7). Averaged for
each crop, R2 values were 0.81 and 0.90 for the 2016 and 2017 crops, respectively (Table 7). There were
no appreciable differences between the four phenological stages within each crop (Table 7). Combining
the data of the two crops, the R2 values of the four phenological stages ranged from 0.77 (harvest) to
0.83 (flowering), with an average R2 value for the two entire crops of 0.80 (Table 7). There was no
appreciable saturation of atLEAF values at higher NNI values in any of the four phenological stages in
the two crops (Figure 4).
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Table 7. Coefficients of determination (R2) of regressions between integrated atLEAF (atLEAFi) values and integrated nitrogen nutrition index (NNIi) for each
phenological stage in each of the two sweet pepper (Capsicum annuum) crops independently and for the two crops together. Each crop was subjected to five different N
treatments with four repetitions. According to the Akaike information criterion, the best-fit regression model (exponential, linear, power, quadratic, and natural
logarithm) is shown. Also, it is presented the fitted equation and standard error of the estimate (SEE). All regressions were highly significant, with p-value < 0.001. N
is the number of data points of regression.

Crop Phenological Stage Model Equation R2 SEE (±NNIi) N

2016

Vegetative Natural Logarithm NNIi = 2.333·log(atLEAFi) − 8.1826 0.74 0.08 20
Flowering Linear NNIi = 0.057·atLEAFi − 2.1224 0.85 0.07 20

Early fruit growth Natural Logarithm NNIi = 4.042·log(atLEAFi) − 15.458 0.84 0.08 20
Harvest Natural Logarithm NNIi = 3.561·log(atLEAFi) − 13.406 0.81 0.06 20

2017

Vegetative Natural Logarithm NNIi = 1.841·log(atLEAFi) − 6.2617 0.84 0.07 20
Flowering Natural Logarithm NNIi = 3.117·log(atLEAFi) – 11*.38 0.94 0.05 20

Early fruit growth Exponential NNIi = 0.026·e0.0637·atLEAFi 0.93 0.07 20
Harvest Natural Logarithm NNIi = 1.996·log(atLEAFi) − 6.9817 0.90 0.07 20

2016 + 2017

Vegetative Natural Logarithm NNIi = 1.988·log(atLEAFi) − 6.8381 0.79 0.07 40
Flowering Natural Logarithm NNIi = 2.828·log(atLEAFi) − 10.284 0.83 0.08 40

Early fruit growth Exponential NNIi = 0.027·e0.0617·atLEAFi 0.82 0.10 40
Harvest Natural Logarithm NNIi = 1.724·log(atLEAFi) − 5.9541 0.77 0.09 40
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Figure 4. Relationships between integrated atLEAF (atLEAFi) values and the integrated crop nitrogen
nutrition index (NNIi) for each phenological stage in each of the two sweet pepper (Capsicum annuum)
crops. Each crop was subjected to five different N treatments with four repetitions. The bold black line
and the equation represent the adjustment for the combined dataset of the two crops together. Results
of regression for each crop separately are in Table 7.

Relationships between CCIi and NNIi values for each phenological stage of the 2017 crop had R2

values of 0.87–0.96 (Table 8). The lowest R2 value was observed in both the vegetative and harvest
stages, and the highest value in the early fruit growth stage. The average R2 value for all four
phenological stages was 0.91 (Table 8). There was no indication of saturation of CCIi values at higher
NNI values in any of the four phenological stages (Figure 5).

Table 8. Coefficients of determination (R2) of regressions between integrated chlorophyll content index
(CCIi) values and the integrated nitrogen nutrition index (NNIi) for each phenological stage in a sweet
pepper (Capsicum annuum) in 2017. The crop was subjected to five different N treatments with four
repetitions. According to the Akaike information criterion, the best-fit regression model (exponential,
linear, power, quadratic, and natural logarithm) is shown. Also, it is presented the fitted equation and
standard error of the estimate (SEE). All regressions were highly significant, with p-value < 0.001. N is
the number of data points of regression.

