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Abstract: The consequences of falls, costs, and complexity of conventional evaluation protocols have
motivated researchers to develop more effective balance assessments tools. Healthcare practitioners
are incorporating the use of mobile phones and other gadgets (smartphones and tablets) to enhance
accessibility in balance evaluations with reasonable sensitivity and good cost–benefit. The prospects
are evident, as well as the need to identify weakness and highlight the strengths of the different
approaches. In order to verify if mobile devices and other gadgets are able to assess balance,
four electronic databases were searched from their inception to February 2019. Studies reporting the
use of inertial sensors on mobile and other gadgets to assess balance in healthy adults, compared
to other evaluation methods were included. The quality of the nine studies selected was assessed
and the current protocols often used were summarized. Most studies did not provide enough
information about their assessment protocols, limiting the reproducibility and the reliability of the
results. Data gathered from the studies did not allow us to conclude if mobile devices and other
gadgets have discriminatory power (accuracy) to assess postural balance. Although the approach is
promising, the overall quality of the available studies is low to moderate.
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1. Introduction

According to the Global Health Organization, falls are the second leading cause of deaths due to
accidents or unintentional injury worldwide [1]. The consequences of falls, especially in the elderly
population, have drawn attention to the development of fall prevention strategies, focusing on training
protocols and more effective/precise balance assessments [1–4].

A wide variety of mathematical models, evaluation protocols, and instruments have been proposed
for quantitative measurements of balance. The costs, and complexity of devices for quantitative data
make, the assessment and interpretation of results challenging and restricted to academic research or
expensive private services [5,6]. Recently, healthcare practitioners have been incorporating the use
of less expensive sensors for balance assessment. Mobile phones and other gadgets (smartphones
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and tablets) have been used because they have triaxial accelerometers and gyroscopes embedded,
which turn them into wireless inertial measurement units (IMU). Although these devices have
dramatically improved regarding their speed of real-time computing processing and accuracy [7–9],
there are still some challenges to overcome. For instance, it is not well understood how this data can be
best interpreted and applied to clinical practice [10,11].

Mobile sensors and processing apps (applications/software) are novel technologies used to
enhance accessibility to balance evaluations with reasonable sensitivity and good cost–benefit [12–18].
This technology allows us to assess balance through acceleration measurement resultants calculated
using a simplified approach from the position of the center of mass (COM) usually described by
an arbitrary (not estimated) single point where the sensor is positioned [19,20]. Some advantages of
using inertial sensors from smartphones or tablets to assess balance are: (1) The equipment is affordable
and accessible, (2) allows real-time evaluations, (3) self-administered protocols, (4) quick and reliable
feedback, (5) user-friendly apps and charts reports, (6) easy disseminating results, improving the
link between patient, healthcare professionals, and family, (7) ease of understanding and monitoring
follow-up [9].

As a disadvantage, we can point out the nature of Micro-Electro-Mechanical Systems (MEMS)
sensing technology embedded on those devices, which addresses some intrinsic errors to data
acquisition, mostly regarding deterministic errors. The main source of these errors is “white noise”.
These problems may be overcome, in theory, by carefully analyzing data and using specific filters and
proper calibration [21]. Smartphone ownership is on the rise in emerging economies, but its cost is still
an issue. The global median rate is 59%, but it could be as high as 94% in South Korea, 83% in Israel,
82% in Australia. On the other hand, this rate is reported to be less than 50% in 12 of 22 countries
surveyed by the Pew Research Center (2018) or even less in poorer countries [22].

Even though the use of mobile phones and other gadgets with built-in sensors are not fully
validated, the prospects are evident as well as the need to question weakness and strengths of the
different approaches [4,8,9]. The primary outcome of this study was to verify if mobile devices
and other gadgets are able to assess balance. The secondary outcomes were, to review the current
protocols used to assess balance with consumer-level mobile devices (mobile phones and tablets) and to
summarize: (a) parameters used to define balance, (b) main characteristics and technical specifications
of devices and sensors, (c) mathematical models and algorithms used to process data. Additionally,
we examined the potentialities and limitations of protocols to guide readers about the most reliable
and convenient method of accelerometer-based balance assessment.

2. Materials and Methods

This systematic review was reported according to the preferred reporting items for systematic
reviews and meta-analysis (PRISMA) and Cochrane guidelines [23,24]. The protocol was recorded at
the International Prospective Register of Systematic Reviews (PROSPERO, CRD42018103481).

2.1. Eligibility and Inclusion Criteria

We included only articles that reported the comparison of general balance evaluation methods to
the use of mobile inertial sensors as devices (smartphones and tablets). Regardless of the methods
for blinding and randomization, all study designs were included if they assessed standing balance in
healthy adults and had been published up to 2019.

2.2. Search Strategy

A systematic search was conducted (from inception to February 2019) using the following
databases: PubMed, EMBASE, Scopus, and Cochrane Central. The search strategy included terms as
‘accelerometry,’ ‘accelerometer,’ ‘gyroscope,’ ‘body wear sensors,’ ‘wearable sensors,’ ‘inertial sensors’,
‘IMU’, ‘inertial measurement units’, ‘mobile application’, ‘mobile app’, ‘mobile device’, ‘smartphone
app’ and words related to ‘postural balance,’ ‘sway,’ or ‘postural control.’ The search was limited to
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papers written in English, Spanish, and Portuguese with no restriction to date. The complete search
strategy is presented in Appendix A. (available as supplementary material online)

2.3. Data Extraction, Risk of Bias and Quality Assessment

Two reviewers (ASP and APS) independently screened the studies by titles and abstracts and
deleted duplicates based on the inclusion criteria. After this step, the same reviewers assessed the
full texts separately. The authors were contacted by email when data were not available. If the two
reviewers did not find a consensus in all phases of the selection (including the screening for the quality
assessment), a third reviewer (BCS) made the final decision. All the reviewers have broad experience in
the research field. EndNoteTM X7 software (Clarivate Analytics US LLC, Philadelphia, PA, USA) was
used to select and search for articles. During the screening step, the selection was blinded, and there
was no disagreement between ASP and APS. The data extracted from the included studies were:
Type of study, number of participants, type and location of the wearable sensor, time acquisition,
general conditions of assessments, and primary outcomes of each study. If necessary, a third reviewer
was consulted to solve disagreements.

Methodological quality assessments were performed for all studies using the Quality Assessment
Tool for Observational Cohort and Cross-Sectional Studies from the National Heart, Lung and Blood
Institute (NHLBI) of the United States National Institutes of Health (NIH) [25]. A fourteen-criteria
tool designed for a critical appraisal which involves considering the risk of potential for selection bias.
This instrument measures the ability of the study to draw associative conclusions about the effects
of the exposures being studied on outcomes. The quality was expressed as a percentage of the total
possible score, with a maximum of two points for each criterion (“Yes” = 2, “Cannot determine” = 1,
“No” = 0). The studies were classified as: “high quality” (>75%), “moderate quality” (>50% to 75%),
“low quality” (25% to 50%), and “very low quality” (<25%). Considering the characteristics of papers
included in this review, only 12 items were evaluated with a maximum of 24 points (available as
supplementary material online, Appendix B).

Due to the lack of a particular tool to access the consistency of the balance protocols information,
we created a 10-point checklist to access the main information on balance protocols addressing aspects
related to measurement bias and reproducibility. Even if this tool did not have its efficacy validated
yet, we believe that due to its custom developed characteristics, it brings light whether the main
parameters that can possibly influence the results of the balance assessment in general were present or
not (available as supplementary material online, Appendix C). For each topic, two researchers gave
a yes (Y), or no (N) score and the sum of all topics resulted in the paper’s total score (when a topic
was “not applicable” a “Y” was given). If the study scored 8 to 10 points, we classified it as being
“highly detailed.” In other words, a “highly detailed” study presents great consistency, low risk of
measurement bias, and enough information to allow reproducibility. If the study was scored between
six and seven, we classified it as “fairly detailed,” or, the study has some risk of measurement bias but
is consistent enough to allow reproducibility. Finally, a study with less than six points, the study was
classified as “poorly detailed”, or with high risk of measurement bias and/or not fully reproducible
(available as supplementary material online, Appendix C).

3. Results

The initial search identified 1309 studies. After excluding duplicates (427) and screening titles
and abstracts, nine papers were considered potentially relevant and were included in this systematic
review. All studies included healthy individuals [14,15,17,18,26–30] and had a cross-sectional design
and have been published between 2014 and 2019. A flow diagram elucidating the study selection is
provided in Figure 1.
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Figure 1. Flow diagram.

3.1. Sample Characteristics

The sample size varied from 12 to 60 individuals. Studies included males and females,
from different age groups between 16.4 and 78.9 years. Five studies included only young adults
and teenagers. One study categorized subjects into three age groups, young, middle age, and older
adults [14] and other study selected only the older population [15]. One study did not report the age of
the subjects [29], and others did not present the standard deviation of their sample [27]. Four papers
did not report height and body mass of the included subjects [14,15,27,29]. Hsieh et al. selected their
sample classifying between high risk and low risk of falls [30]. Table 1 shows the sample characteristics
of the studies.

3.2. Overview of Studies Objectives

All studies had a cross-sectional design and used dedicated apps [15,17,18,28,29] or raw data
acquisition apps to determine the capability to evaluate postural balance [14,26,27]. One study did not
report this information [30]. Two studies compared the data acquired using gadgets to “gold standard”
balance assessment devices: Biodex Balance System™ [28] or NeuroCom® Smart Balance Master [26].
Four other studies compared gadgets with kinematic data by motion capture system [15,27], commercial
accelerometers [14], and force plates [30]. Subjective clinical evaluation tests (full or adapted versions)
were performed in five papers [15,17,27–29]. One paper performed the Physiological Profile Assessment
(PPA) test on their participants [30]. The PPA test measures fall risk based on vision, reaction time,
leg strength, proprioception, and balance, which gives a score and characterizes individuals between
low risk and high risk of fall [31]. The iOS (Apple Inc. Cupertino, CA, USA) was the operating system
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of seven studies [14,15,17,26–29], and the Android Inc. (by Google Inc. Palo Alto, CA, USA) were at
two studies [18,30].

Table 1. Sample demographic characteristics (mean ± standard deviation).

Author Sample
Gender Age Years Height (cm)

Body Mass (kg)

Alberts et al., 2015 [26] n = 49
22 male 19.5 ± 3.1 167.7 ± 13.2

68.5 ± 17.5

Alberts et al., 2015 [27] n = 32
14 male 20.9 ± NR NR

Kosse et al., 2015 [14] n = 60
28 male

26 ± 3.9 (young)
45 ± 6.7 (middle)
65 ± 5.5 (older)

NR

Hsieh et al., 2019 [30] n = 30
12 male

64.8 ± 4.5 (Low RF)
72.3 ± 6.6 (High RF) NR

Ozinga et al., 2014 [15] n = 12
5 male 68.3 ± 6.9 NR

Patterson et al., 2014 [17] n = 21
7 male 23 ± 3.34 171.66 ± 10.2

82.76 ± 25.69

Patterson et al., 2014 [28] n = 30
13 male 26.1 ± 8.5 170,1 ± 7,9

72.3 ± 15.5

Shah et al., 2016 [18] n = 48
21 male 22 ± 2.5 175 ± 9.7

72.57 ± 1.29

Yvon et al., 2015 [29] n = 50
13 male NR NR

cm = centimeter, kg = kilograms, n = sample size, NR = Not reported.