Phenological Stage Model Equation R2 SEE
(±NNIi) N

Vegetative Natural Logarithm NNIi = 0.537·log(CCIi) − 1.0186 0.87 0.06 20
Flowering Quadratic NNIi = −0.001·CCIi2 + 0.0683·CCIi − 0.9521 0.94 0.05 20

Early fruit growth Linear NNIi = 0.014·CCIi + 0.1119 0.96 0.05 20
Harvest Natural Logarithm NNIi = 0.487·log(CCIi) − 1.0157 0.87 0.08 20
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Figure 5. Relationships between integrated chlorophyll content index (CCIi) values and the integrated
crop nitrogen nutrition index (NNIi) for each phenological stage in a sweet pepper (Capsicum annuum)
crop in 2017. The crop was subjected to five different N treatments with four repetitions. Results of
regression are in Table 8.

3.4. Sufficiency Values of Chlorophyll Meters Measurements

The sufficiency values for each phenological stage of each chlorophyll meter for maximum crop
growth were derived, from the relationship between the integrated chlorophyll meter measurements
of a given phenological stage and integrated NNI value of that phenological stage. Sufficiency values
for the three chlorophyll meters for each of the four phenological stages in each of the three crops, and
when the three crops were considered together are presented in Table 9.

SPAD sufficiency values in the vegetative stage were lower than for the other three phenological
stages in each of the three crops. The average value for the vegetative stage of the three crops considered
together was 49.7 ± 2.3 SPAD units. Sufficiency values for the flowering stage were intermediate
between the vegetative and the early fruit growth and harvest stages, which were similar. The average
sufficiency value for the flowering stage of the three crops considered together was 56.6 ± 4.6 SPAD
units. SPAD sufficiency values for the early fruit growth and harvest stages were similar in the 2016
and 2017 crops, the average value for both stages for both crops was 61.4 ± 0.6 SPAD units. In the 2014
crop, sufficiency values of these two phenological stages were slightly higher, with the average value
for both stages being 66.5 ± 2.4 SPAD units. The SPAD sufficiency values for the early fruit growth
and harvest phenological stages of the three crops, considered together, were 62.7 ± 2.3 and 65.2 ± 6.3
SPAD units, respectively (Table 9). Averaged across all four phenological stages and the three crops,
the single SPAD sufficiency value for the entire crop was 58.6 ± 3.5 SPAD units.

Sufficiency atLEAF values were lowest in the vegetative stage, intermediate in the flowering
stage, and highest in the early fruit growth and harvest stages, for both crops (Table 9). Sufficiency
atLEAF values for each phenological phase averaged for the two crops considered together ranged
between 51.6 ± 1.9 atLEAF units (vegetative stage) and 58.1 ± 1.5 atLEAF units (early fruit growth
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stage) (Table 9). Averaged across all four phenological stages and the two crops, the atLEAF sufficiency
value for the entire crop was 54.9 ± 0.8 atLEAF units.

Sufficiency values of CCI, measured with the MC-100 meter in the 2017 crop, were lowest in the
vegetative stage (42.9 ± 4.9), intermediate in the flowering stage (46.5 ± 3.4), and highest in the early
fruit growth and harvest stages (average value for the two stages of 64.3 ± 1.5) (Table 9). Averaged
across all four phenological stages, the CCI sufficiency value for the entire crop was 54.5 ± 5.7.

The relative differences in sufficiency values between phenological stages were notably larger
for CCI than for SPAD and atLEAF. In the 2017 crop, which was the only crop in which all three
chlorophyll meters were used, relative differences in the sufficiency values between the flowering
and vegetative stages were 5.4% for SPAD, 2.8% for atLEAF, and 7.7% for CCI. The respective relative
differences in the sufficiency values between the early fruit growth and flowering stages were 10.9%
(SPAD), 7.0% (atLEAF), and 29.3% (CCI).

Table 9. Sufficiency values of SPAD, atLEAF, and CCI, in each of the four phenological stages, for
individual sweet pepper (Capsicum annuum) crops and for all years combined. Values are means ±
standard error (SE).