3.3. Balance Assessment Protocols

Tasks used to evaluate postural balance varied across the studies and included: Balance error
scoring system (BESS) [15,17,27], athlete single leg test [28], Romberg and tandem Romberg tests [29],
NeuroCom® sensory organization test (SOT) [27], SWAY balance test [17,28], and other general
tasks [14,18,30], (Table 2).

One paper used the six formal conditions of BESS [27], which is performed with eyes closed
for 20 s: (1) Double-leg stance, firm surface, (2) single-leg stance, firm surface, (3) tandem stance,
firm surface (dominant leg in front of the other), (4) double-leg stance, foam surface, (5) double-leg
stance, foam surface, and (6) tandem stance, foam surface. Patterson et al. 2014 [17] adapted the
BESS by modifying the hand’s position during the test. Lastly, one study altered the BESS conditions
adjusting the test to an older population [15]. The author modified the analysis by excluding the
single-leg stance, performing some parts of the test with open eyes.

One study followed the NeuroCom® protocol device [26], which uses the NeuroCom® sensory
organization test (SOT), resulting in an equilibrium score. The protocol includes several procedures
that combine stable and unstable surface with open and closed eyes, as well as with an oscillation of
the visual references. The authors evaluated 49 individuals through Neurocom to determine whether
an accelerometer and gyroscope data sampled from a consumer electronics device (iPad2) could
provide enough resolution of the center of gravity (COG) movements to accurately quantify postural
stability. Six conditions of SOT were used to compare the scores generated and calculated from both
devices. Limits of agreement were defined as the mean bias (NeuroCom, iPad) + 2 standard deviations.
Through the comparison of the real-time center of gravity sway, they found that the best agreement by
the mean difference in equilibrium scores was of 0.01% for the SOT-1 and the largest difference was
−6.2% for the SOT-5.
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Table 2. Tasks and balance assessment protocol.

Author Assessed Tasks Feet
Condition

Feet
Position

Hands/Arms
Position

Visual
Input

Visual
Reference

Alberts et al.,
2015 [26]

Six conditions
NeuroCom® SOT

According to
SOT

According
to SOT

According
to SOT EO/EC According

to SOT

Alberts et al.,
2015 [27]

Six conditions
BESS

Wearing
socks

According
to BESS

Resting on
the iliac crests EC NA

Kosse et al.,
2015 [14]

Two conditions
1- Quiet standing

2- a Dual-task
(letter fluency test)

NR Parallel
Semi-tandem NR EO/EC NR

Hsieh et al.,
2019 [30]

1- Quiet standing
2- a Dual-task

(subtracting numbers)

Wearing
socks

(NC )
Semi-tandem

Tandem
Single leg

dominate hand holding
phone medially against

the chest
EO/EC NR

Ozinga et al.,
2014 [15]

Six conditions
adapted from BESS Barefoot According to BESS Resting on

the iliac crests EO/EC 3m target

Patterson et
al., 2014 [17]

Six conditions BESS
(adapted)

Five conditions Sway Test
Shoed According to BESS

Holding Mobile
at Sternum
mid-point

EC NA

Patterson et
al., 2014 [28]

Single condition
Athlete’s Single Leg Test NR Non-dominant

foot stance

Holding Mobile
at Sternum
mid-point

EO NR

Shah et al.,
2016
[18]

Eight conditions Barefoot
Apart

Together
Tandem

On the hips EO/EC 4.37 m
target

Yvon et al.,
2015 [29]

Romberg and tandem
Romberg tests in

Sixteen conditions
NR

Apart
Together
Tandem

Side arms EO/EC NR

SOT = Sensory organization test, EO = Eyes open, EC = Closed eyes, BESS = Balance error scoring system, NA = Not
applicable, NR = Not reported, NC = Not clearly stated.

Two other papers performed the SWAY Balance Test [17,28]. This test consists of five stances
including single leg stance, feet together and tandem during 10 s on a firm surface with eyes closed.
One article evaluated 30 young individuals performing a single trial of the Athlete Single Leg Test
requesting the subjects to stand on their non-dominant foot for 10 s [28]. Balance scores were generated
from arbitrary units of both systems determined by undisclosed calculations. The balance scores
derived from the smartphone accelerometers (SWAY Balance Mobile Application software) were
consistent with balance scores obtained from the Biodex System, showing no significant differences
(p = 0.818) between the means. A significant correlation between the two data sets was found (p < 0.01,
r = 0.632).

Other tasks chosen by authors included a dual-task protocol with a “letter fluency test” in a parallel
stance and a semi-tandem stance with eyes open and closed [14] and with a concurrent cognitive
challenge, having the participants simultaneously subtracting by seven from a random number between
100 and 200 [30]. Eight different conditions were used with the myAnkle application and are detailed
in Tables 1 and 2 [18]. One paper used the Romberg test and the Romberg tandem test performed with and
without noise restriction. Subjects went through a combination of sixteen postures, including open
and closed eyes, feet together, and tandem, on a firm and foam surface [29].

3.3.1. Feet and Arms Position

Regarding foot position, some papers followed closed protocols [15,17,26,27]. Other studies
evaluated only non-dominant single leg stance [28], feet parallel and semi-tandem [14], tandem,
feet closed together and apart [18], or feet together and tandem [29] (Figure 2). Studies used a barefoot
condition [15,18,27] or assessed subjects wearing socks [26] or shoes not specifying the type [17].
Four studies did not describe foot condition [14,28,29], and one study only described it partially [30].

Regarding the arms or hands position, three articles used a software application protocol where
subjects held the mobile at the sternum mid-point [17,28,30]. Three papers described the position of
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the “hands” instead of “arms”, which were resting on the subjects’ iliac crests [15,27] or on the subject’s
hips [18]. Authors also instructed subjects to “rest the arms at body side” according to the device’s
protocol of SOT [26] and to use the same “arms position of Romberg’s tests” [29]. One paper did not
specify this information [14].
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Figure 2. Feet positions: a = Single leg, b = Feet together, c = Feet apart, d = Semi-tandem,
e = Tandem3.3.2. Visual Reference

Two studies described a visual target reference during the mobile data acquisition which was
located at 3 m [15] and 4 m [18] ahead but did not mention the height from the ground and size of the
target. Four authors did not report visual reference. In other studies, this aspect could not be analyzed
due to a closed eyes condition [17,27] or some specific visual task [26].