Crop Phenological Stage SPAD atLEAF CCI

2014

Vegetative 48.1 ± 1.0

/ /
Flowering 56.4 ± 1.1

Early fruit growth 64.1 ± 1.4
Harvest 68.8 ± 0.1

2016

Vegetative 49.9 ± 1.5 51.2 ± 1.7

/
Flowering 60.1 ± 1.5 54.9 ± 1.3

Early fruit growth 62.7 ± 1.4 58.7 ± 1.2
Harvest 61.9 ± 1.5 57.1 ± 0.9

2017

Vegetative 51.3 ± 2.2 51.6 ± 1.9 42.9 ± 4.9
Flowering 54.2 ± 1.3 53.1 ± 0.8 46.5 ± 3.4

Early fruit growth 60.8 ± 1.2 57.1 ± 1.1 65.7 ± 4.0
Harvest 60.1 ± 3.5 54.5 ± 1.9 62.8 ± 10.1

All years

Vegetative 49.7 ± 2.3 51.6 ± 1.9

/
Flowering 56.6 ± 4.6 54.1 ± 1.5

Early fruit growth 62.7 ± 2.3 58.1 ± 1.5
Harvest 65.2 ± 6.3 56.5 ± 2.9

4. Discussion

Integrated measurements of the three chlorophyll meters (SPAD-502, atLEAF+, and MC-100)
were very strongly related to integrated NNI for: (a) each of the four phenological stages (vegetative,
flowering, early fruit growth, and harvest) of each pepper crop, (b) each crop considered in its entirety,
(c) individual phenological stage, using composite data for all crops in which measurements were
made, and (d) single values for the entirety of the crop, for the crops in which measurements were
made. These results demonstrate that the three chlorophyll meters provided good estimations of the
crop N status of sweet pepper. This is in agreement with studies that reported strong relationships
between chlorophyll meter measurements and crop N status, in various horticultural [4,17,32] and
cereal crops [33–35].

Considering the four individual phenological stages, the strongest relationships between the three
integrated chlorophyll meter measurements and NNIi were obtained in the flowering and early fruit
growth stages, which occurred in the middle of the crops, for individual crops, and for when data
was combined from multiple crops. Similarly, the strongest relationship between chlorophyll meter
measurements and leaf N concentration occurred in the middle of the growing season in potatoes [3].
In the present study, there were also strong relationships at the beginning (in the vegetative stage) and
at the end of the crop (in the harvest stage), but with slightly lower R2 values than in the flowering
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and early fruit growth stages. The strong relationship in the vegetative stage of sweet pepper, in this
study, contrasts with the results for cucumber in a previous study, where there was a weak relationship
between SPAD measurements and NNI in the vegetative stage [17], which was attributed to limited
differentiation of the N treatments at the beginning of that crop [17]. In the current study, the high
R2 values between the integrated chlorophyll meters measurements and NNIi in each of the four
phenological stages, regardless of year and chlorophyll meter, demonstrated the robust ability of
chlorophyll meter measurements to be used as indicators of the crop N status of sweet pepper.

For the three chlorophyll meters, there was no evidence of saturation when relating measurements
to NNIi in any of the four phenological stages and in the different crops. Regression analysis showed
that SPADi, atLEAFi, and CCIi values increased when NNIi values exceeded the optimal value for
the crop growth of one. Saturation of SPAD-502 and atLEAF+ measurements at high chlorophyll
contents, which are associated with high crop N contents has been often reported [11,33,36]. However,
saturation of chlorophyll meter measurements does not always occur at higher crop N contents [3,4],
as it depends on whether leaf chlorophyll contents are sufficiently high to cause saturation [11]. None
of the three chlorophyll meters evaluated were able to differentiate between the N4 and N5 treatments.
This was not due to a saturation response of the chlorophyll meters, but rather was due to the similar
crop N status of these two treatments, as indicated by the very similar NNIi values. The NNIi values of
treatments N4 and N5 were not significantly different for any of the three crops.