3.3.2. Number of Acquisitions, Sessions and Total Time of Acquisition

Most studies conducted only one trial of data acquisition [14,17,18,27–29] while others performed
three [26] and two trials [15,30]. The time acquisition ranged between 10 s and 60 s. None of the articles
used or reported using a time window (cropped time) at the analysis (Table 3). Three studies used
a well-established sampling rate recommendation of 100 Hz [10] for balance data acquisition [15,26,27].
In three other studies, the rates varied from 200 Hz [30], 88–92 Hz [14] to 14–15 Hz [18]. Three articles
did not fully describe the sampling rates [17,28,29] (Table 3).

Only one study presented test–retest reliability. The author repeated data acquisition twice.
Although the description indicates that the test–retest was within the same day with a short interval,
there was no time interval reported between acquisitions [14]. The intraclass correlation coefficient
(ICC) values found for the root mean square (RMS) of the accelerations was 0.83 and 0.90, and for the
Sway Area, ICC was 0.81 and 0.91 during parallel stance and semi-tandem stance respectively.
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Table 3. Balance protocol procedures, devices and technical specifications.

Author Number of Trials Total Time (Time
Cropped) Seconds

Device I
Device II

(Sampling Rate)
Device Position App Used for

Acquisition Synchronization

Alberts et al., 2015 [26] 3 20 s
(NR)

iPad2 (100 Hz)
NeuroCom® (100 Hz) Sacrum Sensor Data by

Wavefront Labs
LabVIEW data

collection program.

Alberts et al., 2015 [27] 1 20 s
(NR)

iPad (SNR) (100 Hz)
Eagle 3D Motion

analysis System (100 Hz)
Sacrum Cleveland Clinic

Concussion
Arduino Pro Mini 3.3

v and a LED light

Kosse et al., 2015 [14] 1 60 s
(NR)

iPod Touch (88–92 Hz)
Accelerometer DynaPort® hybrid

unit (100 Hz)
L3 vertebrae iMoveDetection Cross-correlation

analysis

Hsieh et al., 2019 [30] 2 30 s
(NR)

Samsung Galaxy S6 (200 Hz)
Force plate (Bertec Inc, Columbus,

OH)
(1000 Hz)

Sternum NR NR

Ozinga et al., 2014 [15] 2 60 s
(NR)

iPad 3 (100 Hz)
Eagle 3D Motion

analysis System (100 Hz)

Second sacral
vertebrae

Cleveland Clinic
Balance Assessment

Arduino Pro Mini 3.3
v and a LED light

Patterson et al.,
2014 [17] 1

10 s STS
20 s BESS

(NA)

iPod Touch (NR)
NA Sternum midpoint SWAY Balance Mobile NA

Patterson et al.,
2014 [28] 1 10 s

(NR)
iPod Touch (NR)

Biodex© Balance System (NR) Sternum midpoint SWAY Balance Mobile NR

Shah et al., 2016 [18] 1 (NR) LG Optimus One (14–15 Hz)
NA

Malleols Patella
Umbilics myAnkle NR

Yvon et al., 2015 [29] 1 30 s
(NR)

iPhone (SNR)
NA

Participant’s left
upper arm D + R Balance NR

NR = Not reported, SNR = Specification of the device not reported, STS = Sway Test Software, NA= Not applicable, BESS = Balance error scoring system.
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3.3.3. Measurement Device and Position

Studies used different wearable sensors (Table 2). Three studies used iPad devices [15,26,27],
three used iPods [14,17,28] and three used smartphones, an iPhone [29], a LG Optimus One [18] and
a Samsung Galaxy S6 [30]. Four studies reported placing the mobile sensor on the participants’ lumbar
or sacral region [14,15,26,27]. Three studies placed the gadget on the sternal midpoint [17,28,30], one on
the left upper arm [29] and another one positioned three devices on different body places (malleolus,
patella, umbilicus) [18] (Figure 3).
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3.3.4. Devices Synchronization

Acquisitions of data with the use of more than one piece of equipment in which the time
phases must occur at the same time, theoretically presuppose the use of a synchronization method.
Three studies did not report any synchronization method [18,28,30], while four studies adequately
described this process [14,15,26,27]. In two articles, the synchronization procedure did not apply [17,29].

3.3.5. Measurements and Signal Processing Parameters

The primary signal processing parameters used in quantitative continuous data measurements
are briefly listed (available as supplementary material online, Appendix D) as stated in the study.
Some studies reported using the raw data to run their own post-processing algorithms for the computing
balance metrics [14,15,26,27,30]. One author designed a mobile phone app [18]. Other authors did not
report if they had access to the app algorithm or calculations [17,28,29].
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3.4. Methodological Quality Assessment

3.4.1. Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies NIH-NHLBI

Three papers were classified as “low quality” (from 25% to 50%) [17,28,29] and six papers as
“moderate quality” (from >50% to 75%) [14,15,18,26,27,30]. No articles were considered “very low
quality” (<25%) nor “high quality” (>75%), (available as supplementary material online, Appendix B).

3.4.2. A 10-Point Checklist for Balance Assessment Protocols

Four studies were classified as “highly detailed” [15,18,26,27]. One study was considered
“fairly detailed” [17], and four studies were considered “poorly detailed” [14,28–30] (available as
supplementary material online, Appendix C).