Regarding the calculation of sufficiency values of the SPAD-502 meter, there were only small
differences in sufficiency values for each phenological stage between the three different crops. Similarly,
there were only small differences between sufficiency values for individual crops and the corresponding
sufficiency value for the combined crop data set, for a given phenological stage. These data indicate
that the sufficiency values determined for each phenological stage were very consistent between
the three different years, and that SPAD sufficiency values obtained with the combined dataset are
representative of the three crops.

The relative constancy of SPAD sufficiency values over time can be assessed by comparing the
sufficiency values of the different phenological stages, using the combined data of the three crops.
The relative difference between the sufficiency values of the vegetative and flowering stages was 12.2%,
between flowering and early fruit growth was 9.7%, and between the early fruit growth and harvest
stages was 3.8%. The differences between the sufficiency values for successive stages diminished as
the crop grew. This was attributed to the temporal dynamics of chlorophyll meter values (Figure 2)
because SPAD measurements increased in the early part of the crops and reached relatively stable
values midway through the crops. There was a large difference in SPAD sufficiency values between
the harvest stage (last phenological stage of the crop) and the vegetative stage (first phenological stage
of the crop) of 15.5 SPAD units, the relative difference being 23.4%. This large difference during the
crop suggests that a single SPAD sufficiency value cannot be used for a whole sweet pepper crop. In
contrast, single SPAD sufficiency values for a whole crop have been proposed for cucumber [17,22]
and grapevine [37].

The SPAD sufficiency values derived for sweet pepper, in the present study, are generally higher
than reported for other horticultural crops; the highest sufficiency value obtained in the present work
was 64.0 ± 1.3 SPAD units. In indeterminate tomato, the average sufficiency value for the complete
crop cycle was 54.2 SPAD units [21]. In cucumber, sufficiency values have been recommended for the
whole crop of 45.2 SPAD units [17] and 44.9 SPAD units [22]. In potato, a whole crop sufficiency value
of 38.2 SPAD units was recommended [38]. The appreciably higher sufficiency values for the SPAD-502
meter for sweet pepper in the present work can be explained by the very high leaf chlorophyll content
of sweet pepper [11]. In a study with 22 common crop species, sweet pepper had the highest leaf
chlorophyll concentration, which was double that of maize [39].

The performance of the atLEAF+ and MC-100 meters was similar to the SPAD-502 meter in terms
of sufficiency values. With both the atLEAF+ and MC-100 meters, the lowest sufficiency values were
in the vegetative stage, and the highest in the early fruit growth and harvest stages. As with the SPAD,
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these temporal variations were associated with the dynamics of chlorophyll meter measurements
throughout the crop, which initially increased and then were relatively constant in the second half
of the crop. For the atLEAF+ meter, there were only small differences in the sufficiency value, for
each of the four phenological stages, between the 2016 and 2017 crops. This indicates that the atLEAF
sufficiency values determined were consistent between the two crops. It also demonstrates that the
sufficiency values calculated using the combined data set of the two crops are representative of both
crops. For the MC-100 meter, this is one of the first studies to provide sufficiency values of CCI. With
this chlorophyll meter in the current study, there was only one crop; so, it was not possible to assess the
consistency of sufficiency values between crops. The relative differences in sufficiency values between
each of the four phenological stages, for the atLEAF+ sensor and the MC-100 meter, were calculated
to assess the consistency of sufficiency values for each chlorophyll meter over time. The atLEAF+

meter had the narrowest range in sufficiency values, with the difference between the early fruit growth
stage (maximum sufficiency value) and the vegetative stage (minimum sufficiency value) being 11.2%.
The largest range of sufficiency values was with the MC-100 meter, where the relative difference
between the maximum sufficiency value (early fruit growth stage) and the minimum sufficiency value
(vegetative stage) was 34.0%.