4. Discussion

This study aimed to review systematically the current protocols used to assess balance with
mobile devices. We provided an overview of parameters used to define balance, main characteristics of
devices and technical specifications, mathematical models, and algorithms used to process data. Briefly,
we found that studies presented good consistency with the assessment procedures. However, we found
a widespread lack of standardization in data acquisition, which compromises the data repeatability
and reproducibility. Besides, methods to evaluate the mobile capability in assessing balance were too
varied among studies, as well as the mathematical models, variables, tasks, and posture conditions.

It is well known that methodological aspects like anthropometric characteristics, time of acquisition,
feet and arms position can influence the results and the reliability of measurements of postural balance.
So, these parameters must be controlled and described in detail in scientific papers as it has been
already established in the literature [10,20,32,33]. Five articles did not report height and body mass
data [14,15,27,29,30]. Normalization methods for a proper comparison among subjects were reported
by a few studies [15,27]. Height and body mass are an essential anthropometric characteristic affecting
the base of support and the COM position, thus, these parameters must be controlled or normalized
while comparing groups or describing samples to assess balance. For individual assessments by
clinicians or customers, this issue could be of less importance, considering these parameters are less
susceptible to changes.

Another aspect to be considered in balance evaluation protocols is the time of acquisition. Time of
acquisition ranged from 10 s to 60 s in the included papers. The literature describes that time of
acquisition may result in slight changes in balance parameters [32]. However, the shorter the time
acquisition, the higher the synchronization control of devices must be, which was not a point of concern
for all authors. We highlight the time of acquisition as another aspect that influence decisions about
mathematical models and data processing methods [32].

Feet and arms positions are directly related to the physics concepts of stability. Moving the feet
apart increases the size of the base of support and the capacity of stabilizing, as evidenced by patterns
of the center of pressure (COP) variables [34]. On the other hand, the position of arms can alter the
body oscillations and stability by slight changes in the COM affecting the base of support. This is
another critical point to be considered. The studies included in this review used a wide range of feet
and arms positions, and most studies used different restricted postures during the balance assessment.
The body oscillation is changed when an individual is restricted or not to a specific posture. So,
the data acquired from different protocols may be diverse, not allowing comparison, or not reflecting
the general characteristics of balance in some cases.

Based on the physics concepts, the best way to describe balance and its displacement remains
an open question [35–39]. It is very common to use the COM sway represented, estimated as
a single point around the base of the lumbar spine [37]. Another possibility is to use the COP
trajectories, which represent a weighted average of all the pressures over the surface at the base of
support [35,36,38,39]. These two parameters are measured by different techniques and the position
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of the sensors can influence the results. The majority of studies positioned the sensors on the pelvis,
lumbar, and sacral vertebra [14,15,26,27]. Some studies have chosen the upper limbs [29], lower
limbs [18], and chest [17,28,30] to place the sensors. The trunk seems to be the best option due to the
proximity of the body COM as well as avoiding unwanted movements of limbs interfering with balance
assessment. A previous study showed good to excellent test–retest reliability using acceleration rates
and COP parameters when the sensor is placed in the lumbar region [12], reinforcing this statement.

We cannot determine if the best choice is to fix the device in some specific area of the body or
just ask for the individual to hold the device on their own. Encouraging the individual to hold the
device would favor the self-administration of balance tests and empower patients to care about their
health but could compromise data acquisition. Positioning near or away from the body’s center of
mass will influence the movement degree of freedom caused by specific joints strategies for balance
control [12]. The choice of the device position would affect the relative plane orientation and influence
the repeatability and data accuracy. Although there is a lack of studies covering those aspects, it is
known that the design of applications and decisions on protocol procedures induce specific and careful
data processing. Moreover, the algorithm must be in conformity with the theoretical approach [8].

One of the major concerns in protocols of balance evaluation is the time acquisition. In studies
included in this review, time acquisition ranged from 10 to 60 seconds. The shorter the time interval
chosen, the more caution measures had to be taken due to the accuracy needed for synchronizing the
devices. Additionally, the time of acquisition critically influence the decisions on the mathematical
model and data processing methods [32]. Selecting a time window (cropped time window) is a usual
procedure in quantitative balance analysis when a few seconds are withdrawn from the total acquisition
time (arbitrarily) at the beginning and at the end of each attempt. Although not clear in the literature,
it has been justified by reducing disturbing movements in the initial posture and attenuating the effects
of fatigue, ensuring steadiness with less unwanted "noise" and "artifacts" in the signal. None of the
papers reported using this method. The main objective of the studies selected was a comparison
between sensors and devices, what probably dispense the use of this procedure, but raises a doubt
whether it would increase or not the sensitivity of the protocols and data correlation.

A test–retest approach might have also enhanced the results, which was performed only by one
study [14]. Likewise, the number of acquisitions, although a previous study which compared the
acceleration data to the center of pressure reported that the data from three trials are similar to those
obtained in only one trial [12]. Even being a signal with stochastics characteristics, it is suggested that
only one trial may be reliable and useful to be applied in clinical practice.

Signal processing methods varied among studies and included the calculation of COM, COP,
and raw acceleration through the measurements of RMS, the standard deviation, the maximum peak
of displacement, maximum amplitude displacement, and sway area. All of these parameters can be
applied in balance assessments [40]. One study used the raw acceleration data as a parameter to define
stability, which is not a direct measurement of the position and is an unusual method to describe
stability. A previous systematic review explored the best outcomes to assess standing balance and
walking stability in subjects with Parkinson’s disease. The authors included 26 studies and defined
“jerk” (the time derivative of acceleration) and trunk RMS acceleration as the most useful measures to
differentiate patients from healthy controls [41].

It is important to highlight the use of two “gold standard” clinical devices to evaluate young
individuals. One aimed a validation of measurement with a specific mobile software [28] concluding
that the scores from the smartphone were consistent with the validated balance system. The other
compared equilibrium scores [26] calculating the limits of agreement between the devices. The author
concludes that mobile hardware provided data of sufficient precision and accuracy to quantify postural
stability is a reasonable approach for in clinical and field environments. At the Quality Assessment
Tool for Observational Cohort and Cross-Sectional Studies NIH-NHLBI, the studies ware ranked as
“low quality” [28] and “moderate quality” [26], respectively. At the 10-point checklist for balance
assessment protocols, they achieved “poorly detailed” [28] and “highly detailed” [26], respectively.
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This systematic review presents some limitations that make challenging to state recommendations
about the most appropriate protocol to assess balance using gadgets. The majority of studies included
in this review did not provide sufficient information about their assessment protocols, which make
difficult the reproducibility of the evaluation, the reliability of the results and limiting the judgment of
the discriminatory power (accuracy) of studies to assess postural balance. The overall quality of studies
included in this review was low to moderate using the methodological Quality Assessment Tool for
Observational Cohort and Cross-Sectional Studies from the NHLBI, NIH weakening the consistency of
the conclusions from the studies due to the lack of information on the internal and external validity
and possible increase of risk of bias. It is also important to state that the 10-point checklist for balance
assessment protocols used to assess the studies in this review is a custom developed tool and is not
validated for its efficacy, although it was created based upon authors expertise and after a detailed
discussion of the methods presented.

Considering the quality of the evaluation procedures, technical specifications, and data processing
information, only four studies were classified as “highly detailed” [15,18,26,27], restricting the
reproducibility of the protocols. Finally, most studies lack a direct sensor comparison, using a “gold
standard” transducer system to determine the accuracy of the various transducer outputs from mobile
devices, a question that still has to be addressed.

5. Conclusions

The results from this systematic review did not allow to perform an evaluation of the diagnostic
and accuracy tests as expected. Thus, from our preliminary findings, we cannot ensure the use
of mobile devices and other gadgets to assess postural balance. However, two studies presented
consistent data supporting enough accuracy and good reliability for the use of this method to evaluate
healthy young individuals. Due to the differences in hardware and operating systems, the comparisons
between several mobile phone systems that are currently on the market is still a fragile aspect that
needs to be explored. Clear balance protocol information, anthropometric characteristics of the
sample, and technical specifications of the equipment and sensors are indispensable and have to
be stated. Further studies are highly encouraged, with adequate sample size, different population,
test–retest measurements, and low risk of bias are necessary to provide a better understanding of this
promising approach.
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Appendix A Search Strategy (Databases)

MEDLINE accessed by Pubmed, Embase, Cochrane andSCOPUS up to February 2019.
The search strategy of the Pubmed, Embase, and SCOPUS databases was used the terms as follows:
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#1
“Accelerometry”[Mesh]
“Accelerometer”
“Gyroscope”
“Bodywear sensors”
“Wearable sensors”
“Wear sensor”
“Inertial sensors”
“IMU”
“inertial measurement unit”
#2
“App Mobile”[Mesh]
“Apps, Mobile”
“Application, Mobile”
“Applications, Mobile”
“Mobile Application”
“Mobile Apps”
“Portable Electronic Apps”
“App, Portable Electronic”
“Apps, Portable Electronic”
“Electronic App, Portable”
“Electronic Apps, Portable”
“Portable Electronic App”
“Portable Electronic Applications”
“Application, Portable Electronic”
“Applications, Portable Electronic”
“Electronic Application, Portable”
“Electronic Applications, Portable”
“Portable Electronic Application”
“Portable Software Apps”
“App, Portable Software”
“Apps, Portable Software”
“Portable Software App”
“Software App, Portable”
“Software Apps, Portable”
“Portable Software Applications”
“Application, Portable Software”
“Applications, Portable Software”
“Portable Software Application”
“Software Application, Portable”
“Software Applications, Portable”
“mobile device”
“mobile smartphone”
“smartphone application”
“smartphone app”
#3
“Postural Balance”[MESH]
“Balance, Postural”
“Musculoskeletal Equilibrium”
“Equilibrium, Musculoskeletal”
“Postural Equilibrium”
“Equilibrium, Postural”
“Musculoskeletal Equilibrium”
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“Equilibrium, Musculoskeletal”
“Postural Equilibrium”
“Equilibrium, Postural”
“Balance, Postural”
“sway”
“postural control”
“body sway”
#1 AND #2 AND #3

Database: Cochrane (up to February 2019).
“Accelerometer”OR“Mobile applications”AND“Postural Balance”.

Appendix B Quality Assessment Tool for Observational Cohort and Cross-Sectional
Studies (NIH–NHLBI)

Table A1. Results of the quality assessment tool of the 9 studies (NIH-NHLBI).

Quality Assessment

Study 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total %

Alberts et al., 2015 [26] 2 2 2 2 0 0 0 2 2 2 2 - - 0 16 67%
Alberts et al., 2015 [27] 2 2 2 2 2 0 0 2 0 0 2 - - 2 16 67%
Kosse et al., 2015 [14] 2 2 2 2 2 0 0 2 0 2 2 - - 0 16 67%
Hsieh et al., 2019 [30] 2 2 2 2 2 0 0 2 2 0 2 - - 0 16 67%

Ozinga et al., 2014 [15] 2 2 2 2 2 0 0 2 2 0 2 - - 2 18 75%
Patterson et al., 2014 [17] 2 2 2 2 2 0 0 2 0 0 1 - - 0 13 50%
Patterson et al., 2014 [28] 2 2 2 2 2 0 0 0 0 0 2 - - 0 12 50%

Shah et al., 2016 [18] 2 2 2 1 2 0 0 2 2 0 2 - - 2 17 71%
Yvon et al., 2015 [29] 2 1 2 2 0 0 0 2 0 0 1 - - 0 10 42%

The quality was expressed as a percentage of the total possible score, where each criterion could
reach a maximum of two points (“Yes” = 2, Not Clear = “1”, “No” = 0). The studies were classified as:
“high quality” (>75%), “moderate quality” (>50% to 75%), “low quality” (25% to 50%), and “very low
quality” (<25%). Items 12 and 13 were considered not applicable due to the design characteristics of
studies. Numbers 1 to 14 are related to each question of the quality assessment tool [25]

Appendix C 10-Point Checklist for Balance Assessment Protocols

Table A2. Results of the 10-Point Checklist for Balance Assessment tool of the 9 studies.