Following the evaluation and the derivation of sufficiency values, chlorophyll meters could be
used to frequently assess the crop N status of fertigated pepper crops that frequently receive N by
regular drip irrigation. In greenhouses in SE Spain, N and other nutrients are applied every one
to four days in each irrigation. Sufficiency values are required for practical real time monitoring of
crop N status, using chlorophyll meters. Frequent effective monitoring of crop N status will enable
rapid correction of crop N status by adjusting mineral N fertilizer application when chlorophyll meter
measurements deviate from sufficiency values [4], thereby ensuring optimal N nutrition. This will also
reduce excessive “insurance” N applications that are applied to avoid the risk of N deficiency. In crops
grown with fertigation systems, where N is applied in every irrigation, adjustment in N fertilization
can be made very soon after such deviations are detected [5]. The results obtained in this study may be
applied to sweet pepper crops grown in greenhouses; for sweet pepper crops grown outdoors, further
research is required to validate these sufficiency values.

Overall, the results of this study show the potential of chlorophyll meters for monitoring crop N
status and to assist with N fertilizer management of sweet pepper. The strong relationship between
integrated chlorophyll meter measurements and NNIi for each phenological stage of each crop, when
considered separately and as a combined dataset from different crops, demonstrated the consistency
and robustness of chlorophyll meter measurements as indicators of crop N status. The sufficiency
values calculated for chlorophyll meter measurements in each phenological stage and their consistency
throughout crops showed the potential for the sufficiency values to be used in commercial farming to
achieve improved N management of sweet pepper crops.
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parameters and morphological features of festulolium (Festulolium braunii K. Richert A. Camus) in response
to nitrogen dosage. Photosynthetica 2017, 55, 20–30. [CrossRef]

11. Padilla, F.M.; de Souza, R.; Peña-Fleitas, M.T.; Gallardo, M.; Giménez, C.; Thompson, R.B. Different responses
of various chlorophyll meters to increasing nitrogen supply in sweet pepper. Front. Plant Sci. 2018, 9, 1752.
[CrossRef]

12. Minotti, P.L.; Halseth, D.E.; Sieczka, J.B. Field chlorophyll measurements to assess the nitrogen status of
potato varieties. HortScience 1994, 29, 1497–1500. [CrossRef]

13. Westerveld, S.M.; McKeown, A.W.; Scott-Dupree, C.D.; McDonald, M.R. Assessment of chlorophyll and
nitrate meters as field tissue nitrogen tests for cabbage, onions, and carrots. Horttechnology 2004, 14, 179–188.
[CrossRef]

14. Zhu, J.; Tremblay, N.; Liang, Y. A corn nitrogen status indicator less affected by soil water content. Agron. J.
2011, 103, 890–898. [CrossRef]

15. Tremblay, N.; Fallon, E.; Ziadi, N. Sensing of crop nitrogen status: Opportunities, tools, limitations, and
supporting information requirements. Horttechnology 2011, 21, 274–281. [CrossRef]

16. Samborski, S.M.; Tremblay, N.; Fallon, E. Strategies to make use of plant sensors-based diagnostic information
for nitrogen recommendations. Agron. J. 2009, 101, 800–816. [CrossRef]

17. Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Giménez, C.; Thompson, R.B. Derivation of sufficiency values
of a chlorophyll meter to estimate cucumber nitrogen status and yield. Comput. Electron. Agric. 2017, 141,
54–64. [CrossRef]

18. Olivier, M.; Goffart, J.P.; Ledent, J.F. Threshold value for chlorophyll meter as decision tool for nitrogen
management of potato. Agron. J. 2006, 98, 496–506. [CrossRef]

19. Lemaire, G.; Jeuffroy, M.H.; Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage. Theory
and practices for crop N management. Eur. J. Agron. 2008, 28, 614–624. [CrossRef]

20. Greenwood, D.; Lemaire, G.; Gosse, G.; Cruz, P.; Draycott, A.; Neeteson, J. Decline in Percentage N of C3 and
C4 Crops with Increasing Plant Mass. Ann. Bot. 1990, 66, 425–436. [CrossRef]

21. Padilla, F.M.; Thompson, R.B.; Peña-Fleitas, M.T.; Gallardo, M. Reference values for phenological phases of
chlorophyll meter readings and reflectance indices for optimal N nutrition of fertigated tomato. Acta Hortic.
2018, 1192, 65–72. [CrossRef]

22. Güler, S.; Büyük, G. Relationships among chlorophyll-meter reading value, leaf N and yield of cucumber
and tomatoes. Acta Hortic. 2007, 729, 307–311. [CrossRef]

http://dx.doi.org/10.1007/s10681-016-1741-z
http://dx.doi.org/10.1007/BF02731970
http://dx.doi.org/10.1111/aab.12181
http://dx.doi.org/10.3390/s18072083
http://www.ncbi.nlm.nih.gov/pubmed/29958482
http://dx.doi.org/10.21273/HORTSCI.51.7.915
http://dx.doi.org/10.1016/S0176-1617(96)80071-X
http://dx.doi.org/10.1007/s11099-016-0665-0
http://dx.doi.org/10.3389/fpls.2018.01752
http://dx.doi.org/10.21273/HORTSCI.29.12.1497
http://dx.doi.org/10.21273/HORTTECH.14.2.0179
http://dx.doi.org/10.2134/agronj2010.0351
http://dx.doi.org/10.21273/HORTTECH.21.3.274
http://dx.doi.org/10.2134/agronj2008.0162Rx
http://dx.doi.org/10.1016/j.compag.2017.07.005
http://dx.doi.org/10.2134/agronj2005.0108
http://dx.doi.org/10.1016/j.eja.2008.01.005
http://dx.doi.org/10.1093/oxfordjournals.aob.a088044
http://dx.doi.org/10.17660/ActaHortic.2018.1192.7
http://dx.doi.org/10.17660/ActaHortic.2007.729.50


Sensors 2019, 19, 2949 20 of 20

23. Castilla, N.; Hernandez, J. The Plastic Greenhouse Industry of Spain. Chron. Horticult. 2005, 45, 15–20.
24. Junta de Andalucía. Cartografía de invernaderos en el litoral de Andalucía Oriental. Año. 2016.

Available online: https://www.juntadeandalucia.es/export/drupaljda/estudios_informes/16/12/Cartografia%
20invernaderos%20en%20el%20litoral%20de%20Andaluc%C3%ADa%20Oriental_v161201.pdf (accessed on
3 July 2019).

25. Thompson, R.B.; Martínez-Gaitan, C.; Gallardo, M.; Giménez, C.; Fernández, M.D. Identification of irrigation
and N management practices that contribute to nitrate leaching loss from an intensive vegetable production
system by use of a comprehensive survey. Agric. Water Manag. 2007, 89, 261–274. [CrossRef]

26. Pulido-Bosch, A.; Bensi, S.; Molina, L.; Vallejos, A.; Calaforra, J.M.; Pulido-Leboeuf, P. Nitrates as indicators
of aquifer interconnection. Application to the Campo de Dalias (SE - Spain). Environ. Geol. 2000, 39, 791–799.
[CrossRef]

27. Valera, D.L.; Belmonte, L.J.; Molina-Aiz, F.D.; López, A.; Camacho, F. The greenhouses of Almería, Spain:
Technological analysis and profitability. In Proceedings of the International Symposium on New Technologies
and Management for Greenhouses—Greensys 2015, Evora, Portugal, 9–23 July 2015; Volume 1170, pp. 219–226.

28. Food and Agriculture Organization of the United Nations. FAOSTAT. Available online: http://www.fao.org/

faostat/en/#data/QC (accessed on 11 April 2019).
29. Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B. Evaluation of optical sensor measurements of

canopy reflectance and of leaf flavonols and chlorophyll contents to assess crop nitrogen status of muskmelon.
Eur. J. Agron. 2014, 58, 39–52. [CrossRef]

30. Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B. Proximal optical sensing of cucumber crop N
status using chlorophyll fluorescence indices. Eur. J. Agron. 2016, 73, 83–97. [CrossRef]

31. Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723.
[CrossRef]

32. Wu, X.; Guo, J.; Zhao, C.; Chen, L.; Zhang, Y.; Fang, Z.; Yang, Y.Y. Research and application of non-destructive
testing diagnosis technology of tomato. Sens. Lett. 2012, 10, 666–669. [CrossRef]