Author Sample
Information

Tasks
Description

Feet
Condition

Feet and
Arms

Position

Visual
Reference

Eyes

Visual
Reference

Target

Cropped
Time

Sampling
Rates

Data/Signal
Processing

Method

Synch
Method

Total
Core

Alberts et al.,
2015 [26] Y Y Y Y Y Y N Y Y Y 9

Alberts et al.,
2015 [27] N Y Y Y Y Y_(NA) N Y Y Y 8

Kosse et al.,
2015 [14] N Y N N Y N N Y Y Y 5

Hsieh et al.,
2019 [30] N Y Y N Y N N Y Y N 5

Ozinga et al.,
2014 [15] N Y Y Y Y Y N Y Y Y 8

Patterson et
al., 2014 [17] Y Y Y Y Y Y_(NA) N N Y Y_(NA) 8

Patterson et
al., 2014 [28] Y Y N Y Y N N N Y N 5

Shah et al.,
2016 [18] Y Y Y Y Y Y N Y Y N 8

Yvon et al.,
2015 [29] N Y N Y Y N N N N Y_(NA) 4

Cropped time = Total time acquired minus Time window analyzed; Synch = Synchronization; Y = yes; N = no;
Y_(NA) = for a “not applicable” item a “Y” was given.
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Appendix D Overview (Description of Parameters and Measurements as Stated in the Study and
General Comments)

Table A3. The primary signal processing parameters used in quantitative continuous data measurements
as stated in the 9 studies.

Author Overview Parameters and
Measurements General Comments on the Strengths and Limitations

Alberts et al., 2015 [26]

Used the Neurocom®

device through force plate
measurements with sensory
organization test (SOT) to
determine whether an iPad2
provides sufficient
resolution of the center of
gravity (COG) movements
to quantify postural stability
in healthy young people
accurately.

Center of pressure (COP) of
the anterior-posterior (AP) and
medium-lateral (ML) sway.
Three-dimensional (3D)
device-rotation rates and
linear acceleration. COG of the
AP angle was used for all
outcomes.

Only sample curves are shown for the CoG-AP sways for
conditions 1, 4, 5 and 6. No numerical data are given for the
actual physical measures from the Neurocom A-P sway-data
as compared to the calculated A-P sway-data from iPad sensor.
Nevertheless, the overall performance of the iPad for
predicting the Equilibrium Score of the Neurocom appears
excellent. The 100 Hz data sampling is more than sufficient to
determine low-frequency body sways, probably using the
smaller gadget/mobile, rather than the large iPad-2 may have
resulted in even better results.

Alberts et al., 2015 [27]

Assessed the accuracy of the
iPad by comparing the
metrics of postural stability
with a 3D motion capture
system and proposed a
method of quantification of
the Balance error scoring
system (BESS) using the
center of mass (COM)
acceleration data.

3D Position, linear and
angular accelerations of the
COM at the AP and ML. 3D
Linear acceleration and
rotation-rate, (1) peak-to-peak,
(2) normalized path length, (3)
root mean square (RMS) of the
displacements COM, (4) 95%
ellipsoid volume of sway. A
spectral analysis of ML, AP,
and trunk (TR) acceleration.

No numerical data were compared between the motion
capture results and the calculated values from the iPad
sensors. Only correlations were calculated, and no raw data
were presented, what leave readers not sure of the
measurements’ consistency. This applies to Table 1, where no
raw data for normalized path length (NPL), peak-to-peak
(P2P), and RMS are presented, just comparisons with low to
medium rho values. The small (Correlation coefficient) Rho
values of only 0.55 and less (Table 2) for the iBESS Volume
against the error score is even less convincing, but this can also
be due to the low reliability of the subjective error scoring.
The iPad sensors are probably much better able to detect
balance deficits as compared to the more subjective BESS.

Kosse et al., 2015 [14]

Compared to the data from a
stand-alone accelerometer
unit to establish the validity
and reliability of gait and
posture assessment of an
iPod.

AP and ML trunk acceleration
and a resultant vector (1) RMS
accelerations of body sway in
AP and ML, (2) sway area, (3)
total power median of the
signal from frequency
spectrum signals.

Good direct comparison study from an iPod with a "Gold
Standard" DynaPort triaxial accelerometer. For comparing
wave, similarity Cross-correlations were determined after time
normalization (100 Hz). The values were around 0.9 for all
experimental conditions in AP and ML directions suggesting a
high-quality acceleration signal and software evaluation.
Time-lag values were almost identical between the two
transducers. Validity and test–retest reliability
intraclass-correlations (ICC) values were also excellent for
RMS signals in both the AP and ML direction. Only for the
median power frequency (MPF) lower ICC´s were found for
the test–retest reliability, (possibly caused by the different
sampling frequencies, requiring time normalization
procedures. Excellent and comprehensive analysis, including
a measurement section for a pure comparison of transducer
technology as well as application to groups of three age group
participants.

Hsieh et al., 2019 [30]

Static balance tests were
conducted while standing on
a force plate and holding a
smartphone. COP data from
the force plate and
acceleration data from the
smartphone were compared.
Validity between the
measures was assessed and
the Correlations coefficients
were extracted to determine
if a smartphone embedded
accelerometer can measure
static postural stability and
distinguish older adults at
high levels of fall risk.

The COP parameters included
in the analysis were: (1) 95%
confidence ellipse and (2)
velocity in the anteroposterior
(AP) direction and
mediolateral (ML) direction.
From the smartphone, (1)
maximum acceleration in the
ML, vertical, and AP
directions and (4) root mean
square (RMS) in the ML,
vertical, and AP axis were
exported and processed.