33. Cartelat, A.; Cerovic, Z.G.; Goulas, Y.; Meyer, S.; Lelarge, C.; Prioul, J.L.; Barbottin, A.; Jeuffroy, M.H.; Gate, P.;
Agati, G.; et al. Optically assessed contents of leaf polyphenolics and chlorophyll as indicators of nitrogen
deficiency in wheat (Triticum aestivum L.). F. Crop. Res. 2005, 91, 35–49. [CrossRef]

34. Prost, L.; Jeuffroy, M.H. Replacing the nitrogen nutrition index by the chlorophyll meter to assess wheat N
status. Agron. Sustain. Dev. 2007, 27, 321–330. [CrossRef]

35. Zhao, B.; Zhang, J.; Yang, Q.; Ata-Ul-Karim, S.T.; Zhang, Y.; Ning, D.; Duan, A.; Qin, A.; Xiao, J.; Liu, Z.; et al.
Simple Assessment of Nitrogen Nutrition Index in Summer Maize by Using Chlorophyll Meter Readings.
Front. Plant Sci. 2018, 9, 1–13. [CrossRef]

36. Novichonok, E.V.; Novichonok, A.O.; Kurbatova, J.A.; Markovskaya, E.F. Use of the atLEAF+ chlorophyll
meter for a nondestructive estimate of chlorophyll content. Photosynthetica 2016, 54, 130–137. [CrossRef]

37. Cerovic, Z.G.; Ghozlen, N.B.; Milhade, C.; Obert, M.; Debuisson, S.; Le Moigne, M. Nondestructive Diagnostic
Test for Nitrogen Nutrition of Grapevine ( Vitis vinifera L.) Based on Dualex Leaf-Clip Measurements in the
Field. J. Agric. Food Chem. 2015, 63, 3669–3680. [CrossRef] [PubMed]

38. Gianquinto, G.; Sambo, P.; Bona, S. The use of SPAD-502 chlorophyll meter for dynamically optimising the
nitrogen supply in potato crop: a methodological approach. Acta Hortic. 2003, 627, 217–224. [CrossRef]

39. Parry, C.; Blonquist, J.M.; Bugbee, B. In situ measurement of leaf chlorophyll concentration: analysis of the
optical/absolute relationship. Plant. Cell Environ. 2014, 37, 2508–2520. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.juntadeandalucia.es/export/drupaljda/estudios_informes/16/12/Cartografia%20invernaderos%20en%20el%20litoral%20de%20Andaluc%C3%ADa%20Oriental_v161201.pdf
https://www.juntadeandalucia.es/export/drupaljda/estudios_informes/16/12/Cartografia%20invernaderos%20en%20el%20litoral%20de%20Andaluc%C3%ADa%20Oriental_v161201.pdf
http://dx.doi.org/10.1016/j.agwat.2007.01.013
http://dx.doi.org/10.1007/s002540050495
http://www.fao.org/faostat/en/#data/QC
http://www.fao.org/faostat/en/#data/QC
http://dx.doi.org/10.1016/j.eja.2014.04.006
http://dx.doi.org/10.1016/j.eja.2015.11.001
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1166/sl.2012.1889
http://dx.doi.org/10.1016/j.fcr.2004.05.002
http://dx.doi.org/10.1051/agro:2007032
http://dx.doi.org/10.3389/fpls.2018.00011
http://dx.doi.org/10.1007/s11099-015-0172-8
http://dx.doi.org/10.1021/acs.jafc.5b00304
http://www.ncbi.nlm.nih.gov/pubmed/25801210
http://dx.doi.org/10.17660/ActaHortic.2003.627.28
http://dx.doi.org/10.1111/pce.12324
http://www.ncbi.nlm.nih.gov/pubmed/24635697
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Experimental Site 
	Experimental Design 
	Chlorophyll Meter Measurements 
	Determination of Crop Nitrogen Nutrition Index 
	Data Analysis 

	Results 
	Effects of N Treatments on the Nitrogen Nutrition Index 
	Effects of N Treatments on Chlorophyll Meters Measurements 
	Relationships between Integrated Chlorophyll Meters Measurements and Integrated NNI 
	Sufficiency Values of Chlorophyll Meters Measurements 

	Discussion 
	References