A promising approach was used to distinguish subjects with
risks of falling associating acceleration data and COP
parameters to the "physiological profile assessment” which is
an evaluation of the risk of falling based on the assessment of
multiple domains. Strong significant correlations between
measures were found during challenging balance conditions
(% = 0.42–0.81, p < 0.01–0.05). Correlations that, to some extent,
were expected although it seems to be quite difficult to
differentiate between vertical, AP, and ML components
between the force plate and the accelerometer. Especially,
during challenging balance tasks, there will be quite a bit of
movement of the upper extremities against the body, creating
all kinds of extra accelerations at the phone. A more trustful
comparison of acceleration data from the phone to the force
plate seems only possible if the phone would have been
fastened at the CoG of subjects or close to the CoG.

Ozinga et al., 2014 [15]

Simultaneous kinematic
measurements from a 3D
motion analysis system
during balance conditions
were used to compare the
movements of COM to
investigate if an iPad can
provide sufficient accuracy
and quality for the
quantification of postural
stability in older adults.

Angular velocities and linear
accelerations were processed
to allow direct comparison to
Position of whole-body COM,
(1) peak-to-peak displacement
amplitude, (2) normalized
path length, (3) RMS
displacements of COM, (4)
95% ellipsoid volume of sway.
Spectral analysis of the
magnitude of the ML, AP, and
trunk acceleration was used.

Fairly high correlations were present between the
cinematographic, and the iPad derived data, suggesting that
the iPad would be a good alternative to cinematographic
posture analyses. Procedures and methods were well chosen.
However, the number of subjects was fairly low.
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Table A3. Cont.

Author Overview Parameters and
Measurements General Comments on the Strengths and Limitations

Patterson et al., 2014 [17]

Compared the scores of a
mobile technology
application within an iPod
through balance tasks with a
commonly used subjective
balance assessment, the
Balance error scoring
system BESS.

Balance scores by 3D
Acceleration measurements.

An inverse relationship of r = -0.77 (p < 0.01) was found
between the BEES score and the SWAY results. Thus, the iPod
acceleration signals were proven to be a fairly good predictor
of stability. An elevated BESS score reflected a high number of
balance errors, whereas the SWAY Balance score assigns a
higher value to more stable performance. The fact that subjects
had to press the iPod with their hands against the sternum
brings some weakness to the test procedures. It restricts
freedom for balancing their body in the five exercises and
introducing mechanical artifacts by having their hands at the
sensors during balancing task. Because no direct comparisons
between two sensors were made, only an indirect estimation
of the quality of the iPod touch transducer can be made. Most
likely, the major error of the limited r = -0.77 is not a function
of the quality of the iPod sensor but rather a consequence of
poor BESS rating quality. Mentioning yet, that BESS scoring
test was done by only two people. However, since BESS is
well accepted, this paper shows, that mobile phone integrated
sensors are well suited for evaluating postural stability.

Patterson et al, 2014 [28]

A Biodex© Balance
System which gives an AP
Stability Index from a force
platform was used to
compare and evaluate the
validity of a Balance Mobile
Application which uses the
3D accelerometers from an
iPod while subjects were
performing a single trial of
the Athlete Single Leg Test
protocol.

Degree of tilt about each axis:
(1) ML stability index, (2) AP
stability index and the (3)
overall stability index; The
displacement in degrees from
level was termed the “balance
score” from the AP stability
index (APSI).

AP stability index (APSI) score on the balance platform 1.41
was similar to the smartphone SWAY score 1.38 with no
statistically significant difference. However, the correlation
(ICC) between the scores was low - only r= 0.632 (p<0.01). As
it was the case in the Patterson et al., 2014a, the same
weakness was found, once the subjects had to hold the iPod
touch with both hands at the sternum and only sway in AP
direction was measured. Other than indicated the authors, an
ICC of only r= 0.632 appears very low when considering that
the same measure was taken by two systems at the same time
for a single leg stance.

Shah et al, 2016 [18]

A mobile application was
developed to provide a
method of objectively
measuring standing balance
using the phone’s
accelerometer. Eight
independent therapists
ranked a balance protocol
based on their clinical
experience to assess the
degree of exercise difficulty.
The concordance between
the results was obtained to
determine if the mobile can
quantify standing balance
and distinguish between
exercises of varying
difficulty.

3D accelerometer data were
obtained from three mobile
phones and mean acceleration
was calculated; After a
correction for static bias the
corrected value was applied,
the magnitude of the resultant
vector (R) was calculated for
each of measurement; The
metric "mean R" was the
average magnitude all
resultant vectors and was then
used as an index of balance.

Even though Shah et al., 2016 did not make a direct
comparison between 2 sensor systems, accelerometer readings
were calculated for each exercise at each ankle and knee and
the torso. A high differentiation between the stability exercises
shows lower values for ankle, knee, and torso, indicating that
the acceleration results from the mobile phones have a strong
relationship to the subjective rating of the 8 experienced
clinicians. The results indicate that one sensor location
appears sufficient since all sensors follow the same trend, it
appears that knee, and torso locations could be used. From a
practical point of view, easiest to mount and use would be the
torso or hip location.

Yvon et al, 2015 [29]

An iPhone application was
used to quantify sway while
performing the Romberg
and the Romberg tandem
tests in a soundproof room
and then in a normal room.

Output data (‘K’ value) was
used to represent the area of
an ellipse with two standard
deviations in the
anteriorposterior and lateral
planes about a mean point.

The article explores a not usual protocol trying to evaluate the
contributions of auditory sensory inputs on balance, through a
combination of postures in different sound room condition.
No raw data were presented or clearly specified; data
processing procedures were not reported. Differences on
postural sway measurements have been found among
different room conditions with a dedicated application
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